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Comments on “Observability of Switched Linear Systems:
Characterization and Observer Design”

Aneel Tanwani, Hyungbo Shim, and Daniel Liberzon

Abstract—This note points out certain limitations of our results
from the paper mentioned in the title, and provides a modified
approach to overcome these limitations. Specifically, the observer
design addressed in the aforementioned paper is, in general, only
applicable to switched linear systems with invertible state reset
maps and this note presents a modified algorithm for state esti-
mation that can also handle non-invertible state reset maps. In the
process, we also identify some equalities from that paper which
may not hold in general for arbitrary state reset maps.

Index Terms—Control theory, switching systems, observability,
state estimation.

I. INTRODUCTION

In papers [1] and [2], we studied observability conditions and
observer construction for switched linear systems described as

ẋ(t) =Aqx(t) +Bqu(t), t ∈ [tq−1, tq) (1a)

x(tq) =Eqx
(
t−q
)
+ Fqvq (1b)

y(t) =Cqx(t) +Dqu(t), t ∈ [tq−1, tq) (1c)

where x(t) ∈ R
n is the state, and y(t) ∈ R

dy is the output. The
continuous input u(t) ∈ R

du and the discrete input vq ∈ R
dv are

assumed to be deterministic and u(·) is a locally bounded measurable
function. The index q ∈ N determines the active subsystem over the
interval [tq−1, tq) and it is assumed that the switching times do not
accumulate at any time instant.

In our work [1], we have derived geometric conditions for observ-
ability and used them in designing an observer where we consider
a very general class of state reset maps so that Eq , q ∈ N, may be
non-invertible. However, it turns out that certain equalities derived
in [1, Section II-C] only hold for a certain class of state reset maps
[specified later in (4)], and in particular the invertible matrices Eq , q ∈
N. Because of that, the state estimator proposed in [1] mainly works
for invertible state reset maps. The primary objective of this note is to
present a modified observer design to cater for general state reset maps,
where Eq may be non-invertible. This generality comes at the cost of
complexity involved in designing the state estimators: The observer
proposed in [1] is simpler to design, whereas the observer designed to
handle general state reset maps in this note is relatively more complex.
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The application of the results can be seen in switching electrical
circuits or chemical reactors, where the change in the dynamics would
in general reset certain state variables to zero, making the reset map at
switching times non-invertible.

In order to make this note self-contained, we first recall the geomet-
ric tools for characterization of observability in Section II on which the
observer design of Section III is based. In the process, we also point
out the errors from [1], that is, which mathematical formulae may not
hold for non-invertible state reset maps.

II. OBSERVABILITY CONDITIONS

Our observer is built on the notion of determinability considered in
[1, Definition 1] and in this section we recall some tools that are used in
deriving determinability conditions and designing observers. Roughly
speaking, the switched system (1) is determinable if there exists
m ∈ N such that x(tm) could be determined from the knowledge
of external signals (u, v, y) measured over the interval [t0, tm+1).
Because x(t−m+1) = eAm+1(tm+1−tm)x(tm), the unknown informa-
tion contained in x(tm) and x(t−m+1) is the same, so that, recov-
ering x(tm) is equivalent to recovering x(t−m+1). We now proceed
towards quantifying the unknown information about the state using the
measurements of (u, v, y) over a certain interval. Since our notion of
observability does not require individual subsystems to be observable,
the basic idea in formulating the geometric conditions that quantify the
unknown information is to characterize how much information could
be extracted from each subsystem about the state by measuring the
output over a certain interval. To do so, it is seen that system (1) is
an LTI system between two consecutive switching times, so that its
unobservable subspace on the interval [tq−1, tq) is simply given by the
largest Aq-invariant subspace contained in kerCq , i.e., kerGq where

Gq := col
(
Cq, CqAq, . . . , CqA

n−1
q

)
.

For system (1), let Qm
q be the subspace such that x(t−m) is determined

modulo Qm
q using the knowledge of external signals (u, v, y) over

the interval [tq−1, tm). We call Qm
q the undeterminable subspace for

[tq−1, tm) and compute it recursively as follows for q ∈ N:

Qq
q := kerGq

Qk
q := kerGk ∩Ek−1e

Ak−1τk−1Qk−1
q , q + 1 ≤ k ≤ m (2)

where τk := tk − tk−1. Alternatively, by computing the orthogonal
complement of Qm

q and denoting it by Mm
q , we can quantify the

information about the state trajectory that can be recovered using the
signals (u, v, y). The recursive expression for Mm

q is thus given by

Mq
q =R

(
G�

q

)
Mk

q =E−�
k−1e

−A�
k−1

τk−1Mk−1
q +R

(
G�

k

)
, q + 1 ≤ k ≤ m (3)

where the notation E−�M denotes (E�)−1M := {x ∈ R
n|E�x ∈

M} for a matrix E ∈ R
n×n and a subspace M ⊆ R

n. From (3),
it is observed that the dimension of Mk

q is non-decreasing when k
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increases and q is fixed. We now characterize the determinability of
system (1) using these subspaces in the following result which follows
directly from [1, Proposition 1 and Theorem 3]:

Theorem 1 (Determinability Characterization): Consider the
switched system (1) with (u, v) ≡ 0. Then Qm

q for some m ≥ q ≥ 1
characterizes the undeterminable space in the following sense:

y[tq−1,tm) ≡ 0 ⇔ x
(
t−m

)
∈ eAmτmQm

q .

In particular, if there exists m ≥ q such that Qm
q = {0}, or equiva-

lently Mm
q = R

n, then the state x(tm−1), and hence the complete
future trajectory x[tm−1,∞), can be determined for system (1) (with
possibly non-zero (u, v)) from the knowledge of (u, v, y) on the
interval [tq−1, tm).

Remark 1: We are often interested in deriving a direct formula for
Qm

q instead of the recursive one given in (2). For that, let us consider
the matrix

Ψk
j := Ek−1e

Ak−1τk−1 . . . Eje
Ajτj , k > j

which defines the flow of system (1) with zero inputs from tj−1 to
tk−1, and assume that the following condition holds for k ≥ q + 2,
i = 1, 2, . . . , k − q − 1, q ∈ N:

Ψk
k−i

(
kerGk−i ∩Ψk−i

k−i−1Qk−i−1
q

)
= Ψk

k−i kerGk−i ∩Ψk
k−i−1Qk−i−1

q . (4)

It is readily checked that, if (4) holds, then the sequential definition (2)
leads to another equivalent expression for Qm

q , m ≥ q ≥ 1, that is

Qm
q =

⋂
j=m,...,q

Ψm
j kerGj = kerGm ∩Em−1 ker(Gm−1)

∩

(
m−2⋂
i=q

i+1∏
l=m−1

Ele
AlτlEi kerGi

)
(5)

where Ψk
k denotes the identity matrix and we used the fact that

eAkτk kerGk = kerGk, for k ∈ N. Condition (4) indeed holds when
each of the matrix Eq , q ∈ N, is invertible because in that case the
mapping Ψk

j , for all j, k ∈ N, k > j, is invertible. In [1, Section II-C],
no such condition as (4) was specified and the equality (5) was
claimed to hold without any constraints on the state reset maps Eq . We
emphasize that [1, p. 896, eq. (13)] holds if and only if (4) is satisfied.

Similarly, when (4) holds, one can obtain an equivalent expression
for Mm

q from (3)

Mm
q =

(
Qm

q

)⊥
=

m−2∑
i=q

i+1∏
l=m−1

E−�
l e−A�

l
τlE−�

i R
(
G�

i

)
+ E−�

m−1R
(
G�

m−1

)
+R

(
G�

m

)
. (6)

Once again, in [1, p. 896, Remark 2], (6) was claimed to hold without
specifying condition (4), and we emphasize that this may not be the
case for arbitrary non-invertible state reset maps Eq , q ∈ N.
Equation (6) was used in the proof of convergence of state estimation
error [1, Theorem 4], and thus for that result to be valid, condition (4),
or (the simpler but stronger requirement of) invertibility of each matrix
Eq, q ∈ N, must be added to [1, Assumption 1].

III. OBSERVER DESIGN

Using the geometric conditions for determinability stated in the pre-
vious section, we now proceed to design an asymptotically convergent
observer without requiring the matrices Eq , q ∈ N, to satisfy (4). Our

proposed observer uses the inputs u(t), vq injected in system (1) and
the output measurements y(t), and is given by

˙̂x(t) =Aqx̂(t) +Bqu(t), t ∈ [tq−1, tq) (7a)
x̂(tq) =Eq

(
x̂
(
t−q
)
− ξq

)
+ Fqvq (7b)

with an arbitrary initial condition x̂(t0) ∈ R
n and the expression for

ξq will be computed in the sequel. The observer consists of a system
copy and unlike classical methods where the continuous dynamics of
the estimate are driven by an error injection term, the observer (7)
updates the state estimate only at discrete switching instants by an
error correction vector ξq . It is noted that the structure of the observer
(7) is the same as one proposed in [1], [2]. However, the difference
lies in the computation of ξq as the approach adopted in this note is
different in several aspects which we highlight later.

To give an intuitive interpretation of how to calculate ξq , note that,
if for some q ∈ N, ξq equals the state estimation error x̂(t−q )− x(t−q ),
then (7b) gives x̂(tq) = x(tq), and from there onwards we can recover
the exact value of the trajectory x by setting ξk = 0 for k > q. How-
ever, in practice, where we don’t use the derivatives of the output, it is
not easy to recover the exact value of the state estimation error. Thus,
our goal is to compute ξq , for each q ∈ N, such that it approximates
the value of state estimation error at time t−q which will result in x̂(t)
converging to x(t) as t increases.

With this motivation, we introduce the state estimation error x̃ :=
x̂− x, and the error dynamics are given by

˙̃x(t) =Aqx̃(t), t ∈ [tq−1, tq) (8a)
x̃(tq) =Eq

(
x̃(t−q )− ξq

)
. (8b)

The corresponding output error is defined as

ỹ(t) := Cqx̂(t) +Dqu(t)− y(t) = Cqx̃(t), t ∈ [tq−1, tq).

The basic idea in computing ξq is to:

• First identify the observable components of the individual sub-
systems that can be estimated using classical state-estimation
techniques. For subsystem p ∈ N, let zp : [tp−1, tp) → R(G�

p )
denote its observable component.

• Secondly, derive an equation for x̃(t−q ) of the form

x̃
(
t−q
)
= Ξq

(
zq(t

−
q ), zq−1

(
t−q−1

)
, . . . ,

zq−N

(
t−q−N

)
, ξq−1, . . . , ξq−N

)
(9)

for some linear function Ξq(·) and N ∈ N.
• Finally, letting ẑqp : [tp−1, tp) → R(G�

p ) denote the estimate of
zp which we compute at t−q , q > N , q −N ≤ p ≤ q, we set

ξq = Ξq

(
ẑqq

(
t−q
)
, ẑqq−1

(
t−q−1

)
, . . . ,

ẑqq−N

(
t−q−N

)
, ξq−1, . . . , ξq−N

)
. (10)

We will develop calculations for each of the aforementioned steps in
detail and arrive at a formal statement on error convergence that results
from the observer. To do that, we need to introduce some assumptions
that allow us to follow this proposed line of thought.

The identification of observable components in the first step could
be achieved easily by Kalman-like decomposition. For the second step,
however, where we want to write x̃(t−q ), for each q ∈ N, in terms of
the observable components of the currently active mode and some past
modes, we need the following assumption on the switching signal and
system dynamics:

Assumption 1: The switched system (1) is persistently determinable
in the sense that there exists an N ∈ N such that

dimMq
q−N = n, ∀q ≥ N + 1. (11)

The integer N in Assumption 1 is interpreted as the minimal number
of switches required to gain determinability.
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For the third step, it is seen that if ẑqq−k(t
−
q−k) “closely approxi-

mates” zq−k(t
−
q−k), for k = 0, . . . , N , then (8) implies that the norm

of the state estimation error at switching instants x̃(tq) is “close” to
zero. Since the individual subsystems are not assumed to be observ-
able, so that the error dynamics for a particular mode (between any two
switching instants) cannot be stabilized by output injection, it is impor-
tant to update the estimate repeatedly for asymptotic convergence and
also make sure that the error doesn’t get arbitrarily large between the
two switching instants. This motivates us to introduce the following
assumptions for our observer design:

Assumption 2: The switching is persistent in the sense that a switch
occurs at least once in any time interval of length TD; that is

tq − tq−1 < TD, ∀q ∈ N. (12)

Assumption 3: The induced matrix norms ‖Aq‖ are uniformly
bounded for all q ∈ N.

Note that Assumption 3 holds when Aq , q ∈ N, belong to a set
of finite elements. Assumption 2 is in contrast to the usual slow
switching assumption imposed in the form of (average) dwell-time;
the reason being, when the individual subsystems are assumed to be
stable, the slow switching allows the transients to settle down and
guarantees a decay in the norm of state before the next switching
instant. However, since the individual subsystems are not assumed to
observable in our setup, the error dynamics are not necessarily stable,
so the slow switching does not help. By placing a uniform bound on
the time between two consecutive error updates in Assumption 2, we
can get a bound on the maximum growth of the state estimation error
between two consecutive switches which is eventually compensated by
obtaining sufficiently close approximations of observable components.

In the sequel, the above thought process is formalized by setting
up a machinery to compute the correction vector ξq . The explicit
formula appears in (20) and we show in Theorem 2 that by choosing
certain design parameters in the computation of ξq appropriately, the
estimate indeed converges to the actual state. To keep the presentation
simple, we will neglect the effect of computation time required in
processing the stored information and computing ξq . In order to take
into account the computation time, the idea developed in this note
could be tailored within the framework of [1] to obtain similar results,
albeit implemented differently.

A. Observability Decomposition of Error Dynamics

As a first step in computing ξq , q ∈ N, we want to write x̃ in
terms of observable components of individual subsystems. To do
that, we first find a coordinate change for each mode, similar to the
Kalman decomposition. For each p ∈ N, choose a matrix Zp such that
its columns are an orthonormal basis of R(G�

p ), so that R(Zp) =
R(G�

p ). Similarly, choose a matrix Wp such that its columns are
an orthonormal basis of kerGp. From the construction, there are
matrices Sp ∈ R

rp×rp and Rp ∈ R
dy×rp , where rp = rankGp, such

that Z�
p Ap = SpZ

�
p and Cp = RpZ

�
p , and that the pair (Sp, Rp) is

observable. Let zp := Z�
p x̃ ∈ R

rp and wp := W�
p x̃ ∈ R

n−rp . Then,
for the interval [tp−1, tp), we obtain

żp =Z�
p Apx̃ = Spzp, ỹ = Cpx̃ = Rpzp (13a)

zp(tp−1) =Z�
p x̃(tp−1) (13b)

which denotes observable components of the error dynamics (8), for
mode p ∈ N during the interval [tp−1, tp). Since zp is observable over
the interval [tp−1, tp), a standard Luenberger observer is designed as

˙̂z
q

p(t) =Spẑ
q
p(t) + Lq

p

(
ỹ(t)−Rpẑ

q
p(t)

)
, t ∈ [tp−1, tp) (14a)

ẑqp(tp−1) = 0 (14b)

whose role is to estimate zp(t
−
p ) at the end of the interval. This

observer parses the data from ỹ over the interval [tp−1, tp), and ẑqp(t
−
p )

is used in the computation of ξq , max{p,N + 1} ≤ q ≤ p+N . Note
that we have fixed the initial condition of the estimator to be zero for
each interval. Since x̃(t−q ) can be written as

x̃
(
t−q
)
=

[
Z�

q

W�
q

]−1[zq (t−q )
wq

(
t−q
)] = Zqzq

(
t−q
)
+Wqwq

(
t−q
)

(15)

we obtain partial information of x̃(t−q ) in the sense that Zqzq(t
−
q ) can

be recovered, but the value of x̃(t−q ) remains unknown because it is
corrupted by the unobservable state wq(t

−
q ).

B. Computing the Vector ξq

The differences between the current observer and the observers
treated in [1], [2] start at this stage as we will see that the calculations
for the error correction vector ξq , and the gain criteria for asymptotic
convergence are entirely different.

For p, q ∈ N with p ≤ q let Mq
p and Qq

p be matrices such that

their columns are an orthonormal basis of e−A�
q τqMq

p and eAqτqQq
p,

respectively. The corresponding projections of x̃(t−q ) onto these sub-

spaces can be expressed by letting μq
p := Mq�

p x̃(t−q ) and χq
p :=

Qq�
p x̃(t−q ). Thus, it is seen that in addition to (15), another way of

expressing x̃(t−q ) is

x̃
(
t−q
)
=

[
Mq�

p

Qq�
p

]−1[
μq
p

χq
p

]
= Mq

pμ
q
p +Qq

pχ
q
p. (16)

The definition of μq
p implies that it contains the information of the error

x̃(t−q ) which we are able to extract from the output on the interval
[tp−1, tq) as given by the observability space Mq

p. For q > N , deter-
minability of the system (Assumption 1) ensures that μq

q−N contains
all the information of x̃(t−q ); in fact Mq

q−N is then an invertible matrix

and hence the equation μq
q−N = Mq�

q−N x̃(t−q ) is uniquely solvable
for x̃(t−q ).

We are interested in representing x̃(t−q ) only in terms of the known
vectors μq

p, and eliminate its dependency over the terms involving χq
p,

p = q, q − 1, . . . , q −N . For that, we introduce the matrix Θq
p whose

columns form the basis of the subspace R(eAq+1τq+1EqQ
q
p)

⊥; that is

Θq�
p eAq+1τq+1EqQ

q
p = 0. (17)

Compared to the case treated in [1], [2], the key difference is
that we do not transport the observable components of the individual
subsystems to one time instant through the state-transition matrix.
Instead, we gather all the observable information for x̃(t−q−1) over
the interval [tp−1, tq−1) into the vector μq−1

p , p < q, and combine it
with the local observability information zq(t

−
q ) of x̃(t−q ) obtained on

the interval [tq−1, tq) in order to recover more information for x̃(t−q ),
represented by μq

p. For that, the following relationship between x̃(t−q )
and μq−1

p , p < q, is crucial

x̃
(
t−q
)
= eAqτqEq−1

(
x̃
(
t−q−1

)
− ξq−1

)
= eAqτqEq−1

(
Mq−1

p μq−1
p +Qq−1

p χq−1
p − ξq−1

)
. (18)

Combining this with (15) and (17), we obtain[
Z�

q

Θq−1�
p

]
x̃
(
t−q
)
=

(
zq
(
t−q
)

Θq−1�
p eAqτqEq−1

(
Mq−1

p μq−1
p −ξq−1

))
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where the right-hand side consists of observable, or known terms
only, which allow us to accumulate more information about x̃(t−q )
by combining zq(t

−
q ), μ

q−1
p , and ξq−1 accordingly. Consider a full

column rank matrix Uq
p such that[
Zq,Θ

q−1
p

]
Uq

p = Mq
p .

This matrix always exists because from the definition of Mq
p and Zq ,

it follows that

R
(
Mq

p

)
= R

([
Zq,Θ

q−1
p

])
.

Indeed, it follows from the definition of Θq−1
p that R(Θq−1

p ) =

e−A�
q τqE−�

q−1e
−A�

q−1τq−1Qq−1⊥
p , so that

R
(
Mq

p

)
= e−A�

q τqMq
p

= e−A�
q τq

(
E−�

q−1e
−A�

q−1τq−1Mq−1
p +R

(
G�

q

))
=R

(
Θq−1

p

)
+R(Zq)

where the last equality was obtained using the fact that R(G�
q ) is

invariant under A�
q , and Mq−1

p = Qq−1⊥
p . From μq

p = Mq�
p x̃(t−q ),

it now follows that

μq
p =Uq�

p

[
Z�

q

Θq−1�
p

]
x̃
(
t−q
)

=Uq�
p

(
zq
(
t−q
)

Θq−1�
p eAqτqEq−1

(
Mq−1

p μq−1
p − ξq−1

))

=Uq�
p

[
Z�

q 0

0 Θq−1�
p eAqτqEq−1

](
Zqzq

(
t−q
)

Mq−1
p μq−1

p − ξq−1

)

�
=Jq

pZqzq
(
t−q
)
+Kq

p

(
Mq−1

p μq−1
p − ξq−1

)
. (19)

Note that (19) expresses the vector μq
p recursively in terms of μq−1

p .
Recall that Mp

p = R(G�
p ) = R(Zp), hence we can assume Mp

p =
Zp and we have the “initial value” for the recursion (19) given by
μp
p = zp(t

−
p ).

If zq−N , . . . , zq were known, then we would be able to compute
μq
q−N , and hence the error x̃(t−q ) exactly, and would pick ξq = x̃(t−q ).

Since this is not the case, we work with the estimates ẑqq−N , . . . , ẑqq to
compute ξq .

In summary, having introduced the matrices Zq as in (13), Mq
p as in

(16), and Θq
p as in (17), for q ∈ N, we let

ξq =

{
0, 1 ≤ q ≤ N
Mq

q−N μ̂q
q−N , q > N (20a)

where μ̂q−k
q−N , for k = N − 1, . . . , 0, is computed recursively as

follows:

μ̂q−N
q−N = ẑqq−N

(
t−q−N

)
μ̂q−k
q−N =Jq−k

q−NZq−kẑ
q
q−k

(
t−q−k

)
+Kq−k

q−N

(
Mq−k−1

q−N μ̂q−k−1
q−N − ξq−k−1

)
(20b)

and[
Jq−k
q−N ,Kq−k

q−N

]
:=

Uq−k�

q−N

[
Z�

q−k 0

0 Θq−k−1�

q−N eAq−kτq−kEq−k−1

]
. (20c)

C. Error Convergence and Gain Criterion

The only design parameters in the computation of ξq , q > N , are
the gain matrices Lq

p, p = q −N, . . . , q which were introduced in
obtaining the estimates ẑqp in (14). It is not true that every choice of Lq

p,
that makes (Sp − Lq

pRp) Hurwitz, would actually result in asymptotic
convergence of the state estimation error. In order to state the criteria
for choosing the gain matrix that guarantees the convergence of the
state estimation error to zero, for each p ∈ N, and max{p,N + 1} ≤
q ≤ p+N , we introduce the matrices

Λq
p := e(Sp−L

q
pRp)τp . (21)

Since the pair (Sp, Rp), p ∈ N is observable in the classical sense,
the norm of Λq

p can be made arbitrarily small by choosing Lq
p appro-

priately. In order to make precise statements about the “smallness”
of Λq

p, we need to define the following matrices for q > N , k =
N − 2, . . . , 0, and i = 0, . . . , N − k − 1:

V q−N+1
q−N,q−N :=Kq−N+1

q−N (22a)

V q−N+1
q−N,q−N+1 :=Jq−N+1

q−N (22b)

V q−k
q−N,q−N+i :=Kq−k

q−NMq−k−1
q−N V q−k−1

q−N,q−N+i (22c)

V q−k
q−N,q−k :=Jq−k

q−N . (22d)

The main result on observer convergence now follows:
Theorem 2: Consider the observer (7) under Assumptions 1–3, with

ξq given in (20). If, for each q > N , and k = N, . . . , 0, the output
injection matrices Lq

q−k are chosen to reduce the norm of Λq
q−k such

that, for some 0 < c < 1/(N + 1)∥∥EqM
q
q−NV q

q−N,q−kZq−kΛ
q
q−kZ

�
q−k

∥∥ ≤ c (23)

then, it holds that limt→∞ |x̂(t)− x(t)| = 0.
Remark 2: An important fact to note is that ẑqp (with q varying)

represent the estimate of the same variable zp, and the computation of
ξq depends on ẑqp(t

−
p ), max{q −N, 1} ≤ p ≤ q. For a fixed p ∈ N,

condition (23) requires that, the gains Lq
p, max{p,N + 1} ≤ q ≤

p+N , used to generate the estimate ẑqp must satisfy (at most) N + 1
different inequalities, each corresponding to a different value of q.
Hence, even for the estimates of a single mode p ∈ N, we have N + 1
different gain criteria (given by Lq

p), because the estimates of that
mode are used for (at most) N + 1 subsequent error correction updates
ξq , max{p,N + 1} ≤ q ≤ p+N . If the knowledge of switching
times is available offline, then the gains can be computed offline,
else verifying (23) for each q > N , would require the knowledge of
τq−k, k = N, . . . , 0. Choosing different gains for the estimates of the
observable components of a single mode is in contrast to the strategy
adopted in [1], which only relies on recycling the single estimate (and
choosing single gain matrix) for every single mode.

Proof of Theorem 2: Using (8), it follows from Assumptions 2 and 3
that the estimation error x̃(t) for the interval [tq, tq+1) is bounded by

|x̃(t)|=
∣∣eAq+1(t−tq)x̃(tq)

∣∣≤ebA(t−tq) |x̃(tq)| , t ∈ [tq, tq+1)

with a constant bA such that ‖Aq‖ ≤ bA, for all q ∈ N, and thus

|x̃(t)| ≤ ebATD |x̃(tq)| , t ∈ [tq, tq+1).

Therefore, if |x̃(tq)| → 0 as q → ∞, then convergence of x̂(t) to-
wards x(t) as t → ∞ follows. It is noted that, for q > N , x̃(t−q ) =
Mq

q−Nμq
q−N by definition, and ξq = Mq

q−N μ̂q
q−N using (20), so that

x̃(tq) =Eq

(
x̃
(
t−q
)
− ξq

)
(24a)

=EqM
q
q−N

(
μq
q−N − μ̂q

q−N

)
(24b)

= −EqM
q
q−N μ̃q

q−N (24c)
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where μ̃q
q−N := μ̂q

q−N − μq
q−N . In the sequel, we will derive an

expression for μ̃q
q−N for a fixed q > N and plug it in (24c) to show

that |x̃(tq)| converges to zero as q increases.
Towards this end, we first compute the difference z̃qp := ẑqp − zp, for

q −N ≤ p ≤ q, as follows:

z̃qp
(
t−p
)
= ẑqp

(
t−p
)
− zp

(
t−p
)

= e(Sp−L
q
pRp)τp z̃qp(tp−1)

= − e(Sp−L
q
pRp)τpZ�

p x̃(tp−1).

As a first step in arriving at the expression for μ̃q
q−N , we observe that

μ̃q−N
q−N = z̃qq−N (t−q−N ) and we compute μ̃q−N+1

q−N as follows:

μ̃q−N+1
q−N = μ̂q−N+1

q−N − μq−N+1
q−N

=Jq−N+1
q−N Zq−N+1z̃

q
q−N+1

(
t−q−N+1

)
+Kq−N+1

q−N Zq−N z̃qq−N

(
t−q−N

)
= −

1∑
i=0

V q−N+1
q−N,q−N+iZq−N+iΛ

q
q−N+i

× Z�
q−N+ix̃(tq−N+i−1).

Finally, with these calculations, the expression for μ̃q−k
q−N , k = N −

2, . . . , 0, is derived recursively as follows:

μ̃q−k
q−N = μ̂q−k

q−N − μq−k
q−N

=Jq−k
q−NZq−kz̃

q
q−k

(
t−q−k

)
+Kq−k

q−NMq−k−1
q−N μ̃q−k−1

q−N

= −
N−k∑
i=0

V q−k
q−N,q−N+iZq−N+iΛ

q
q−N+i

× Z�
q−N+ix̃(tq−N+i−1).

Plugging this expression for μ̃q
q−N in (24c), we now obtain

x̃(tq) = EqM
q
q−N

q∑
i=q−N

V q
q−N,iZiΛ

q
iZ

�
i x̃(ti−1). (25)

From condition (23), it now follows that

|x̃(tq)| ≤ c

q∑
i=q−N

|x̃(ti−1)|

for some 0 < c < 1/(N + 1). Using [2, Lemma 1], we obtain
limq→∞ |x̃(tq)| = 0, which proves the desired result. �

IV. SIMULATIONS

To illustrate our observer design, we consider a simple academic
example of a third order (n = 3) switched system with three modes
where Aq, Bq, Fq,Dq , q ∈ N, are zero matrices of appropriate dimen-
sions. The output measurements are given by

C3k−2 = [1 0 0], C3k−1 = [0 1 0], C3k = [0 0 1], k ≥ 1

and the state reset maps are

E3k−2 = E3k = I3×3, E3k−1 =

[
1 1 0
1 1 0
0 0 1

]
, k ≥ 1.

Fig. 1. Plot shows the state estimates x̂i, i = 1, 2, 3 (dashed lines in blue)
converging to the actual states of the plant xi, i = 1, 2, 3 (solid lines in red).

For this system, it can be checked that Assumption 1 indeed holds,
that is, dimMq

q−N = 3, for each q > 2, where we take N = 2. The
observer (7) is now implemented to obtain the state estimate in which
we let ξ1 = ξ2 = 0. For q ≥ 3, the following expressions are obtained
for the vector ξq using the calculations in the previous section:

ξ3k =

(
ẑ3k3k−2 + ẑ3k3k−1

ẑ3k3k−2 + ẑ3k3k−1

ẑ3k

)

−

(
ξ3k−2(1) + ξ3k−1(1) + ξ3k−1(2)
ξ3k−2(1) + ξ3k−1(1) + ξ3k−1(2)

0

)
, k ≥ 1

ξ3k+1 =

(
ẑ3k3k+1

0
ẑ3k3k

)
−

⎛
⎝ 1√

2
ξ3k(1)− 1√

2
ξ3k(2)

1√
2
ξ3k(2)− 1√

2
ξ3k(1)

ξ3k(3)

⎞
⎠ , k ≥ 1

ξ3k+2 =

(
ẑ3k3k+1

ẑ3k3k+2

ẑ3k3k

)
−

(
ξ3k+1(1)

0
ξ3k+1(3) + ξ3k(3)

)
, k ≥ 1

where we use the notation ξq(j) to denote the j-th component of the
vector ξq and the short-hand ẑqp to denote ẑqp(t

−
p ), which for each

p ∈ N, and max{p, 3} ≤ q ≤ p+ 2, is obtained from the following
equation:

˙̂z
q

p(t) = −lqpỹ(t), t ∈ [tp−1, tp), ẑqp(tp−1) = 0.

For simplicity, if we let lqp = l, and τp = τ for some l, τ > 0 and each
p ∈ N, then the condition (23) boils down to

√
2 · e−lτ <

1

3
⇔ l >

log 3
√
2

τ
.

For τ = 1, the simulation results are shown in Fig. 1. The plots show
the continuous and discrete nature of the error dynamics where the
estimate doesn’t improve between the two switching instants and only
when the correction ξq is applied, the estimate gets closer to the actual
state value.
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