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a b s t r a c t

We study convergence of nonlinear systems in the presence of an ‘‘almost Lyapunov’’ function which,
unlike the classical Lyapunov function, is allowed to be nondecreasing – and even increasing – on a
nontrivial subset of the phase space. Under the assumption that the vector field is free of singular
points (away from the origin) and that the subset where the Lyapunov function does not decrease is
sufficiently small, we prove that solutions approach a small neighborhood of the origin. A nontrivial
example where this theorem applies is constructed.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

For general nonlinear systems, asymptotic stability is typically
shown through Lyapunov’s direct method (see, e.g., Khalil, 2002),
which involves constructing a Lyapunov function V whose time
derivative along solutions is negative except at the equilibrium.
Even if this property holds for the nominal system, stability is
not guaranteed when there is a perturbation because V might
not necessarily decrease along solutions of the perturbed system.
One natural way to address this issue is to find another Lyapunov
function W for this perturbed system by perturbing V accord-
ingly; this is known as the Zubov method (Driver, 1965) on which
there are many recent results such as Camilli, Grüne, and Wirth
(2001) and Dubljević and Kazantzis (2002). On the other hand, if
it is desirable to use the same candidate Lyapunov function V , one
may hope to establish stability, at least in some weaker sense, if
the measure of the set where V is not decreasing along perturbed
solutions is relatively small. We call such a candidate Lyapunov
function ‘‘almost Lyapunov’’ in this paper.

Besides the above applications to perturbed systems, almost
Lyapunov functions can be useful when computational complex-
ity is the main difficulty. While it is straightforward to compute
the derivative of an arbitrary Lyapunov function along solutions,
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it might be quite challenging to analytically check the sign of this
derivative either for all states, or just for a region of interest.
For example, in the case when both the differential equation
and the Lyapunov function are polynomials of high degree, the
derivative is also a polynomial and verifying stability reduces to
checking whether a polynomial is negative definite. This prob-
lem is computationally hard, as it is related to Hilbert’s 17th
problem (Reznick, 2000) and is an important subject of current
research (see, e.g., Blekherman, Parrilo, & Thomas, 2012; Chesi,
2011). Following existing techniques, we may be able to verify
that the time derivative of V is negative only in a proper subset
of the region of interest, while not in the entire region. This
demonstrates the need for tools that would let one conclude
stability if V is only an ‘‘almost Lyapunov’’ function, which is
studied in this paper.

When a general candidate Lyapunov function is constructed,
the sign of its derivative along solutions can also be checked
by techniques based on random sampling (Tempo, Calafiore, &
Dabbene, 2012) instead of deterministic methods. This approach
only requires one to verify that the derivative is negative at a
sequence of states picked randomly inside the region. One can
use the Chernoff bound (see, e.g., Tempo et al., 2012; Vidyasagar,
1997) to characterize the number of such sample points needed
to obtain a reliable upper bound on the relative measure of points
in the region of interest for which the desired inequality can
possibly fail. Hence the problem is again converted into finding an
‘‘almost Lyapunov’’ function. See also Kenanian, Balkan, Jungers,
and Tabuada (2018) for some related recent work.

There is some relevant literature where stability is studied by
generalizations of the Lyapunov function approach. In Gunderson
(1971) and Meigoli and Nikravesh (2012), higher order deriva-
tives of Lyapunov function are used and in Aeyels and Peuteman
(1998) and Ahmadi and Parrilo (2008), the so-called finite-step
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Lyapunov function is used. There are significant difficulties asso-
ciated with both approaches. Higher order derivatives are harder
to compute, especially for nonlinear systems, and finding a linear
combination of higher order derivatives so a negative definite
function is obtained presents some challenges. In addition, as
stated in Ahmadi and Parrilo (2011), the method through higher
order derivatives of Lyapunov function approach is equivalent to
finding a standard Lyapunov function of some special form. As
for the finite-step Lyapunov functions, while the idea of ‘‘almost
Lyapunov’’ functions used in this paper is similar in spirit, there
is a conceptual difference. The finite-step Lyapunov function ap-
proach requires temporal information from the system because
the difference between the values of Lyapunov functions over a
finite time interval needs to be computed. Thus, the solutions
would need to be traced in order to compute the difference. This
is a cumbersome and sometimes impossible, in practice, task for
a general nonlinear system. By contrast, the ‘‘almost Lyapunov’’
functions approach relies only on the spatial information of the
system so that only some bounds on the vector field of the system
and the Lyapunov function are needed.

When working with ‘‘almost Lyapunov’’ functions, we en-
counter regions in the state space where the system trajectories
might temporarily diverge (in the sense of growth of Lyapunov
function). Nevertheless, our main result shows that when the
volume of the ‘‘bad’’ region where V does not decrease fast is
sufficiently small, the system is stable in the following weaker
sense as characterized by three properties: 1. Every solution
starting within a region that is slightly smaller than the region of
interest will remain in the region of interest; 2. All such solutions
will converge to a small region containing the equilibrium, with
a uniform bound in time; 3. Once they reach this small region
around the equilibrium, solutions will remain there afterwards.
The differences between the sizes of the respective regions de-
pend on the measure of the bad set, and they compensate for
possible temporary overshoots.

The first result of this type was obtained in Liberzon, Ying,
and Zharnitsky (2014) by using a perturbation argument. In that
paper, an arbitrary solution was compared with a solution that
avoided ‘‘bad regions’’ and converged to the equilibrium. Then,
using continuous dependence of solutions on initial conditions, it
was found that this arbitrary solution will not end up too far from
the equilibrium. In this paper we present a different approach,
which is based on the geometry of curves in the Euclidean space.
The basic idea here (following up on our preliminary work Liu,
Liberzon, & Zharnitsky, 2016) is that in order to accumulate a net
gain in V along a solution, the tubular neighborhood swept out
by a ball of a certain radius moving along this solution trajectory
needs to be contained inside the region where V does not de-
crease fast enough. Consequently, if such ‘‘bad’’ regions are not
big enough, V cannot increase overall (even though a temporary
gain is still possible). Since the criterion we are deriving is on the
volume, not on the shape of the ‘‘bad’’ regions, some geometrical
arguments on curvature and volume are needed in order to relate
the size of the ‘‘bad’’ region to how long the solution of the system
can stay inside it and how much V can increase. To illustrate this
type of system behavior, we construct an example in which there
is a small region where the time derivative of V is positive and
to which our main result applies.

The paper is mainly organized in the following order: Fre-
quently used terms and variables are defined in Section 2. Our
main result (Theorem 1) is stated in Section 3. Its proof is given
in Section 4. Section 5 presents a global result on system sta-
bility which can be derived from almost Lyapunov function and
Section 6 contains a numerical example where our theorem is
applied on with some discussion. After Section 7 concludes the
paper, the previous result from Liberzon et al. (2014) is briefly
mentioned in Appendix A and the proof of an auxiliary result
(Proposition 11) is provided in Appendix B.

2. Preliminaries

Consider a general system

ẋ = f (x), x ∈ Rn, f (0) = 0, (1)

where f : Rn
→ Rn is a Lipschitz function. Consider a function

V : Rn
→ [0, ∞) which is positive definite and C1 with locally

Lipschitz gradient, which we denote by Vx. We say it is a Lyapunov
function for the system (1) if

V̇ (x) := Vx(x) · f (x) < 0 ∀x ̸= 0 (2)

The system (1) can be shown to be asymptotically stable if such a
Lyapunov function exists (Khalil, 2002, Ch. 4). A stronger version
of Lyapunov function is when V decays at a certain positive rate a:

V̇ (x) < −aV (x) ∀x ̸= 0

While this property does not need to hold on the entire region of
interest D, we set

Ω := {x ∈ D : V̇ (x) ≥ −aV (x)} (3)

and when the measure of Ω is ‘‘small’’, we informally say that this
V is an almost Lyapunov function for the system (1) because now

V̇ (x) < −aV (x) ∀x ∈ D\Ω.

Notice that the solution trajectory passing through Ω does not
necessarily imply growth of V ; it is only in the subset {x ∈ Ω :

V̇ (x) > 0} that growth of V occurs. In this paper, we take the
region D to be of the following form:

D := {x ∈ Rn
: c1 ≤ V (x) ≤ c2}, c2 > c1 > 0 (4)

We assume D to be compact.1 We refer to f as ‘‘non-vanishing’’
when

f (x) ̸= 0 ∀x ∈ D. (5)

The non-vanishing condition clearly requires the equilibrium at
origin to be excluded from D. Next define

b := max
x∈D

V̇ (x). (6)

Finally, let Bn
γ (x) be the closed ball whose center is at x in Rn with

radius γ . Also define the function vol(·) to be the standard volume
function induced by the Euclidean metric. Recall that a general
expression for the volume of a n-dimensional ball of radius γ is:

vol(Bn
γ ) =

π
n
2

Γ ( n2 + 1)
γ n

=: χ (n)γ n (7)

where Γ is the standard gamma function (Courant & John, 1989,
Ch. 4.11). Further notation will be introduced in the course of the
proof.

3. Main result

We are now ready to state our main result:

Theorem 1. Consider system (1) with a locally Lipschitz right-hand
side f , and a function V : Rn

→ [0, +∞) which is positive definite
and C1 with locally Lipschitz gradient. Let the region D be defined
via (4) with some fixed c1 < c2 and assume that it is compact.

Let Ω be defined via (3) for some a > 0 and assume f is
non-vanishing in D as defined in (5). Also assume

max
x∈D

V̇ (x) < amin
x∈D

V (x), (8)

i.e. b < ac1 where b is defined in (6).

1 This is true when V is radially unbounded. Otherwise the results of our
theorem are still applicable if the initial state of the system is inside a compact
connected component of D. In this case we take this compact connected
component as the region of interest D.
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Then there exist constants ϵ̄ > 0, g > 0, h > 0 such that for any
ϵ ∈ [0, ϵ̄), if vol(Ω∗) ≤ ϵ for every connected component Ω∗ of
Ω , then there exists T ≥ 0 so that for any initial state x0 ∈ D with
V (x0) < c2 − hϵ

1
n − gϵ, we have

V (x(t)) ≤ c2 ∀t ≥ 0

and

V (x(t)) ≤ c1 + hϵ
1
n + gϵ ∀t ≥ T .

Remark 2. The results of Theorem 1 are illustrated in Fig. 1. As
seen from the figure, the proof will actually give slightly sharper
estimates than what is stated in the theorem, namely, V (x(t)) ≤

V (x0) + gϵ for all t ≥ 0 and V (x(T )) ≤ c1 + hϵ
1
n . The term hϵ

1
n

serves as a ‘‘buffer’’ ensuring that the solution is bounded while
the term gϵ is a threshold for possible transient overshoot. The
exact formulas for g, h will be given by (21), (22) respectively
and ϵ̄ will be explicitly found in Section 4.3. Later in the proof of
the main theorem the reader will also see that the convergence
before time T is in fact exponential, in the form of

V (x(t)) ≤ (V (x(0)) +
g
2
ϵ)e−λ(ϵ)t∗

+
g
2
ϵ,

where λ(ϵ) is a positive, continuous and strictly decreasing func-
tion on [0, ϵ̄) with λ(0) < a and some t∗ ∈

[
max{0, t −

2gϵ

b }, t
]
.

Remark 3. In the limit ϵ → 0, the almost Lyapunov function
becomes the standard Lyapunov function and the theorem gives
the usual conclusion that one could expect from the Lyapunov
stability theory. In particular, any solution starting at the higher
level set V = c2 will converge to the lower level set V = c1.

4. Proof of theorem

The main idea of the proof relies on the following observation:
if the measure of Ω is small enough,2 there will be too little time
for a tube around the solution to stay inside Ω so the growth of
V could not be accumulated. The proof contains 4 major steps:

(1) The first step is to show that when the time derivative of
V is positive, the solution has to be in a subset of Ω and a
tube around the solution segment is contained in Ω .

(2) The second step is to use a non-self-overlapping condition
to compute an upper bound on the time that the solution
stays in the above-mentioned subset based on the volume
swept out by the solution tube.

(3) The next step is to find a bound on the change of V over
the time estimated in the previous step. We will conclude
that when the volume the connected component of Ω is
sufficiently small, the change of V will be negative.

(4) The last step generalizes previously obtained estimates to
the possible scenario of repeated passage of the solution
through several, or even infinitely many, connected com-
ponents of Ω . By connecting segments of the solution,
we argue that although there might be temporary over-
shoots in V , overall the solution will converge to a smaller
sub-level set.

4.1. Estimates on the solution tube

Since f is a Lipschitz function and D is compact, we can define
the following bounds:

L̄0 := max
x∈D

|f (x)|, (9)

2 By definition Ω is closed and therefore, measurable.

Fig. 1. Illustration of Theorem 1.

L0 := min
x∈D

|f (x)|. (10)

Note that the vector field f is non-vanishing in D if and only if
L0 > 0. Let L1 be the Lipschitz constant of f over D:

|f (x1) − f (x2)| ≤ L1|x1 − x2| ∀x1, x2 ∈ D. (11)

In addition, since V is assumed to be C1 and has locally Lipschitz
gradient, we also define some bounds on Vx:

M1 := max
x∈D

|Vx(x)|, (12)

and M2 be the Lipschitz constant of Vx over D:

|Vx(x1) − Vx(x2)| ≤ M2|x1 − x2| ∀x1, x2 ∈ D. (13)

For η ∈ [0, 1], Define

Ωη := {x ∈ D : V̇ (x) ≥ −ηaV (x)} (14)

where a comes from the hypothesis of the theorem. By this
definition Ω1 is the same as Ω defined in (3). The next three
lemmas establish existence of a disk of positive radius that is
sweeping through Ω1 along the solution forming a tube that is
contained inside Ωη:

Lemma 4. For any x1, x2 ∈ D,

|V (x1) − V (x2)| ≤ M1|x1 − x2|.

Proof. If the line segment between x1, x2 entirely lies in D, by
Mean Value Theorem there exists x3 on the segment such that
V (x2) = V (x1) + Vx(x3) · (x2 − x1). Now by (12),

|V (x1) − V (x2)| = |Vx(x3) · (x1 − x2)|
≤ |Vx(x3)| |x1 − x2| ≤ M1|x1 − x2|.

In the case when the line segment is partially outside of D, let us
say that y1, y2 ∈ ∂D are two points on the segment connecting
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x1, x2 such that the line segment between y1, y2 is outside D. Since
y1, y2 are on the boundary of D, the V value must be either c1 or c2
at these two points. If V (y1) ̸= V (y2), say V (y1) = c1 and V (y2) =

c2, then V (x) ≤ c1 or V (x) ≥ c2 for all x on the line segment from
y1 to y2. This cannot happen since V is a continuous function.
Therefore V (y1) = V (y2). Hence using triangle inequality,

|V (x1) − V (x2)|= |V (x1) − V (y1) + V (y2) − V (x2)|
≤ |V (x1) − V (y1)| + |V (y2) − V (x2)|
≤ M1|x1 − y1| + M1|y2 − x2|
≤ M1|x1 − x2|.

The second to last inequality follows from the fact that the two
segments x1 to y1 and x2 to y2 are contained in D so we can apply
our earlier result. The last inequality is simply the fact that the
sum of the lengths of the two segments is no longer than the total
distance between x1 and x2. In the case when there are multiple
segments between x1 and x2 that are outside of D, repeating the
above analysis on each interval, we still get the same result.

Lemma 5. For any x1, x2 ∈ D,

|V̇ (x1) − V̇ (x2)| ≤ α|x1 − x2|, (15)

where α := M1L1 + M2L̄0.

Proof. Estimate

|V̇ (x1) − V̇ (x2)|= |Vx(x1)f (x1) − Vx(x2)f (x2)|
≤ |Vx(x1)| |f (x1) − f (x2)| + |f (x2)| |Vx(x1) − Vx(x2)|

≤ M1|f (x1) − f (x2)| + L̄0|Vx(x1) − Vx(x2)|

≤ M1L1|x1 − x2| + L̄0M2|x1 − x2|
= α|x1 − x2|.

Notice that we have used the definitions of M1 from (12) and L̄0
from (9) in the second to last inequality and the two Lipschitz
constants L1,M2 from (11), (13) in the last inequality.

Lemma 6. If x ∈ Ωη then
(
Bn

γη
(x) ∩ D

)
⊆ Ω1, where

γη :=
(1 − η)ac1
α + ηaM1

(16)

with α as defined in Lemma 5.

Proof. Let x ∈ Ωη, y ∈ D be such that |x − y| ≤ γη . Since
both of them are in D, by Lemma 4, V (x) ≤ V (y) + M1|x − y| ≤

V (y) + M1γη . Therefore

V̇ (y) ≥ V̇ (x) − |V̇ (x) − V̇ (y)| ≥ −ηaV (x) − α|x − y|
≥ −ηa(V (y) + M1γη) − αγη

= −ηaV (y) − (1 − η)ac1 ≥ −aV (y).

In the second inequality we have used the fact that x ∈ Ωη

so V̇ (x) ≥ ηaV (x). We also used the result from Lemma 5 for
bounding the second term in this step. Lemma 4 is used in the
third inequality. Across the second line the terms depending on γη

are collected together and substituted with its definition (16). In
the last inequality we have used the fact that y ∈ D so c1 ≤ V (y).
Hence we have shown y ∈ Ω1 and

(
Bn

γη
(x) ∩ D

)
⊆ Ω1.

Define the normal disk of radius γ centered at x to be

Nγ (x) = {y ∈ Bn
γ (x) : (y − x) · f (x) = 0}, (17)

which is a ball Bn−1
γ (x) in the hyperplane

{y ∈ Rn
: (y − x) · f (x) = 0}.

Define

Sη,(s,t) = ∪
τ∈(s,t)

Nγη (x(τ )) (18)

to be the tube of radius γη around the solution on the time
interval s to t . We will often refer to it as the solution tube. We
will say the tube is non-self-overlapping over time interval (s, t) if

Nγη (x(τ1)) ∩ Nγη (x(τ2)) = ∅ ∀τ1, τ2 ∈ (s, t), τ1 ̸= τ2. (19)

In a non-self-overlapping tube all the states are swept out only
once by such Nγη (x(τ )) normal disk at some τ ∈ (s, t). There will
be more discussion of non-self-overlapping condition in the next
subsection. Let

Lt
s :=

∫ t

s
|f (x(τ ))|dτ

be the length of the solution trajectory from time s to t . Using the
bounds (9) and (10) on f , one has

L0(t − s) ≤ Lt
s ≤ L̄0(t − s). (20)

Define

g :=
b

L0vol(Bn−1
γη

)
, (21)

h := M1χ (n)−
1
n , (22)

where χ (n) comes from (7). Define a shrunk domain

D∗
:= {x ∈ Rn

: c1 + hϵ
1
n ≤ V (x) ≤ c2 − hϵ

1
n }.

For any initial state x(0) = x0 ∈ D with V (x0) < c2 − gϵ − hϵ
1
n , by

the standard theory of ODEs the solution can be continued either
indefinitely or to the boundary of D∗. Define

T := inf{τ ≥ 0 : x(τ ) ̸∈ D∗
} (23)

By this definition, T = 0 if V (x0) < c1 + hϵ
1
n and T is infinite if

the solution stays in D∗ forever. Eventually, in the proof we show
that T has to be finite and it is impossible for the solution to reach
the outer boundary of D∗ with V (x(T )) = c2 − hϵ

1
n . This T will be

the one in the main theorem statement that we are looking for.
Define the subset of the time interval when the solution stays

in Ωη as

Xη = {τ ∈ [0, T ) : x(τ ) ∈ Ωη}. (24)

While the set Xη might have a complicated structure, the relevant
part for us is the interior which must be a union of intervals.
When the solution is considered over a subset of Xη which has
empty interior, the almost Lyapunov function will be decreasing
with the rate a and hence less interesting. A maximal interval
contained in Xη is an interval in Xη which cannot be enlarged
without leaving Xη . We will also refer to such intervals as con-
nected components of Xη . The sweeping tube Sη,(s,t) generated
over a connected component (s, t) ⊆ Xη is illustrated in Fig. 2.
Intuitively the volume of Sη,(s,t) is the cross-section area times the
trajectory length over (s, t). The next lemma proves this, under
the assumption that there is no self-overlapping:

Lemma 7. If the solution is non-self-overlapping over time interval
(s, t), then

vol(Sη,(s,t)) = χ (n − 1)γ n−1
η Lt

s. (25)

The proof of this lemma is a direct application of results
from Courant and John (1989, Chapter 4.10) and Foote (2006). The
conditions for non-self-overlapping will be discussed in the next
section.
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Fig. 2. A planar example showing the solution trajectory passing through Ωη ,
generating a tubular neighborhood Sη,(s,t) . In higher dimension the set Sη,(s,t)
would look like a cylinder.

Remark 8. The formula in Foote (2006) yields a signed volume
with multiplicity (which is a result of negative self-overlapping);
nevertheless, the non-self-overlapping condition we have en-
sured that there are no negative or multiple counts of the inte-
grated volume and the result is indeed the absolute volume that
we want as a lower bound.

Lemma 9. Sη,(s,t) ⊆ Ω1 for all (s, t) ⊂ Xη .

Proof. By Lemma 6, the definition of Sη,(s,t) in (18) and the
definition of Xη in (24), it suffices to show that Bγη (x) ⊆ D for
any x ∈ D∗

∩ Ωη . If this is not true, there exists x ∈ D∗
∩ Ωη

such that Bγη (x) is partially outside of D (cannot be completely
outside of D as x ∈ D∗

⊂ D). In this case, we introduce the sets
Sin := ∂Bγη (x)∩D, Sout := ∂Bγη (x)\Sin and SD := ∂D∩ Bγη (x). None
of these sets are empty and for any y ∈ SD, V (y) = c1 or c2. By
definition of D∗ and Lemma 4 we have

hϵ
1
n ≤ |V (x) − V (y)| ≤ M1|x − y| ⇒ |x − y| ≥

(
ϵ

χ (n)

) 1
n

.

Let z ∈ Sout . Then the line segment [x, z] intersects with SD at
some point y so |x − z| = |z − y| + |y − x| and then

γη ≥ δ +

(
ϵ

χ (n)

) 1
n

for some δ > 0. Denote the volume bounded by the surfaces
Sin, SD by A. Then A ⊆ Ω1 so vol(A) ≤ vol(Ω1) ≤ ϵ. On the other

hand, by the earlier analysis points on SD are at least
(

ϵ
χ (n)

) 1
n

away from x and points on Sin are at least δ+

(
ϵ

χ (n)

) 1
n
away from x.

This means A contains a ball of radius
(

ϵ
χ (n)

) 1
n

so vol(A) >

χ (n)
(

ϵ
χ (n)

)
= ϵ (the positivity of δ and the continuity of the

surface result in the strict inequality), which is a contradiction.

The result of Lemma 9 is illustrated in Fig. 2 that the sweeping
tube is a subset of the ‘‘bad region’’ Ω1. By the definition (18)
Sη,(s,t) is connected; also recall ϵ is the upper bound on the
volume of every connected component of Ω and hence a direct

consequence of Lemma 9 tells that vol(Sη,(s,t)) ≤ ϵ. Now applying
the formula (25) and the definition (21) here with the assumption
that the solution is non-self-overlapping, we have

ϵ ≥ vol(Sη,(s,t)) = vol(Bn−1
γη

)Lt
s

≥ vol(Bn−1
γη

)L0(t − s) =
b
g
(t − s). (26)

Corollary 10. Let (s, t) ⊂ Xη and assume the solution over this
time interval is non-self-overlapping. If the volume of the connected
component of Ω is bounded from above by ϵ, then the length of the
time interval (s, t) must satisfy

t − s ≤
gϵ

b
.

4.2. On non-self-overlapping condition

The following proposition gives a geometric criterion of non-
self-overlapping.

Proposition 11. Consider a tube of radius ρ0 around a space
curve γ (τ ) whose radius of curvature is bounded from below by ρ.
If ρ > ρ0 and if the length L of γ (τ ) is bounded:

L < 2ρ
(

π − sin−1(
ρ0

ρ
)
)

(27)

then the tube is non-self-overlapping.

The value on the right hand side of (27) is the curve length
of a circular arc with radius of curvature ρ and chord distance of
2ρ0 between the end points. The proof of this proposition makes
use of two classical results of Fenchel’s Theorem (Fenchel, 1951)
and Schur’s Comparison Theorem (Schur, 1921) (see also Sullivan,
2008 for the modified versions of the two theorems on curves
with finite total curvature), and is provided in Appendix B.

At this point, the solution of our system can be viewed as a
space curve x = γ (t) in Rn. Thus we have the curvature

κ(t) =
[γ ′, γ ′′

]

|γ ′|
3 (t), (28)

where [∗, ∗] is a standard area form. This formula is a simple
consequence of the definition of centripetal acceleration a = v2κ .
Indeed, [γ ′, γ ′′

] = |γ ′
||γ ′′

| sinα where sinα is the angle between
the two vectors γ ′, γ ′′. When [γ ′, γ ′′

] is divided by |γ ′
|
3, we

obtain |γ ′′
| sinα/|γ ′

|
2, which is the projection of acceleration

onto the normal vector to the curve (centripetal acceleration)
divided by velocity squared. Hence if the solution trajectory is C2,
the bound to the curvature exists:

|κ(t)| ≤
|ẋ||ẍ|
|ẋ|3

≤
∥Df (x)∥ |ẋ|

|ẋ|2
≤

∥Df (x)∥
|f (x)|

≤
L1
L0

. (29)

where Df is the Jacobian of f . Although in our case ẍ does not exist
everywhere, it exists almost everywhere along a solution due to
the fact that f (x(t)) is a Lipschitz function with respect to t and
hence differentiable for almost all t by Rademacher’s Theorem.3
Thanks to Sullivan (2008, Section 5), where the arguments involv-
ing Fenchel’s Theorem and Schur’s Comparison Theorem are also
applicable to curves not necessary C2 but with Lipschitz tangent
vectors, the upper bound L1

L0
from (29) is still applicable.

Because radius of curvature is simply the reciprocal of curva-
ture, Proposition 11 implies a sufficient condition for non-self-
overlapping solution of our system:

3 In fact ẍ can be bounded everywhere along the solution in a generalized
sense, along the lines of the argument in Teel and Praly (2000, Section 2) based
on Clarke’s derivative (Clarke, 1990).
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Corollary 12. A tube of radius γη around the solution x(τ ) is
non-self-overlapping over the interval (s, t) if

γη <
L0
L1

(30)

and

Lt
s <

2L0
L1

(
π − sin−1(

L1γη

L0
)
)

. (31)

Note that according to (16) γη is a decreasing function of η
and γ1 = 0, thus, the inequality (30) can always be satisfied by
picking η close enough to 1.

Remark 13. Bounded curvature is an important feature for non-
vanishing vector fields since bounded curvature prevents the
system from some undesired behavior which will not generate
new sweeping volume, such as revolving inside a small region.

Now we have found a criterion of non-self-overlapping (31)
in terms of the constraint on the path length, but we need to
reformulate this criterion in terms of the measure of the bad set.
Suppose that (30) holds with the volume bound analogue of (31)

ϵ < ϵ1 := vol(Bn−1
γη

)
2L0
L1

(
π − sin−1(

L1γη

L0
)
)

. (32)

Then we have

Lemma 14. Assume η satisfies the inequality (30) and ϵ < ϵ1 as de-
fined in (32). Then Sη,(s,t) is non-self-overlapping for any (s, t) ⊆ Xη .

Proof. Recall the direct consequence of Lemma 9 gives vol(Sη,(s,t))
≤ ϵ < ϵ1. Let

t̃ := sup{τ ∈ (s, t] :

x(t) is non-self-overlapping over [s, τ )}.

The solution is always non-self-overlapping when τ is sufficiently
close to s because of the inequality (30) so the above set is non-
empty and the supremum exists. Our goal is to show t̃ = t .
Because (31) means any tube generated by any shorter curve will
be non-self-overlapping, the solution is non-self-overlapping over
[s, τ ) for all τ ∈ (s, t̃). Thus by the continuity of vol(Sη,(s,τ )) with
respect to τ ,

vol(Bn−1
γη

)Lt̃
s = lim

τ→t̃−

(
vol(Bn−1

γη
)Lτ

s

)
= lim

τ→t̃−
vol(Sη,(s,τ )) = vol(Sη,(s,t̃))

≤ vol(Sη,(s,t)) < ϵ1

= vol(Bn−1
γη

)
2L0
L1

(
π − sin−1(

L1γη

L0
)
)

Hence Lt̃
š <

2L0
L1

(
π − sin−1( L1γη

L0
)
)
. If t̃ ̸= t , then since Lτ

s is
a continuous and strictly increasing function of τ (because of
non-vanishing vector field), we can always pick t∗ ∈ (t̃, t) such
that

Lt̃
s < Lt∗

s <
2L0
L1

(
π − sin−1(

L1γη

L0
)
)

.

Therefore by Corollary 12 we conclude that the solution is non-
self-overlapping up to time t∗, which contradicts maximality of t̃ .
Thus t̃ = t .

4.3. Change of V when passing through Ωη

We now specify the threshold ϵ̄ in the statement of
Theorem 1:

ϵ̄ := min{ϵ1, ϵ2},

where ϵ1 is defined in (32) and

ϵ2 := vol(Bn−1
γη

)
L0(b + ηac1)2

αL̄0b
. (33)

Note that when η < 1, we have γη > 0 and thus both ϵ1, ϵ2 are
positive, which implies ϵ̄ > 0. In addition, when (30) is satisfied
and ϵ < ϵ̄, Sη,(s,t) is non-self-overlapping for any (s, t) ∈ Xη by
Lemma 14. Hence by Corollary 10 we have

t − s ≤
gϵ

b
<

g ϵ̄

b
≤

gϵ2

b
=

(b + ηac1)2

αL̄0b
. (34)

These inequalities in (34) are essential and will be repeatedly
used in the proofs of subsequent lemmas.

We now show that V will always decrease over any connected
component of Xη excluding those containing boundary points 0
and T , if the latter exists. When the solution passes through the
connected component containing the initial point τ = 0 or τ = T
then V may actually increase but is bounded by a fixed value. This
is summarized in the next lemma:

Lemma 15. Assume η ∈ (0, 1) satisfies (30) and ϵ < ϵ̄. For any
connected component (s, t) ⊂ Xη , define ∆V(s,t) := V (x(t))−V (x(s)).
Then

(1) If s = 0 and V (x(0)) < c2 − hϵ
1
n − gϵ,

∆V(s,t) ≤

{
gϵ if t = T ,
g
2 ϵ if t ̸= T .

(2) If s > 0 and V (x(s)) < c2 − hϵ
1
n −

g
2 ϵ,

∆V(s,t) ≤

{ g
2 ϵ if t = T ,

φ(t − s) if t ̸= T .

where

φ(τ ) :=

{
1
4τ

2αL̄0 − τηac1 if ταL̄0 < 2(b + ηac1),
bτ −

(b+ηac1)2

αL̄0
if ταL̄0 ≥ 2(b + ηac1).

(35)

Remark 16. We observe that when (t − s)αL̄0 < 2(b + ηac1),
b does not appear in the bound for ∆V(s,t). This corresponds to
the case when the bound b is too loose, or the upper bound of
V̇ is unknown or not pre-determined. We have done studies of
such less constrained almost Lyapunov functions previously and
an example on which the theorem is applicable is not found yet.

Proof. The proof consists of four steps.

Case 1: (s = 0 and t = T ).
Notice ∆V(s,t) =

∫ t
s V̇ (x(τ ))dτ ≤

∫ t
s bdτ = b(t − s) ≤ gϵ for

any (s, t) ⊂ Xη . The last inequality comes from Corollary 10. Thus
gϵ is an upper bound for ∆V(s,t) for any connected components
(s, t) in Xη , in particular for the special case when both s = 0 and
t = T .

Case 2: (s = 0 and t ̸= T ).
In this case t is finite. Since (s, t) is a maximal interval, either

x(t) ∈ ∂Ωη or x(t) ∈ ∂D∗, the boundary of D∗. If it is the latter one,
we are only interested in the case when ∆V(0,t) > 0, that is, the
case V (x(t)) = c2−hϵ

1
n . Notice that in this case ∆V(0,t) = V (x(t))−

V (x(0)) > (c2−hϵ
1
n )− (c2−hϵ

1
n −gϵ) = gϵ. This contradicts with

the general upper bound of gϵ on ∆V(s,t) derived in Case 1. Thus
we must have x(t) ∈ ∂Ωη so V̇ (x(t)) = −ηaV (x(t)) ≤ −ηac1. Next
we compute a tighter upper bound on ∆V(0,t). It follows from (15)
that for any t1, t2 ∈ [s, t],

|V̇ (x(t1)) − V̇ (x(t2))|≤ α|x(t1) − x(t2)|

≤ α

∫ t2

t1

|f (x(τ ))|dτ ≤ αL̄0|t1 − t2|. (36)
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Thus, V̇ , when considered as a function of time, is a Lipschitz func-
tion with Lipschitz constant αL̄0. We can now estimate ∆V(0,t) =∫ t
0 V̇ (x(τ ))dτ by collecting inequalities:

t <
(b + ηac1)2

αL̄0b
, V̇ (x(t)) ≤ −ηac1, V̇ (x(t0)) ≤ b,

|V̇ (x(t1)) − V̇ (x(t2))| ≤ αL̄0|t1 − t2| ∀t0, t1, t2 ∈ [0, t]. (37)

The first bound comes from (34) and the other bounds have been
introduced earlier. We claim that a necessary condition for the
inequalities in (37) to hold is:

V̇ (x(τ )) ≤ min{b, αL̄0(t − τ ) − ηac1},

where the first bound b in the min function above is immediate.
The second bound in the min function comes from V̇ (x(t)) ≤

−ηac1 and the Lipschitz bound on V̇ . Hence we conclude that its
integration gives an upper bound for ∆V(0,t):

∆V(0,t) ≤

∫ t

0
min{b, αL̄0(t − τ ) − ηac1}dτ

=

∫ t

0
min{b, αL̄0τ − ηac1}dτ

A change of variable is used for deriving the second line above.
Notice that the minimum function switches value when b =

αL̄0τ − ηac1, that is, when τ =
b+ηac1

αL̄0
. To estimate the integral,

consider first the case when t ≥
b+ηac1

αL̄0
. In this case

∆V(0,t) ≤

∫ b+ηac1
αL̄0

0
(αL̄0τ − ηac1)dτ +

∫ t

b+ηac1
αL̄0

bdτ

=
1
2
αL̄0

(
b + ηac1

αL̄0

)2

− ηac1
b + ηac1

αL̄0

+ b
(
t −

b + ηac1
αL̄0

)
= bt +

(b + ηac1)2 − 2ηac1(b + ηac1) − 2b(b + ηac1)
2αL̄0

= bt −
(b + ηac1)2

2αL̄0
< bt −

bt
2

≤
g
2
ϵ.

The two inequalities on the last line come from the inequalities
in (34). Now, if t <

b+ηac1
αL̄0

, there is no switch and we only need
to evaluate one integral:

∆V(s,t) ≤

∫ t

0
(αL̄0s − ηac1)ds =

1
2
αL̄0t2 − ηac1t

=

(
1
2
αL̄0t − ηac1

)
t <

(
1
2
αL̄0

b + ηac1
αL̄0

− ηac1

)
t

=
1
2
(b − ηac1)t <

b
2
t ≤

g
2
ϵ.

The last inequality above comes from (34). Thus we have shown
that g

2 ϵ is an upper bound for ∆V(s,t) when s = 0, t ̸= T .

Case 3: (s ̸= 0, t = T )
We start by considering any connected component (s, t) such

that s ̸= 0. Again because it is maximal, we can only have
x(s) ∈ ∂Ωη . This is because x(s) ∈ ∂D∗ is impossible as otherwise
x(τ ) ̸∈ D∗ for some τ < s. Thus we should have V̇ (x(s)) =

−ηaV (x(s)) ≤ −ηac1. Similar to (37), we obtain the following
inequalities for bounding ∆V(s,t):

t − s <
(b + ηac1)2

αL̄0b
, V̇ (x(s)) ≤ −ηac1, V̇ (x(t0)) ≤ b,

|V̇ (x(t1)) − V̇ (x(t2))| ≤ αL̄0|t1 − t2| ∀t0, t1, t2 ∈ [s, t], (38)

Fig. 3. Upper bound of V̇ vs. τ on the trajectory passing through Ωη .

where the first bound again comes from (34). The bounds are
essentially the same as (37) but with the only difference that
the boundary condition is V̇ (x(s)) ≤ −ηac1 instead of V̇ (x(t)) ≤

−ηac1. By symmetry considerations (change of variables τ ′
=

t + s − τ and then shift the time so s = 0), the upper bound
will be the same and, thus, we have ∆V(s,t) <

g
2 ϵ. This proves the

special case when τ = T , if T < ∞.

Case 4: (s ̸= 0, t ̸= T )
From the analysis in case 3 we see that V (x(t)) = V (x(s)) +

∆V(s,t) < (c2 − h −
g
2 ϵ) +

g
2 ϵ = c2 − h. Hence x(t) ̸∈ ∂D∗.

So by maximality of (s, t) we must have both x(s), x(t) ∈ ∂Ωη .
Therefore, we have the following inequalities instead:

t − s <
(b + ηac1)2

αL̄0b
, V̇ (x(s)), V̇ (x(t)) ≤ −ηac1,

V̇ (x(τ )) ≤ b, |V̇ (x(t1)) − V̇ (x(t2))| ≤ αL̄0|t1 − t2|
∀τ , t1, t2 ∈ [s, t]. (39)

By the same reasoning as we did for (37), we have the following
bound as a necessary condition:

V̇ (τ ) ≤ min{b, αL̄0(τ − s) − ηac1, αL̄0(t − τ ) − ηac1} (40)

for all τ ∈ [s, t]. Hence

∆V(s,t) ≤

∫ t

s
min{b, αL̄0(τ − s) − ηac1,

αL̄0(t − τ ) − ηac1}dτ

=

∫ t−s

0
min{b, αL̄0τ − ηac1,

αL̄0(t − s − τ ) − ηac1}dτ .

An illustration of the upper bound of V̇ over [s, t] is plotted in
Fig. 3, corresponding to the trajectory in Fig. 2. If t − s ≤ 2 b+ηac1

αL̄0
the functions to be minimized in (40) have only one switching
point at t−s

2 , and

∆V(s,t) ≤

∫ t−s
2

0
(αL̄0τ − ηac1)dτ

+

∫ t−s

t−s
2

(αL̄0(t − s − τ ) − ηac1)dτ

= 2
∫ t−s

2

0
(αL̄0τ − ηac1)dτ

= αL̄0(
t − s
2

)2 − 2ηac1(
t − s
2

)

=
1
4
αL̄0(t − s)2 − ηac1(t − s).
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If (t − s) > 2 b+ηac1
αL̄0

, there are two switching points: τ =
b+ηac1

αL̄0

and τ = t − s −
b+ηac1

αL̄0
so we have

∆V(s,t) ≤

∫ b+ηac1
αL̄0

0
(αL̄0τ − ηac1)dτ +

∫ t−s− b+ηac1
αL̄0

b+ηac1
αL̄0

bdτ

+

∫ t−s

t−s− b+ηac1
αL̄0

(αL̄0(t − s − τ ) − ηac1)dτ

=2
∫ b+ηac1

αL̄0

0
(αL̄0τ − ηac1)dτ +

∫ t−s− b+ηac1
αL̄0

b+ηac1
αL̄0

b dτ

=αL̄0(
b + ηac1

αL̄0
)2 − 2ηac1(

b + ηac1
αL̄0

)

+ b
(
(t − s) − 2(

b + ηac1
αL̄0

)
)

=b(t − s) − (
b + ηac1

αL̄0
)2.

The two bounds are collected to be the φ function as stated in the
lemma.

Now since we have assumed that b < ac1 in the beginning,
we can always pick an η sufficiently close to 1 to guarantee that

b < ηac1. (41)

From now on we will assume that η satisfies both (30) and (41).
Notice that for the solution outside Ωη , the almost Lyapunov
function V clearly is decreasing; therefore, Lemma 15 also leads
us to the following conclusion:

Corollary 17. Consider a solution x(τ ) with V (x(0)) < c2 −

hϵ
1
n − gϵ. Let (s, t) be a maximal connected component of Xη such

that s ̸= 0, t ̸= T . Assume also b < ηac1 and ϵ < ϵ̄. Then
∆V(s,t) ≤ φ(t − s) < 0.

Proof. We first show that there are only finitely many connected
components in Xη such that the corresponding arc of the solu-
tion enters Ω0. (If the corresponding arc of the solution does
not enter Ω0, then V could only decrease and we declare this
component for the purpose of this proof to be outside of Xη). This
can be shown if the length of all such connected components
is uniformly bounded from below. Note that except the cases
t1 = 0 or t2 = T , if (t1, t2) is a connected component of Xη

while there exists t3 ∈ (t1, t2) such that x(t3) ∈ Ω0, we have
V̇ (x(t1)) = −ηaV (x(t1)) ≤ −ηac1, V̇ (x(t3)) ≥ 0. Thus Eq. (15) in
Lemma 5 gives

ηac1 ≤ |V̇ (x(t1)) − V̇ (x(t3))|
≤ α|x(t1) − x(t3)| ≤ αL̄0|t1 − t3|.

Hence t2− t1 ≥ t3− t1 ≥
ηac1
αL̄0

, which gives the lower bound. Thus,
the number of connected components where V might increase
has to be finite on a bounded time interval.

Next we prove Corollary 17 by induction. When (t − s)αL̄0 <

2(b+ηac1), (41) implies (t−s)αL̄0 < 4ηac1 and hence the first line
in (35) implies φ(t−s) =

1
4 (t−s)2αL̄0−(t−s)ηac1 < 0. Otherwise,

(34) implies φ(t − s) = b(t − s) −
(b+ηac1)2

αL̄0
< 0. Thus we always

have φ(t − s) < 0. Let (s, t) be the first connected component of
Xη on the left with s > 0. If it is the first connected component on
the left (i.e. there is no connected component starting at τ = 0)
then V (x(s)) < V (x(0)) < c2 − hϵ

1
n − gϵ. If there is a connected

component starting at τ = 0, say the interval (0, t0), then still

V (x(s)) ≤ V (x(0)) + ∆V(0,t0)

< (c2 − gϵ − hϵ
1
n ) +

g
2
ϵ = c2 −

g
2
ϵ + hϵ

1
n .

Either way, V (x(s)) < c2− g
2 ϵ+hϵ

1
n . Hence by Lemma 15, the base

case is true and we have ∆V(s,t) ≤ φ(t − s) < 0. Assume towards
induction that at some connected component denoted also (s, t)
we have V (x(s)) < c2 −

g
2 ϵ − h and φ(t − s) < 0. Then at the next

connected component (s+, t+) we have

V (x(s+)) =
(
V (x(s+)) − V (x(t))

)
+ ∆V(s,t) + V (x(s))

≤ φ(t − s) + V (x(s)) < c2 −
g
2
ϵ − hϵ

1
n

and by Lemma 15 we have ∆V(s+,t+) ≤ φ(t+ − s+) < 0.

4.4. Exponential bound when repeatedly passing through Ωη

Corollary 17 tells us that the Lyapunov function decreases
each time the solution crosses Ωη . This does not yet guarantee
convergence to a smaller set. We now want to find an exponential
type bound on V . Define k(t) : R+ → R by

k(t) :=

{
−

1
t ln

(
1 +

1
c2

φ(t)
)

if φ(t) > −c2,
K if φ(t) ≤ −c2.

where φ is defined in (35) and K is a sufficiently large positive
constant. Note that φ(t) is continuous near 0 and φ(0) = 0, so
we can define k(0) =

ηac1
c2

by extension via L’Hôpital’s rule. In
addition, define

λ(ϵ) := min
0≤δ≤ϵ

k
(
gδ

b

)
.

By this definition, λ(ϵ) is a non-increasing function on [0, ϵ̄). On
the one hand, we see from the proof of Corollary 17 that φ(t) < 0
for all t ∈ (0, (b+ηac1)2

αL̄0b
) and thus we have k(t) > 0 for all

t ∈ [0, (b+ηac1)2

αL̄0b
). In addition, because g ϵ̄

b ≤
(b+ηac1)2

αL̄0b
as in (34),

λ(ϵ) is also positive on [0, ϵ̄). According to Corollary 10, t−s ≤
gϵ

b ,
which implies k(t − s) ≥ min0≤δ≤ϵ k

( gδ

b

)
= λ(ϵ). Next, we have

V (x(t)) = ∆V(s,t) + V (x(s)) = V (x(s))
(
1 +

∆V(s,t)

V (x(s))

)
≤ V (x(s))

(
1 +

φ(t − s)
c2

)
= V (x(s))e−k(t−s)(t−s)

≤ V (x(s))e−λ(ϵ)(t−s) (42)

for any connected component of (s, t) ⊂ Xη that does not contain
the end points τ = 0 or τ = tmax. From the second line to the
third line the inequality ∆V(s,t) ≤ φ(t − s) < 0 was used. We also
have

λ(ϵ) ≤ λ(0) = k(0) =
ηac1
c2

< ηa

for all ϵ ∈ [0, ϵ̄). Thus, when the solution is inside Ωη , it has
a decay rate slower than when the solution is in D\Ωη , which
has decay rate faster than ηa. We can modify λ(ϵ) so that it is
a positive, continuous, strictly decreasing function on [0, ϵ̄) with
λ(0) < ηa and so the inequality (42) still holds. As a result, for
any s, s′ ∈ (0, T )\intXη , we have

V (x(s′)) ≤ V (x(s))e−λ(ϵ)(s′−s).

This exponential decaying bound suggests that T cannot be in-
finite, otherwise for s′ ∈ (0, T )\intXη and large enough we will
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have V (x(s′)) < c1 + hϵ
1
n , implying x(s′) ̸∈ D∗, and such s′

always exists when T is infinite because the possible connected
component containing T has maximal length of gϵ

b .
Take an arbitrary t ∈ [0, T ]. Recall that by Lemma 15 for any

connected components of Xη , even those that contain the end
points 0 and t , we still have the bound ∆V ≤

g
2 ϵ. Therefore,

taking into account boundary components, we have

V (x(t)) ≤ (V (x(0)) +
g
2
ϵ)e−λ(ϵ)(s′−s)

+
g
2
ϵ (43)

where s′ = t if t ̸∈ Xη , or s′ is the left boundary point of the
connected component of Xη containing t otherwise; s = 0 if s ̸∈

Xη , or s is the right boundary point of the connected component
of Xη containing 0 otherwise. From (43) we directly see that

V (x(t)) ≤ V (x(0)) + gϵ ∀t ∈ [0, T ]. (44)

The first statement in the main Theorem follows from (44) up to
time T . In addition, by Corollary 10,

s ≤
gϵ

b
, t − s′ ≤

gϵ

b
⇒ s′ − s ≥ t − 2

gϵ

b
.

Substituting these expressions into (43), we have

V (x(t)) ≤ e2λ(ϵ)
gϵ
b (V (x(0)) +

g
2
ϵ)e−λ(ϵ)t

+
g
2
ϵ. (45)

This is also true for t = T . By definition of T in (23) we see that
x(T ) ∈ ∂D∗ and because of the exponential decaying bound in
(45) so we must have V (x(T )) = c1 + hϵ

1
n . The argument cannot

proceed for t > T because as x(t) is outside of D∗, Lemma 9
cannot be applied and Bγη (x(t)) may not be contained in D even
if V̇ (x(t)) ≤ −ηaV (x(t)); consequently the estimation of the
sweeping volume, based on the bounds L0, L1 etc. defined over
D is no longer valid. Nevertheless, once the solution returns to
the lower boundary of D∗ such that V (x(t)) = c1 + hϵ

1
n , it can

be again treated as a new solution starting from x(0) ∈ D with
V (x(0)) < c2 − hϵ

1
n − gϵ and by the same analysis above we

know that it can have an overshoot of gϵ at most. This proves
the second statement in the main theorem.

5. Global uniform asymptotic stability result by almost Lya-
punov function

Our Theorem 1 gives a local convergence property so that
any solution in the domain converges to a lower level set. It is
often desirable to establish a global convergence property so the
solutions converge to a stable equilibrium. One typical stability
property for autonomous systems is Global Uniform Asymptotic
Stability (GUAS), which means that the system is globally stable
in the sense that for any ε > 0, there exists δ > 0 such that if
|x(0)| ≤ δ, |x(t)| ≤ ε for all t ≥ 0 and uniformly attractive in the
sense that for any δ > 0, κ > 0, there exists T = T (δ, κ) such
that whenever |x(0)| ≤ κ , |x(t)| ≤ δ for all t ≥ T . We now try to
transfer our study to a global result. To do that, instead of a fixed
region D defined by two constants c1, c2, we let the band-shaped
region be defined for any c > 0:

D(c) := {x ∈ Rn
: c ≤ V (x) ≤ 2c}. (46)

Following the definitions of b, L̄0, L0, L1,M1,M2 from (6), (9), (10),
(11), (12), (13) over the region D(c), we see that now all of
them are functions of c. We present a global uniform asymptotic
stability result derived using an almost Lyapunov function:

Theorem 18. Consider system (1) with a globally Lipschitz right-
hand side f , and a function V : Rn

→ [0, +∞) which is positive
definite and C1 with globally Lipschitz gradient. In addition assume
V (x) ≥ k0|x|2 for some k0 > 0 and all x ∈ Rn. For any c > 0, let

the region D(c) be defined via (46) and assume that all of them are
compact. Let Ω := {x ∈ Rn

: V̇ (x) ≥ −aV (x)} for some a > 0.
Assume supc>0

b(c)
ac < 1 where b(c) is defined via (6) over D(c). Let

L0(c) be defined via (10) over D(c). Then there exist K1, K2, K3 > 0
such that if vol(Ω∗(c)) < min{K1L0(c)

n, K2c
n−1
2 L0(c), K3c

n
2 } for all

c > 0 where Ω∗(c) is the largest connected component of Ω ∩D(c),
the system (1) is GUAS.

Before giving the proof of Theorem 18, let us discuss the
validity and some variations of the assumptions of this theorem
first. If we know that the system is globally stable or the working
space is some compact set in Rn instead of Rn itself, then we can
replace global Lipschitzness in f and Vx by local Lipschitzness as
it is sufficient for the existence of uniform L1,M2, which will be
used in the proof. The assumption V (x) ≥ k0|x|2 is quite general
since all quadratic Lyapunov function satisfies this assumption.
Other assumptions are merely same as or the general versions of
the assumptions in Theorem 1. The non-vanishing assumption is
also reflected in the theorem statement that if f vanishes at any
state which is different from the origin, L0(c) = 0 for some c > 0
and this theorem becomes inconclusive.

Proof. The idea of the proof is to repeatedly apply Theorem 1
over the region D(c) for any c > 0 and show that V (x(t)) is
bounded and will decrease by a factor of fixed factor each time.

First of all, globally Lipschitz f and Vx mean there exist k1, k2
> 0 such that L1 ≤ k1, M2 ≤ k2, where L1,M2 are the global
Lipschitz constants of f , Vx, respectively. In addition, if x∗ is the
maximizer of |f (x)| in D(c),

L̄0(c) = max
x∈D(c)

|f (x)| = |f (x∗)| = |f (x∗) − f (0)|

≤ L1|x∗
− 0| ≤ k1|x∗

| ≤ k1

√
V (x∗)
k0

≤ k1

√
2c
k0

.

By similar argument we also have M1 ≤ k2
√

2c
k0
. Thus, α = M1L1

+ M2L̄0 ≤ 2k1k2
√

2c
k0
. Using η ∈ (0, 1), (16) in Lemma 6 becomes

γη =
(1 − η)ac
α + ηaM1

≥
(1 − η)ac

2k1k2
√

2c
k0

+ ak2
√

2c
k0

=

(1 − η)a
√
k0

√
2(2k1 + a)k2

c
1
2 = (1 − η)Kc

1
2 =: γ ∗,

where K :=
a
√

k0
√
2(2k1+a)k2

is a constant. For each c > 0, pick η(c) ∈

( 12 , 1) such that

1 − η(c) < min
{

L0(c)
2k1K

√
c
, 1 − sup

c>0

b(c)
ac

}
, (47)

This can be done as the arguments in the min function on the
right side of (47) are always positive (the positiveness of the
second argument is given by the theorem assumption). This also
means that,

γ ∗ < min
{(

1 − sup
c>0

b(c)
ac

)
Kc

1
2 ,

L0
2k1

}
, (48)

which tells us that by a proper choice of η(c) satisfying (47), γ ∗

will be bounded by the minimum of two increasing functions of
c, L0, respectively. Also by definition we know γ ∗

≤ γη , so the
result in Lemma 9 holds for γ ∗ as well. In addition, the inequality
between γ ∗ and L0

2k1
in (48) tells that γ ∗ <

L0
2k1

≤
L0
2L1

<
L0
L1

and

the inequality between 1 − η(c) and 1 − supc>0
b(c)
ac in (47) tells

that η(c) > supc>0
b(c)
ac and thus b(c) < η(c)ac for all c > 0.

Therefore the bound (48) guarantees that both (30) and (41) are
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satisfied; γ ∗ is indeed a valid sweeping tube radius and hence all
the subsequent results still follow if we replace every γη by γ ∗.
Now define

ϵ3 :=
L0(c)vol(B

n−1
γ ∗ )

4b
c, (49)

ϵ4 := vol(Bn
r(c)), r(c) =

√
k0c
32k22

. (50)

Then ϵ < ϵ3 with g substituted by its definition (21) implies

gϵ <
bϵ3

L0vol(B
n−1
γ ∗ )

<
1
4
c.

On the other hand, ϵ < ϵ4 with h substituted by its definition (22)
implies

hϵ
1
n = M1

(
ϵ

χ (n)

) 1
n

< k2

√
2c
k0

(
ϵ4

χ (n)

) 1
n

= k2

√
2c
k0

r(c) <
1
4
c.

So we have both gϵ and hϵ
1
n bounded from above by 1

4 c when ϵ

is small enough.
Now for any initial state x(0) ∈ Rn, we let c =

2
3V (x(0)).

Then x0 ∈ D(c) and we try to apply Theorem 1 on it. Notice
that V (x0) =

3
2 c < 2c − hϵ

1
n − gϵ, thus the initial state satisfies

the hypothesis. Hence we conclude from Theorem 1 that for ϵ

small enough, V (x(t)) ≤ V (x(0)) + gϵ ≤
7
4 c for all t ≥ 0 and

V (x(t)) ≤ c + hϵ
1
n < 5

4 c for some t ≤ T (c, ϵ). The global stability
part is given by the first conclusion by letting δ =

7
6ε. The second

conclusion tells that

V (x(t))
V (x(0))

<

5
4 c
3
2 c

=
5
6

Thus over each iteration |x(t)| is decreased at least by a factor
of 5

6 , in time at most T . We then reset time t to be the initial
time and can repeat the same argument. Thus while given δ and
κ , the total number of iterations is ⌈

ln κ−ln δ
ln 6−ln 5 ⌉ for a solution that

starts from B̄n
κ (0) and converges to B̄n

δ (0). The total time needed
is bounded by the summation of T (c, ϵ)’s of each iteration and
hence for given ϵ, it only depends on κ, δ.

It remains to find how small ϵ needs to be; that is, find an ex-
pression of ϵ̄, which is the common lower bound of ϵ1, ϵ2, ϵ3, ϵ4,
in terms of c, L0. Recall from (32) and (33) that we have

ϵ1 = vol(Bn−1
γ ∗ )

2L0
L1

(
π − sin−1(

L1γ ∗
η

L0
)
)

≥ vol(Bn−1
γ ∗ )L0

2
k1

(
π − sin−1(

1
2
)
)

,

ϵ2 = vol(Bn−1
γη

)
L0(b + ηac)2

αL̄0b

≥ vol(Bn−1
γ ∗ )L0

4bηac
2k21k2

2c
k0
b

> vol(Bn−1
γ ∗ )L0

a
2k21k2

,

where on the second line the assumption η > 1
2 is used. Mean-

while, from (49) we have

ϵ3 =
L0(c)vol(B

n−1
γ ∗ )

4b
c > vol(Bn−1

γ ∗ )L0
1
4a

.

It is observed from the above inequalities that a common lower
bound of ϵ1, ϵ2, ϵ3 is of the form K0vol(Bn−1

γ ∗ )L0 with some con-
stant K0 > 0. Recall from (48) that γ ∗ is chosen to be the

minimum between two linear increasing functions of L0, c
1
2 , re-

spectively. Thus vol(Bn−1
γ ∗ ) is the minimum between two linear

increasing functions of Ln−1
0 , c

n−1
2 , respectively. As a result,

min{ϵ1, ϵ2, ϵ3} ≥ min{K1Ln0, K2c
n−1
2 L0}

In addition, (50) means that ϵ4 is a linear function of c
n
2 . Put them

together, we have

ϵ̄ := min{K1Ln0, K2c
n−1
2 L0, K3c

n
2 } ≤ min{ϵ1, ϵ2, ϵ3, ϵ4} (51)

This ϵ̄ is the upper bound of ϵ in Theorem 1. As a result, as long as
vol(Ω∗(c)) < ϵ̄ for all c > 0 where Ω∗(c) is the largest connected
component of Ω ∩ D(c), the system (1) is GUAS.

6. Example and discussion

6.1. Example

The system (1) is explicitly defined as follows:(
ẋ1
ẋ2

)
= f (x) =

(
−λ(x) µ

−µ −λ(x)

)(
x1
x2

)
(52)

where λ(x) = 1.01min
{

|x−xc |
ρ

, 1
}

− 0.01, xc = (0.8, 0)⊤, µ =

2, ρ = 0.01. The relevant part of the phase portrait for the
vector field f (x) with a solution x(t) passing through is shown in
Fig. 4. Notice that the spiral-shaped vector field is distorted in the
region of Bρ(xc). The solution x(t) passing through this region will
temporarily move away from the origin when passing through
Bρ(xc). More explicitly, we consider the function

V (x) = |x|2 = x21 + x22
as a candidate Lyapunov function. Then

V̇ (x) = 2(x1ẋ1 + x2ẋ2) = −2λ(x)(x21 + x22). (53)

Notice that λ(x) = 1 everywhere except in Bρ(xc). Outside this
ball Bρ(xc) the system is linear and satisfies the decay condition
V̇ = −2V . When x(t) is very close to xc , λ(x) becomes negative
and V̇ becomes positive. Hence for this system Ω0 ̸= ∅ and V
is not a Lyapunov function for this system but only an almost
Lyapunov function. Nevertheless, we will show by our theorem
that convergence to 0 takes place as the effect of Ω is not strong.
To do so, choose d1 = 0.7, d2 = 1, c1 = d21, c2 = d22. We find that

|f (x)| =

√
f (x)⊤f (x)

=

√(
x1 x2

) (
−λ(x) −µ

µ −λ

)(
−λ(x) µ

−µ −λ

)(
x1
x2

)
=

√
(λ2(x) + µ2)(x21 + x22)

= |x|
√
(λ2(x) + µ2)

Hence on the set D = {x : d1 ≤ |x| ≤ d2}, L̄0 = d2 ×√
max λ(x)2 + µ2 =

√
5, L0 = d1 ×

√
min λ(x)2 + µ2 = 1.4.

The parameter L1 was computed numerically to be 90.78. Since
Vx(x) = 2(x1, x2), M1 = 2d2 = 2,M2 = 2. In addition, from (53)
we see that b = −2minx∈D λ(x)|x|2. The minimum is achieved at
x = xc and it is computed to be b = 0.0128.

Naturally pick a = 2 so that Ω = Bρ(xc). Thus, ϵ = vol(Ω) =

πρ2
≈ 3.14× 10−4. Also note that this Ω is completely inside D.

Pick η = 0.6. It can be calculated that α = M1L1 + L̄0M2 ≈

186, γη =
(1−η)ac1
α+ηaM1

≈ 0.0021 ≤ 0.0154 =
L0
L1
. Thus (30)

is satisfied. In addition, ηac1 = 0.588 > b so (41) is also
satisfied. Hence η = 0.6 is large enough. We can then compute ϵ̄:
ϵ1 = 4γη

L0
L1

(
π − sin−1( L1γη

L0
)
)

≈ 3.86 × 10−4, ϵ2 =
2γηL0(b+ηac1)2

αL̄0b
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Fig. 4. Left: overview of the solution trajectory. Right: zoom in view of the local behavior. The region inside the red circle is Ω , where V̇ ≥ −aV .

≈ 3.95 × 10−4. Therefore ϵ̄ = max{ϵ1, ϵ2} = 3.95 × 10−4.
Indeed we have ϵ < ϵ̄ so all the hypothesis in Theorem 1 hold.
Meanwhile, h = M1γη ≈ 0.0042, gϵ =

bvol(Ω1)
2γηL0

≈ 6.9 × 10−4
≪

c2 − c1. The conclusions in Theorem 1 tell us that the system will
converge to the set {x : V (x) ≤ c1 +h+gϵ} ≈ B0.7044(0) if it starts
at x0 with V (x0) ≤ c2 − h − gϵ ≈ 0.9951.

6.2. Discussion of the example

Firstly, because our V is chosen to be quadratic and we know
from the earlier discussion in Section 4.4 that the convergence of
V is exponential, we can further conclude that the convergence of
the solution to the ball B0.7044(0) is exponentially fast. In addition,
since V̇ (x) = −2V (x) for all x ∈ B0.7044(0) ∪ {x : V (x) > 0.9951},
the system is in fact globally exponentially stable.

It is important to note, as discussed earlier, that in this exam-
ple Ω0 ̸= ∅. By continuity of V̇ as a function of states, we know
that there will be x′

∈ Ω such that Vx(x′) · f (x′) = V̇ (x′) = 0
(which is in fact on ∂Ω0). If we do not require the vector field
to be non-vanishing, then since Vx(x) = 2x ̸= 0 for all x ∈ D,
we either have f (x′) = 0 or Vx(x′) is orthogonal to f (x′). In the
first case x′ is an equilibrium of the system and we will have a
solution x(t) ≡ x′, which would not converge to a smaller set
and hence the conclusion in Theorem 1 is no longer true. This
indicates that the additional assumption of non-vanishing (which
results in the positive bound L0) is indeed crucial to establishing
the convergence result.

Recall that the significance of our main theorem appears when
there are multiple ‘‘bad regions’’ with the volume of each of them
bounded above. For instance, by modifying the vector field of the
above example such that Ω consists of multiple Bρ(xi) regions
distributed in D with |xi| = 0.8 for all i, our main theorem is
still applicable and will lead to the same conclusion.

Nevertheless, the obtained ϵ̄ appears to be rather conservative.
One can observe in the above example that the radius of the
sweeping ball is quite small as γη ≈

1
5ρ; as a result, ϵ̄ which

is proportional to vol(Bn−1
γη

) becomes very small. It is not hard
to see from the proofs of Lemmas 4–6 that γη is a very coarse
bound on the radius of the largest ball that is contained in Ω .
More careful analysis can be done on tightening γη; however, this
may require additional information about system dynamics. Our
current assumptions on the system, on the other hand, are rather
general.

In addition, once η is chosen, a sweeping ball of constant
radius is employed for the analysis. We can make γη time-varying
based on the level set of Ωη that x is in. Since it is known that
the radius of the sweeping ball becomes larger when V̇ becomes
positive, ϵ̄ will be larger and this modification should yield a
better result. However, difficulties arise in converting the bound

(31) on the length of a particular trajectory to a (32)-like bound
on the volume of Ω1.

7. Conclusion

We presented a result (Theorem 1) which establishes con-
vergence of system trajectories from a given set to a smaller
set, based on an almost Lyapunov function which is known to
decrease along solutions on the complement of a set of small
enough volume. We have also developed Theorem 18 saying that
under mild assumptions on the system, the result of Theorem 1
can be iterated so that when the volume where V̇ is not negative
enough is small, the system can still be shown to be GUAS. The
study of almost Lyapunov functions provides an alternative way
to study stability related properties of nonlinear systems, poten-
tially for perturbations of stable systems, polynomial systems or
systems where V̇ can only be checked discretely and numerically.

Appendix A. A previous result

We provide a slightly different result in this section. In this
case the region of interest is defined as:

D := {x ∈ Rn
: V (x) ≤ c} (A.1)

Notice that in this case D is defined with the origin included,
in contrast to the one defined for Theorem 1 which excludes a
neighborhood of origin. Here is the theorem statement:

Theorem 19 (Liberzon et al., 2014). Let ρ : (0, +∞) → (0, +∞)
be the relation such that

vol(Bρ(ϵ)) = ϵ

Consider the system (1)with a locally Lipschitz right-hand side f , and
a function V which is positive definite and C1 with locally Lipschitz
gradient. Let the region D be defined via (A.1) and assume that
it is compact. Assume that (3) holds. Then there exist a constant
ϵ̄ > 0 and a continuous, strictly increasing function R̄ on [0, ϵ̄] with
R̄(0) = 0 such that for every ϵ ∈ (0, ϵ̄), if vol(Ω) < ϵ, then for every
initial condition x0 ∈ D with

V (x0) < c − 2M1ρ(ϵ)

where M1 is defined by (12), the corresponding solution x(·) of (1)
with x(0) = x0 has the following properties:

(1) V (x(t)) ≤ V (x0) + 2M1ρ(ϵ) for all t ≥ 0 (and hence x(t) ∈ D
for all t ≥ 0).

(2) V (x(T )) ≤ R̄(ϵ) for some T ≥ 0.
(3) V (x(t)) ≤ R̄(ϵ) + 2M1ρ(ϵ) for all t ≥ T .
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The proof of Theorem 19 is established by a perturbation
argument which compares a given system trajectory with nearby
trajectories that lie entirely in D\Ω and trades off convergence
speed of these trajectories against the expansion rate of the
distance to them from the given trajectory. For more details of
the proof of Theorem 19, please refer to Liberzon et al. (2014).
Notice that in the special case when V̇ (x) ≤ −aV (x) for all
x ∈ D (which implies that ϵ can be any arbitrarily small positive
number), Theorem 19 reduces to Lyapunov’s classical asymptotic
stability theorem. On the other hand, we cannot recover asymp-
totic stability from Theorem 1 when vol(Ω) = 0 simply because
a neighborhood of origin is taken away from D. At first sight one
may think the main Theorem 1 in this paper has some drawbacks
as it requires extra conditions (existence of positive L0, b) to hold
than Theorem 19; meanwhile, the result of Theorem 1 seems
to be weaker than that of Theorem 19 due to the existence of
gap h in all three statements, which unlike gϵ in Theorem 1
or R(ϵ) in Theorem 19 and does not vanish as ϵ goes to 0.
Nevertheless, we need to point out that the two ϵ̄’s in both
theorems are very different; in fact the ϵ̄ in Theorem 19 is very
conservative compared with that of Theorem 1. In order to fulfill
the condition in Theorem 19, we need vol(Ω) < ϵ̄. However, we
failed to construct a non-trivial example with V̇ (x) > 0 for some
x ∈ D while maintaining that inequality. This is left as an open
question in Liberzon et al. (2014). An interesting observation is
that by perturbing the system dynamics without increasing the
Lipschitz constant, which is used in computing ϵ̄, an unstable
equilibrium can be constructed away from the origin. There will
be contradiction if Theorem 19 is applicable to such a system
because a solution starting at that unstable equilibrium will not
move, contrary to what is concluded from the theorem that the
solution will be attracted to a neighborhood of the origin. On the
other hand, if we try to apply Theorem 19 to the example in
Section 6, through the procedure in Liberzon et al. (2014) we find
that ϵ̄ < πρ2, thus Theorem 19 is inconclusive. Hence we prefer
to apply Theorem 1 with a modified region D.

Appendix B. Proof of Proposition 11

If a space curve x∗(s), s ∈ [0,L] is closed (x∗(0) = x∗(L)) and
piecewise C2, we set I := {s ∈ [0,L) :

d
dsx

∗(s) does not exist}. For
each s ∈ I , we define the turning angle ϕt (s) to be the oriented
angle from the vector d

dsx
∗(s−) (or d

dsx
∗(L−) if s = 0) to the vector

d
dsx

∗(s+). Then total curvature is defined as

K =

∫
s∈[0,L)\I

κ(s)ds +

∑
s∈I

ϕt (s)

In order to prove Proposition 11, two geometrical results are
needed:

Lemma 20 (Fenchel’s Theorem Sullivan, 2008, Theorem 2.4). For any
closed space curve x(s),

K ≥ 2π

and equality holds if and only if x(s) is a convex planar curve.

Lemma 21 (Schur’s Comparison Theorem Sullivan, 2008, Theorem
5.1). Suppose C(s) is a plane curve with curvature κ(s) which makes
a convex curve when closed by the chord connecting its endpoints,
and C∗(s) is an arbitrary space curve of the same length with
curvature κ∗(s). Let d be the distance between the endpoints of C
and d∗ be the distance between the endpoints of C∗. If κ∗(s) ≤ κ(s)
then d∗

≥ d.

Suppose self-overlapping occurs between Nρ0 (x(t)) and
Nρ0 (x(s)) for some t > s. We prove the proposition by showing
that contradictions arise if Lt

s < 2ρ
(
π − sin−1( ρ0

ρ
)
)
.

Rewrite Lt
s = 2ρθ for some θ ∈

(
0, π − sin−1( ρ0

ρ
)
)
. Let z ∈

Nρ0 (x(t)) ∩ Nρ0 (x(s)). Denote the angle between vector z → x(t)
and vector z → x(s) by φz . Notice that the curve x(τ ) over [s, t]
and the two vectors z → x(t), z → x(s) form a closed curve. Eval-
uating the total curvature alone this closed curve and applying
Fenchel’s Theorem and realizing that the turning angles at x(t),
x(s) are both π

2 because they are on the normal disks, and the
fact that the turning angle at z is the complement of φz , we have

2π ≤ K =

(∫ x(s)

x(t)
κ(x)dx

)
+ ϕt (x(s)) + ϕt (x(t)) + ϕt (z)

≤

∫ x(s)

x(t)

1
ρ
dx + ϕt (x(s)) + ϕt (x(t)) + ϕt (z)

=
Lt

s

ρ
+

π

2
+

π

2
+ (π − φz).

Therefore

φz ≤ 2θ. (B.1)

Now we establish the contradiction in 3 different cases, based on
the value of θ :

Case 1. θ < π
4 . Notice that because f (x(t)), f (x(s)) are normal

vectors of Nρ0 (x(t)), Nρ0 (x(s)), the angle between them is the
same as the dihedral angle between the two hyperplanes that
contain the two normal disks, which is the maximal value of φz
over all possible z along the intersection of the two hyperplanes.
Because (B.1) always holds for such φz , it also holds for the
maximum, hence in this case the angle between f (x(t)) and f (x(s))
is acute. Now because ρ0 < ρ, the velocity of each point on the
normal disk N(x(·)) is in the same direction as f (x(·)) when N(x(·))
‘‘sweeps’’ with respect to time. Thus renaming t by τ and using
the earlier result of acute angle between f (x(τ )) and f (x(s)), we
see that the velocity of each point on the normal disk N(x(τ ))
has positive component in the f (x(s)) direction for all τ ∈ [s, t].
In other words, the disk N(x(t)) moves away from N(x(s)) so
self-overlapping is impossible.

Case 2. θ ∈ [
π
4 , π

2 ). In this case, compare the solution x(·) to a
circular arc with constant curvature 1

ρ
and same arc length of

2ρθ . Notice that such a circular arc has central angle 2θ and
therefore the chord length is 2ρ sin θ . By Schur’s Comparison
Theorem,

|x(t) − x(s)| ≥ 2ρ sin θ ≥
√
2ρ.

In addition, z ∈ Nρ0 (x(t)) ∩ Nρ0 (x(s)) means |z − x(t)| ≤ ρ0 < ρ,

|z − x(s)| ≤ ρ0 < ρ. Thus |z − x(t)|2 + |z − x(s)|2 < 2ρ2
≤

|x(t) − x(s)|2, which not only means that φz is obtuse, but also
implies that

cosφz =
|z − x(t)|2 + |z − x(s)|2 − |x(t) − x(s)|2

2|z − x(t)| |z − x(s)|

<
ρ2

+ ρ2
− (2ρ sin θ )2

2ρ2 = cos 2θ.

Hence φz > 2θ , contradicting (B.1) so self-overlapping is impos-
sible in this case.

Case 3. θ ∈ [
π
2 , π − sin−1( ρ0

ρ
)). In this case we repeat the same

procedure of comparing the solution x(·) to a circular arc. Again
Schur’s Comparison Theorem tells us that

|x(t) − x(s)| ≥ 2ρ sin θ > 2ρ sin(π − sin−1(
ρ0

ρ
)) = 2ρ0.
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Because x(t) and x(s) are separated by more than 2ρ0, self-
overlapping is impossible.
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