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Abstract— In this work an almost Lyapunov function theorem
from our recent work is generalized to systems with inputs.
It is shown that if for any inputs and initial conditions, the
time that solutions of the system can stay in a “bad” region
where the Lyapunov function does not decrease fast enough has
a sufficiently small upper bound, then the system is globally
exponentially stable uniformly with respect to the inputs. In
our analysis, the almost Lyapunov function is directly expressed
as a function of time along arbitrary solution and the upper
bound of the ratio of this function at the time the solution
trajectory leaves and enters the “bad” region is found to be
less than 1. Consequently all solutions are shown to converge
to the origin asymptotically with some careful justification. It is
also concluded that a system with inputs is exponentially input-
to-state stable if its auxiliary system satisfies all the hypotheses
in our main theorem. The result is then applied on an example
adopted and modified from our previous work and it shows
an improvement in the sense that stability can still be verified
even when there is stronger perturbation to the example’s stable
dynamics.

I. INTRODUCTION

For general nonlinear systems, global asymptotic stability
(GAS) is typically shown through Lyapunov’s direct method
(see, e.g., [1]), which involves constructing a Lyapunov
function V whose time derivative along solutions is negative
except at the equilibrium. It turns out not only such V
tailored to the system dynamics is hard to construct, but
also the property of strictly decreasing V is sufficient but
not necessary to guarantee asymptotic stability. The gap is
filled by the study of non-monotonic Lyapunov functions as
in [2][3][4][5], etc.

In the literature, an interesting and systematic way to show
GAS of a nonlinear system when V does not decrease “all
the time” is to find a linear combination of higher order
derivatives of V with positive coefficients and show that
the linear combination is negative definite, as studied in [6]
and [7]. This direction of work takes its roots in [8] and
the intuition is that when V̇ is positive, the negative linear
combination guarantees that some higher order derivatives
of V have to be sufficiently negative so V cannot grow too
much; asymptotically V has to converge to 0 and hence the
system is GAS.

Another approach is to bound the region Ω in the state
space where V does not decrease fast enough, as studied
in [9], [10] via the analysis of almost Lyapunov function.
States where V̇ > 0 are inside Ω and because Ω is “small”,
the trajectories of solutions have to pass through Ω and the
amount V can increase will be compensated by the later
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decrease. As a result, asymptotically V is decreasing and
system is also shown to be GAS.

Nevertheless, all the aforementioned literature only deals
with systems without inputs. We want to extend the method
utilizing almost Lyapunov functions in our previous work
[10] to systems with inputs. The main challenge here is that
with the presence of inputs, the solution trajectory may be
highly non-smooth in the sense that the curvature of the
solution trajectories is ill-defined. As a result, our previous
non-self-overlapping condition in [10] which is based on
the curvature of the solution trajectories cannot be used.
Nevertheless, we can bypass this difficulty by switching from
bounding the length of solution trajectories in Ω to bounding
the time spent in Ω. In this way we can directly express
V evaluated along a solution as a function of time and
regardless what inputs the system takes, the ratio between
V evaluated at the time the solution trajectory enters and
leaves Ω can be bounded. Under some assumptions this ratio
is shown to be less than 1 and subsequently we are able
to show that all solutions of the system will asymptotically
converge to the origin. This result is then generalized via
the study of auxiliary system and we propose hypotheses
under which the system with inputs admits the well known
input-to-state stability.

This work is divided into 6 Sections. Section II introduces
the mathematical definitions of our dynamical system as well
as different characterizations of system stability. Section III
gives the main result of this work with some supporting
lemmas. Section IV provides the proof of the main theorem.
Section V contains an example modified from our earlier
work on which our theorem is applicable. Finally Section VI
concludes this paper.

II. PRELIMINARIES

Our control system is given by

ẋ = f(x, u) (1)

where f : Rn × U → Rn is locally Lipschitz jointly in
(x, u). The input value set U ⊂ Rm is compact1. The input
function u(·) is a locally essentially bounded function: u(·) ∈
L∞loc(R≥0 → U) =:MU . For a specific initial condition x0

and control u, denote the solution state of (1) at time t by
x(t, x0, u). We say that 0 is an equilibrium of the system (1)
in the sense that f(0, u) = 0 for all u ∈ U . The system (1)
is globally uniformly asymptotically stable (GUAS) if there

1In this case the previous assumption is same as f being locally Lipschitz
in x uniformly over all u ∈ U .



exists β ∈ KL 2 such that for any x0 ∈ Rn, u ∈MU , t ≥ 0,

|x(t, x0, u)| ≤ β(|x0|, t).

Moreover, the system (1) is globally uniformly exponentially
stable (GUES) if the β function used for defining GUAS
is linear in the first argument and exponentially decaying
with respect to the second argument3; that is, there exist
C̄ ≥ 1, ā > 0 such that for any x0 ∈ Rn, u ∈MU , t ≥ 0,

|x(t, x0, u)| ≤ C̄e−āt|x0| (2)

GUES can also be shown via an exponentially decreasing
Lyapunov function (see, e.g., [1]):

Lemma 1 The system (1) is GUES if there exist constants
a, a1, a2 > 0 and a positive definite function V ∈ C1(Rn →
R≥0) satisfying

a1|x|2 ≤ V (x) ≤ a2|x|2 ∀x ∈ Rn (3)

such that

∇V (x) · f(x, u) ≤ −aV (x) ∀u ∈ U, x ∈ Rn (4)

Very often strictly decreasing V at exponential rate −a at
all time is hard to find; the parameter C̄ in (2) also allows
transient overshoots when it is larger than 1. We want to
preserve this property and weaken the condition on V :

Lemma 2 The system (1) is GUES if there exist C ≥ 1,
a1, a2, a > 0 and a positive definite function V ∈ C1(Rn →
R≥0) satisfying (3) such that for any x0 ∈ Rn, u ∈MU and
t ≥ 0,

V (x(t, x0, u)) ≤ Ce−atV (x0) (5)

The proof of Lemma 2 can be directly shown via compar-
ison functions and hence omitted. Smoothness of V is not
required but we include it here for consistency. In contract to
the decreasing V as required by Lemma 1, Lemma 2 allows
temporary rise in V . As long as the overshoot is uniformly
bounded and asymptotically V converges to 0 exponentially
fast, the system is GUES.

Another important stability definition is input-to-state sta-
bility (ISS) [11], which is defined via γ ∈ K∞ 4, β ∈ KL
such that for any x0 ∈ Rn, u ∈MU ,

|x(t, x0, u)| ≤ β(|x0|, t) + γ(‖u‖[0,t]).

Similarly when the β function used for defining ISS is
linear in the first argument and exponentially decreasing
with respect to the second argument, we say the system is
exponentially input-to-state stable (exp-ISS) (see, e.g., [12]).

The definitions of GUAS and ISS are connected via
auxiliary system as shown in the celebrated work [13]. In

2β ∈ KL if β(s, t) : R≥0 × R≥0 → R≥0 is a continuous function
such that β(·, t) is increasing, β(s, ·) is decreasing and β(0, t) = 0 for all
t ≥ 0, limt→∞ β(s, t) = 0 for all s ≥ 0.

3Note that the “U” in GUES and GUAS in this work is emphasized on
the uniformity of convergence with respect to the inputs.

4γ ∈ K∞ if γ(s) : R≥0 → R≥0 is a continuous, strictly increasing
function and γ(0) = 0, lims→∞ γ(s) =∞.

addition, since the class KL function β used for defining
GUAS and ISS while showing their relations are the same,
GUES and exp-ISS are also connected:

Lemma 3 For a system (1) and some ρ ∈ K∞, define the
auxiliary system by

ẋ = f(x, ρ(|x|)d) =: f ′(x, d), |d| ≤ 1. (6)

If the auxiliary system (6) is GUAS, then the system (1) is
ISS. Moreover, if (6) is GUES, then (1) is exp-ISS.

III. RESULTS VIA Ω, V ′ AND T

As mentioned earlier, in order to show GUES, the condi-
tion (4) is very strong; it may not hold everywhere in Rn.
Suppose there exists a proper subset W ⊂ Rn such that
the inequality in (4) only holds or can only be verified for
x ∈ W . Denote the “bad” set Ω = Rn\W and

V ′(x) := sup
u∈U
{∇V (x) · f(x, u)}. (7)

Then (4) true for only x ∈ W is equivalent to

V ′(x) ≤ −aV (x) ∀x ∈ R\Ω. (8)

Note that because the set in the supremum function in (7)
may be unbounded when x ∈ Ω, V ′(x) may not exist.
Nevertheless, under the regularity assumptions of system (1)
and the function V , the next lemma not only guarantees the
existence of V ′(x) for all x ∈ Rn, it also shows that V ′ is
Lipschitz:

Lemma 4 Let V ∈ C1(Rn → R≥0) be a positive definite
function and assume the system (1) has an equilibrium at 0.
Then V ′ defined via (7) exists for all x ∈ Rn and is Lipschitz
when both f,∇V are Lipschitz.

Proof: Let L1, L2 be the Lipschitz constants of
f(x, u),∇V (x) over compact set D×U,D, respectively with
D := {|x| ≤ r : x ∈ Rn} for some r > 0. The equilibrium
at x = 0 and positive definite C1 function V imply that
f(0, u) = 0 for all u ∈ U and ∇V (0) = 0. Hence for any
x ∈ D and u ∈ U

|f(x, u)| = |f(x, u)− f(0, u)| ≤ L1|x|,

|∇V (x)| = |∇V (x)−∇V (0)| ≤ L2|x|.

Thus ∇V (x) ·f(x, u) ≤ L1L2|x|2 and V ′(x) defined via (7)
exists. Let ε > 0. Pick some x1, x2 ∈ D. (7) also means there
exists u1 ∈ U such that V ′(x1) < ∇V (x1) · f(x1, u1) + ε.
In addition, we have V ′(x2) ≥ ∇V (x2) · f(x2, u1). Hence

V ′(x1)− V ′(x2)

< ∇V (x1) · f(x1, u1)−∇V (x2) · f(x2, u1) + ε

= (∇V (x1) · f(x1, u1)−∇V (x1) · f(x2, u1))

+ (∇V (x1) · f(x2, u1)−∇V (x2) · f(x2, u1)) + ε

≤ |∇V (x1)||f(x1, u1)− f(x2, u1)|
+ |∇V (x1)−∇V (x2)||f(x2, u1)|+ ε

≤ L2|x1|L1|x1 − x2|+ L2|x1 − x2|L1|x2|+ ε

= L1L2(|x1|+ |x2|)|x1 − x2|+ ε



Similarly we can swap x1, x2 and get the same bound on
V ′(x2)−V ′(x1). Now because this is is true for any arbitrary
ε > 0, we conclude that

|V ′(x1)− V ′(x2)| ≤ L1L2(|x1|+ |x2|)|x1 − x2| (9)

Recall x1, x2 ∈ D, which implies |x1| ≤ r, |x2| ≤ r. Thus
|V ′(x1)− V ′(x2)| ≤ 2L1L2r|x1 − x2| and V ′ is Lipschitz.

In the case when Ω is bounded, the next lemma guarantees
a uniform, finite upper bound on |∇V ′(x) · f(x, u)| for all
u ∈ U and almost all x ∈ Ω.

Lemma 5 Let Ω ⊂ Rn be a bounded set, V ∈ C1(Rn →
R≥0) be a positive definite function satisfying (3) and assume
the system (1) has an equilibrium at 0. Further assume that
f,∇V are Lipschitz. Then ∇V ′ defined via (7) exists almost
everywhere in Ω. In addition, there exists c > 0 such that
for all ξ ∈ Ω where ∇V ′(ξ) exists and any u ∈ U ,

|∇V ′(ξ) · f(ξ, u)| ≤ cV (ξ) (10)

Proof: As V ′ is Lipschitz by Lemma 4, Rademacher’s
theorem directly concludes that V ′ is differentiable almost
everywhere in Ω. Let u(·) = u be a constant input and denote
x(t) = x(t, ξ, u) for abbreviation. We have

|∇V ′(ξ) · f(ξ, u)| = V̇ ′(x(t))
∣∣∣
t=0+

= lim
t→0+

|V ′(x(t))− V ′(ξ)|
t

.

Let D ⊃ Ω be a compact set and L1, L2 be the Lipschitz
constants for f,∇V as did in the proof of Lemma 4 and we
conclude from (9) that |V ′(x(t))− V ′(ξ)| ≤ L1L2(|x(t)|+
|ξ|)|x(t) − ξ|. Note that limt→0+ |x(t)| = |x(0)| = ξ; in
addition, since

|x(t)− ξ| =
∣∣∣∣∫ t

0

f(x(s))ds

∣∣∣∣
≤
∫ t

0

|f(x(s))|ds ≤
∫ t

0

L1|x(s)|ds,

lim
t→0+

1

t
|x(t)− ξ| ≤ lim

t→0+

L1

t

∫ t

0

|x(s)|ds = L1|ξ|.

Therefore,

|∇V ′(ξ) · f(ξ, u)| ≤ lim
t→0+

|V ′(x(t))− V ′(x)|
t

≤ L1L2 lim
t→0+

(|x(t)|+ |ξ|)|x(t)− ξ|
t

≤ L1L2

(
lim
t→0+

|x(t)|+ |ξ|
)(

lim
t→0+

1

t
|x(t)− ξ|

)
≤ 2L2

1L2|ξ|2 ≤
2L2

1L2

a1
V (ξ)

The lemma is proven with c =
2L2

1L2

a1
.

Finally define the Ω-dwell time T by

T := sup
x0∈Ω,u∈MU

inf
t≥0
{t : x(t, x0, u) 6∈ Ω} (11)

This is the longest time a solution of the system (1) can stay
inside Ω. Intuitively if the solution of (1) never stays inside

Ω for too long, V is still bounded and there is still a chance
that the condition (5) will hold. The main objective of this
paper is indeed to show that with some mild assumptions,
when T is small enough, the system (1) is still GUES.

Theorem 1 Consider a control system (1) with locally Lip-
schitz right hand side f and compact input value set U .
Let V ∈ C1(Rn → R≥0) be a positive definite function
satisfying the condition (3) for some a1, a2 > 0 and assume
∇V is also locally Lipschitz. Define V ′(x) via (7) and for
some a > 0, let Ω ⊂ Rn be the set such that (8) holds.
If there exists c > 0 such that (10) holds for all x ∈ Ω
where ∇V ′ exists, then there exists an increasing function
α : [0, 1) → [0,∞) with α(0) = 0, limt→1 α(t) = ∞ such
that as long as the Ω-dwell time T defined in (11) satisfies

T <
1√
c

min

{
π

2
, α

(
a√
c

)}
, (12)

then the system (1) is GUES.

The explicit formula of α is given by

α(t) = ln

(
1 + t

1− t

)
+ 2 arccos

(
(t2 + 1)−

1
2

)
. (13)

Implied by the connection between GUES and exp-ISS as
stated in Lemma 3, we also have the following corollary:

Corollary 1 Consider a control system (1). Let V ∈
C1(Rn → R≥0) be a positive definite function satisfying
the condition (3) for some a1, a2 > 0. If its auxiliary system
defined via (6) with some ρ ∈ K∞ satisfies all the hypotheses
in Theorem 1, then the system (1) is exp-ISS.

As a remark, the assumption on bounded Ω-dwell time can
be further developed. A simple situation where this property
can be shown is when Ω has finite size in some dimension,
and the vector field f over the set Ω has a uniform lower
bound on the norm of its projection onto this dimension. In
this case the vector field is “transversal” to the set Ω and thus
the solutions of the system will pass through it. In general,
there is no systematic way to prove bounded Ω-dwell time;
in other words, to show that Ω is not an invariant set requires
not only extra knowledge of the shape and volume of Ω but
also knowledge of the vector field f . This can be developed
into a separate work and is an interesting future research
direction.

IV. PROOF OF THE MAIN THEOREM

Proof: We start by making some direct observations of
the hypotheses of Theorem 1 here. The definition (7) means
that at any time t, the time derivative of V along any solution
x(·, x0, u) satisfies:

V̇ (x(t, x0, u)) ≤ V ′(x(t, x0, u)) (14)

for all t ≥ 0. Suppose there exists t2 > t1 ≥ 0 such
that the solution trajectory enters Ω at t1 and leaves at
t2; that is, x(t, x0, u) ∈ Ω for all t ∈ (t1, t2) and
x(t1, x0, u), x(t2, x0, u) ∈ ∂Ω, the boundary of Ω. By



definition (11) we have t2 − t1 ≤ T . Thanks to Lemma 1
in [14], the properties that ∇V ′(x) exists almost everywhere
in Ω and (10) holds for all x ∈ Ω where ∇V ′(x) exists
implies that V (x(·, x0, u)) is absolutely continuous as long
as t ∈ (t1, t2) so that x(t, x0, u) ∈ Ω. In addition whenever
V̇ ′(x(t, x0, u)) exists,

−cV (x(t, x0, u)) ≤ V̇ ′(x(t, x0, u)) ≤ cV (x(t, x0, u))
(15)

Fix x0 ∈ Rn, u ∈MU . Write V (t), V ′(t) for abbreviation
of V (x(t, x0, u)), V ′(x(t, x0, u)). A necessary condition for
(14), (15) to hold is the existence of essentially non-negative
functions w1(t), w2(t), w3(t) defined over (t1, t2) such that

V̇ (t) = V ′(t)− w1(t), (16)

V̇ ′(t) = cV (t)− w2(t), (17)

V̇ ′(t) = −cV (t) + w3(t). (18)

Because V, V ′ are continuous, the above equations can be
extended to [t1, t2]. In addition, because x(t, x0, u) ∈ ∂Ω
when t = t1 or t2, by continuity of V ′ and the property (8),
we have

V ′(t1) ≤ −aV (t1), (19)

V ′(t2) ≤ −aV (t2). (20)

Our goal is to show that whenever the solution passes through
Ω, V (t2)

V (t1) < 1. This can be achieved by picking a time t ∈
(t1, t2) and bounding V (t)

V (t1) , V (t2)
V (t) separately.

We bound V (t)
V (t1) first. From (16),(17), we have(

V̇

V̇ ′

)
= A1

(
V
V ′

)
−
(
w1

w2

)
, A1 =

(
0 1
c 0

)
.

Propagating the solutions from t1 to t, we have(
V (t)
V ′(t)

)
= eA1(t−t1)

(
V (t1)
V ′(t1)

)
−
∫ t

t1

eA1(t−s)

(
w1(s)
w2(s)

)
ds

(21)
where

eA1t =

(
cosh

√
ct 1√

c
sinh
√
ct√

c sinh
√
ct cosh

√
ct

)
Notice that for any s ∈ [t1, t], the two elements in the
first row of eA1(t−s) are non-negative. In addition, recall
that w1, w2 are non-negative; thus the integration in (21)
gives a vector whose first element is always non-negative
and because it is subtracted on the right, it implies that

V (t) ≤ cosh
√
c(t− t1)V (t1) +

1√
c

sinh
√
c(t− t1)V ′(t1)

≤
(

cosh
√
c(t− t1)− a√

c
sinh
√
c(t− t1)

)
V (t1)

=: R1(t− t1)V (t1)

where (19) and the fact that sinh
√
c(t− t1) is non-negative

are used for the second inequality. Thus we have V (t)
V (t1) ≤

R1(t− t1) for all t ∈ [t1, t2].

t1 t2 + t∗2 t∗ t1 + t∗1 t2
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
R1(t− t1)

R2(t− t2)
R1(t−t1)
R2(t−t2)

Fig. 1. Functions R1, R2 and R1/R2.

Some observations can be made on the function R1(t).
Firstly,

Ṙ1(t) =
√
c sinh

√
ct− a cosh

√
ct

= −1

2

(
(a−

√
c)e
√
ct + (a+

√
c)e−

√
ct
)

The case c ≤ a2 is less interesting since then Ṙ1(t) < 0
for all t ≥ 0 and R1(t) is a strictly decreasing function. By
picking t = t2 we directly conclude that V (t2)

V (t1) < 1. In the
other case when c > a2,

R1(t) =
1

2

((
1− a√

c

)
e
√
ct +

(
1 +

a√
c

)
e−
√
ct

)
and we have R1(t) > 0 for all t ≥ 0, R1(0) = 1, Ṙ1(0) =
−a, limt→∞R1(t) = ∞ and R̈1(t) = cR1(t) > 0. These
properties imply that R(t) is convex over [0,∞), and R(t) =
1 has two solutions, one at t = 0. Denote the other one t∗1,
t∗1 > 0. We also have

R1(t) < 1 ∀t ∈ (0, t∗1). (22)

The graphical illustration of function R1(t − t1) with a =
1, c = 6 is shown as the blue curve in Fig. 1. In fact, t∗1 can
be computed analytically:

t∗1 =
1√
c

ln

√
c+ a√
c− a

=
1√
c

ln

(
1 + a√

c

1− a√
c

)
=:

1√
c
α1

(
a√
c

)
(23)

and it is not hard to check that α1(0) = 0, limt→1 α1(t) =
∞.

Similarly when bounding V (t2)
V (t) , consider the linear system

given by (16),(18):(
V̇

V̇ ′

)
= A2

(
V
V ′

)
+

(
−w1

w3

)
, A2 =

(
0 1
−c 0

)
.



Propagating the solutions backwards from t2 to t, we have(
V (t)
V ′(t)

)
= eA2(t−t2)

(
V (t2)
V ′(t2)

)
+

∫ t

t2

eA2(t−s)

(
−w1(s)
w3(s)

)
ds

(24)
where

eA2t =

(
cos
√
ct 1√

c
sin
√
ct

−
√
c sin
√
ct cos

√
ct

)
This case is a bit more complicated compared with the
previous case as the elements in eA2t are sign indefinite for
all t ≤ 0. Nevertheless, our assumption (12) assures that
t2 − t1 < π

2
√
c
. As a result, for all s ∈ [t, t2],

√
c(s− t2) ∈

(−π2 , 0] and thus cos(
√
c(s− t2)) > 0, sin(

√
c(s− t2)) ≤ 0.

In addition, notice the integration in (24) is backwards and
recall that w1, w3 are non-negative, hence the first element of
the vector obtained after integration is always non-negative.
Because it is added on the right hand side in (24), we have

V (t) ≥ cos
√
c(t− t2)V (t2) +

1√
c

sin
√
c(t− t2)V ′(t2)

≥
(

cos
√
c(t− t2)− a√

c
sin
√
c(t− t2)

)
V (t2)

:= R2(t− t2)V (t2)

where (20) and the fact sin
√
c(t−t2) is non-positive are used

for the second inequality. Thus we have V (t)
V (t2) ≥ R2(t− t2)

for all t ∈ [t1, t2].
Recall that we are only interested in the non-trivial case

when c > a2 (otherwise we already have V (t2)
V (t1) < 1 as in

the discussion for R1). Some observations can be made on
R2(t): R2(0) = 1, Ṙ2(0) = −a, R2(− π

2
√
c
) = a√

c
< 1.

In addition, for all t ∈ [− π
2
√
c
, 0], R2(t) > 0 and R̈2(t) =

−cR2(t) < 0. Hence R2(t) is concave over [− π
2
√
c
, 0], and

R2(t) = 1 have two solutions, one at t = 0. Denote the other
by t∗2, t∗2 < 0. We also have that

R2(t) > 1 ∀t ∈ (t∗2, 0). (25)

The graphical illustration of function R2(t − t2) with a =
1, c = 6 is shown as the red curve in Fig. 1. Similarly to t∗1,
t∗2 can also be computed analytically:

t∗2 = − 2√
c

arccos

√
c

a2 + c

= − 2√
c

arccos

(( a√
c

)2

+ 1

)− 1
2

=: − 1√
c
α2

(
a√
c

)
(26)

We find that α2 is an increasing function such that α2(0) =
0, α2(1) = π

2 .
Define α := α1 + α2. By this construction α satisfies the

hypothesis in Theorem 1. The assumption (12) also implies
that

t2 − t1 ≤ T <
1√
c
α

(
a√
c

)
=

(
1√
c
α1

(
a√
c

))
−
(
− 1√

c
α2

(
a√
c

))
= t∗1 − t∗2

(27)

Thus t1 + t∗1 > t2 + t∗2 and the interval (max{t1, t2 +
t∗2},min{t2, t1 + t∗1}) = (t1, t1 + t∗1) ∩ (t2 + t∗2, t2) is non-
empty. Pick some point t∗ in that interval by defining

t∗ := (1− ζ) max{t1, t2 + t∗2}+ ζ min{t2, t1 + t∗1} (28)

for some ζ ∈ (0, 1). Now write s = t2 − t1, then (28)
becomes t∗ = t1 + (1 − ζ) max{0, s + t∗2} + ζ min{s, t∗1}.
When s ≤ min{−t∗2, t∗1}, this reduces to t∗ = t1+ζs. Define

h(s) :=
R1(t∗ − t1)

R2(t∗ − t1 − s)
.

Since R1, R2 are smooth and positive, so is h(s) over the
domain [0, T ]. We also have h(0) = R1(0)

R2(0) = 1. Recall t∗ =
t1 + ζs when s is small so

h′(0) =
d

ds

(
R1(ζs)

R2((ζ − 1)s)

)∣∣∣∣
s=0

=
ζṘ1(0)R2(0)− (ζ − 1)R1(0)Ṙ2(0)

(R2(0))2
= −a

In addition, t∗ ∈ (t1, t1 +t∗1)∩(t2 +t∗2, t2) by its definition
(28) so (22), (25) imply R1(t∗−t1) < 1, R2(t∗−t1−s) > 1;
hence h(s) < 1 for all s ∈ (0, T ]. This can also be seen
from the black curve in Fig. 1 that R(t∗−t1)

R2(t∗−t2) < 1. The next
lemma, whose proof is in the appendix, claims that h(s) is
in fact bounded from above by some exponentially decaying
function:

Lemma 6 Let h : [0, T ]→ R be a continuous function such
that h(0) = 1 and h(s) ∈ (0, 1) for all s ∈ (0, T ]. Suppose
h(s) is differentiable at 0 and h′(0) = −a. Then there exists
η ∈ (0, 1] such that for all s ∈ [0, T ], h(s) ≤ e−ηas.

As a result, as long as t2 − t1 ≤ T ,

V (t2)

V (t1)
≤
(
V (t∗)

V (t1)

)(
V (t2)

V (t∗)

)
≤ R1(t∗ − t1)

R2(t∗ − t2)
=

h(t2 − t1) ≤ e−ηa(t2−t1). (29)

Finally consider the solution x(·, x0, u) of the system
(1) from time 0 to t. At each time it either stays in
Rn\Ω and according to (8) that V (x(·, x0, u)) decreases at
exponential rate −a, or it will pass through Ω over some
time interval (t1, t2), where V (x(·, x0, u)) is decreased by
the ratio e−ηa(t2−t1) from (29). Cascading them together we
see that V (x(·, x0, u)) decreases at exponential rate bounded
from above by −ηa. There maybe overshoots in V , due to
the possibilities that x0 ∈ Ω or x(t, x0, u) ∈ Ω. Compared
with the exponential decaying rate −ηa, the overshoot in the
first possibility is bounded by (mint∈[−T,0]R2(t))−1eηaT

and the overshoot in the second possibility is bounded by
maxt∈[0,T ]R1(t)eηaT . As a result, we will have

V (x(t, x0)) ≤ Ce−ηatV (x0)

for any x0 ∈ Rn and u ∈ MU , where C =
maxt∈[0,T ] R1(t)

mint∈[−T,0] R2(t)e
2ηaT . Therefore the system (1) is GUES.



V. EXAMPLE

Consider the two dimensional system with inputs u ∈ R2:

ẋ =

(
−λ(x) −µ
µ −λ(x)

)
x+ u =: A(x)x+ u (30)

where

λ(x) =

(
a+ b

2

)
min

{
|x− xc|

r
, 1

}
− b

2
+ k (31)

for some a, b, k, r > 0, xc ∈ R2. This is modified from
the autonomous system example in our earlier work [10]
by adding inputs.

If λ is a constant and when u = 0, it is easy to see
by changing into polar coordinates that the solution of the
system (30) is converging to the origin along spiral trajectory.
Moreover, the tangential velocity is µ counter-clockwise and
the radial velocity is λ|x| towards the origin. The dependence
of λ on x as described in the definition (31) perturbs the
spiral vector field in the region

Ω = {x ∈ R2 : |x− xc| < r}.

Pick the standard V = 1
2 |x|

2, define ρ ∈ K∞ by ρ(s) = ks.
The auxiliary system thus is

ẋ = A(x)x+ k|x|d, |d| ≤ 1

In this case,

V̇ (x) = x · (A(x)x+ k|x|u) = −λ(x)|x|2 + k|x|x · u
≤ (−λ(x) + k)|x|2 = 2(−λ(x) + k)V (x) =: V ′(x).

In addition, since λ(x) = a
2 + k for all x ∈ R2\Ω, we have

V ′(x) ≤ −aV (x) ∀x ∈ R2\Ω

exactly the same as the required assumption (8). Notice that
when x ∈ Ω, V ′(x) > −aV (x) and in particular when x =
xc, V ′(x) = bV (x) > 0 so the classical Lyapunov theorem
is not applicable here. In order to apply our Theorem 1, we
need to compute the upper bound on |∇V ′ · (A(x)x + u)|.
We differentiate λ(x) for x ∈ Ω first. Notice that in this case
(31) implies λ(x) = (a+b)|x−xc|

2r − b
2 + k ≤ a

2 + k and

∇λ(x) =
(a+ b)(x− xc)

2r|x− xc|
,

which exists everywhere in Ω except for x = xc. Hence

|∇V ′ · (A(x)x+ k|x|d)| = 2|(−∇λ(x)V (x)

+ (−λ(x) + k)∇V (x)) · (A(x)x+ k|x|d)|

= 2

∣∣∣∣((− (a+ b)(x− xc)
2r|x− xc|

V (x) + (−λ(x) + k)x

)
× (A(x)x+ k|x|d)|

≤
∣∣∣∣ (a+ b)(x− xc)

r|x− xc|
· (A(x)x+ k|x|d)

∣∣∣∣V (x)

+ 2|(−λ(x) + k)x · (A(x)x+ k|x|d)|

≤ (a+ b)

r
(‖A(x)‖+ k)|x|V (x)

+ 2| − λ(x) + k||x · (A(x)x+ k|x|d)|

≤ (a+ b)

r
(k +

√
λ(x)2 + µ2)(|xc|+ r)V (x)

+ 4| − λ(x) + k|2V (x)

≤

(
(a+ b)

r

(
k +

√(a
2
+ k
)2

+ µ2

)
(|xc|+ r) + a2

)
V (x)

We take c = (a+b)
r

(
k +

√(
a
2 + k

)2
+ µ2

)
(|xc|+ r) + a2

so that (10) holds for all x ∈ Ω\{xc}. Automatically we
have c > a2. For the Ω-dwell time, recall the solution of
the system (30) is rotating at constant tangential velocity µ.
Also Ω is bounded in a sector with center angle 2 arcsin r

|xc|
so T ≤ 2

µ arcsin r
|xc| .

Take numerical values a = 1, b = 0.5, k = 0.1, r =

0.1, µ = 2 and xc =

(
0.8
0

)
. It is then computed c ≈ 30.54

and T < 0.125. In addition, π
2
√
c
≈ 0.284 and eventually by

(27) and the formulas (13), we find

1√
c
α

(
a√
c

)
≈ 0.131

Thus T < 1√
c

min
{
π
2 , α

(
a√
c

)}
and the system (30) is exp-

ISS with linear ISS gain ρ−1 = 1
k = 10. The vector field

A(x)x is shown in Fig. 2 by the blue arrows. Ω is the red
shaded region. A solution generated with constant input u =(

0.01
0

)
and initial state x0 =

(
0.9
−0.4

)
is drawn by the

black curve in the figure. Although it is temporarily affected
by the distorted vector field in Ω, the solution passes through
Ω and eventually converges to the ball |x| ≤ 10|u| = 0.1,
determined by the ISS gain and shown as the green circle in
Fig. 2. Compared with the analysis of the example in [10],
we observe that while all the other parameters are kept the
same, the radius of Ω, r = 0.1 is much larger than the old
one (which was 0.01) and the maximum increasing rate of
V , b = 0.5 is also much larger than the old one (which was
0.01). Hence not only is the proposed Theorem 1 capable of
dealing with the stability of systems with inputs, it is less
conservative and able to address “worse behavior” systems.

VI. CONCLUSION

In this work we have generalized the method of almost
Lyapunov functions from our previous work to systems with
inputs. It was shown that if the time that solutions of the
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Fig. 2. An illustration of the system (30) solution.

system can stay in a region where V does not decrease fast
enough has a sufficiently small upper bound, then the system
is GUES. In addition, if a system with inputs whose auxiliary
system satisfies all the hypotheses in our main theorem, then
this system is exp-ISS. The hypotheses are cleaner compared
with our previous work; in addition, it is observed via the
same example but with stronger perturbations to the stable
vector field that the theorem in this paper is less conservative
and it is believed to be applicable to a broader class of
systems.

APPENDIX
PROOF OF LEMMA 6

Define φ : (0, T ] → R by φ(s) := − ln(h(s))
as . It is

continuous since h(s) is continuous over (0, T ]. As h(s) ∈
(0, 1) for all s ∈ (0, T ], ln(h(s)) < 0 and so φ(s) > 0 for
all s ∈ (0, T ]. Extend φ(s) continuously to s = 0 and by
L’Hospital’s rule we have

φ(0) = lim
s→0+

− ln(h(s))

at
= lim
s→0+

− h
′(s)

ah(s)
= 1

Let η := mins∈[0,T ] φ(s), existence guaranteed by Weier-
strass extreme value theorem and η > 0 since φ(s) > 0 for
all s ∈ [0, T ]. In addition, η ≤ φ(0) = 1. By construction,
η ≤ − ln(h(s))

at and thus h(s) ≤ e−ηas for all s ∈ [0, T ].

REFERENCES

[1] H. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.
[2] D. Aeyels and J. Peuteman, “A new asymptotic stability criterion for

nonlinear time-variant differential equations,” IEEE Transactions on
Automatic Control, vol. 43, no. 7, pp. 968–971, July 1998.

[3] A. A. Ahmadi and P. A. Parrilo, “Non-monotonic Lyapunov functions
for stability of discrete time nonlinear and switched systems,” in 2008
47th IEEE Conference on Decision and Control, Dec 2008, pp. 614–
621.

[4] I. Karafyllis, “Can we prove stability by using a positive definite func-
tion with non sign-definite derivative?” IMA Journal of Mathematical
Control and Information, vol. 29, no. 2, pp. 147–170, 11 2011.

[5] H. Li and A. Liu, “Computation of non-monotonic Lyapunov functions
for continuous-time systems,” Communications in Nonlinear Science
and Numerical Simulation, vol. 50, pp. 35 – 50, 2017.

[6] V. Meigoli and S. K. Y. Nikravesh, “A new theorem on higher order
derivatives of Lyapunov functions,” ISA Transactions, vol. 48, no. 2,
pp. 173 – 179, 2009.

[7] ——, “Stability analysis of nonlinear systems using higher order
derivatives of Lyapunov function candidates,” Systems & Control
Letters, vol. 61, no. 10, pp. 973 – 979, 2012.

[8] A. Butz, “Higher order derivatives of Liapunov functions,” IEEE
Transactions on Automatic Control, vol. 14, no. 1, pp. 111–112,
February 1969.

[9] D. Liberzon, C. Ying, and V. Zharnitsky, “On almost Lyapunov
functions,” in 2014 IEEE 53th Conference on Decision and Control
(CDC), Dec 2014, pp. 3083–3088.

[10] S. Liu, D. Liberzon, and V. Zharnitsky, “On almost Lyapunov functions
for non-vanishing vector fields,” in 2016 IEEE 55th Conference on
Decision and Control (CDC), Dec 2016, pp. 5557–5562.

[11] E. D. Sontag, “Smooth stabilization implies coprime factorization,”
IEEE Transactions on Automatic Control, vol. 34, no. 4, pp. 435–443,
Apr 1989.

[12] Q. Zhu, J. Cao, and R. Rakkiyappan, “Exponential input-to-state
stability of stochastic cohen–grossberg neural networks with mixed
delays,” Nonlinear Dynamics, vol. 79, no. 2, pp. 1085–1098, Jan 2015.

[13] E. D. Sontag and Y. Wang, “New characterizations of input-to-state
stability,” IEEE Transactions on Automatic Control, vol. 41, no. 9, pp.
1283–1294, Sep 1996.

[14] A. R. Teel and L. Praly, “On assigning the derivative of a disturbance
attenuation control Lyapunov function,” Mathematics of Control, Sig-
nals, and Systems, vol. 13, pp. 95–124, 05 2000.


