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The Bang-Bang Funnel Controller for Uncertain
Nonlinear Systems With Arbitrary Relative Degree

Daniel Liberzon, Fellow, IEEE, and Stephan Trenn

Abstract—The paper considers output tracking control of uncer-
tain nonlinear systems with arbitrary known relative degree and
known sign of the high frequency gain. The tracking objective is
formulated in terms of a time-varying bound—a funnel—around
a given reference signal. The proposed controller is bang-bangwith
two control values. The controller switching logic handles arbi-
trarily high relative degree in an inductive manner with the help
of auxiliary derivative funnels. We formulate a set of feasibility as-
sumptions under which the controller maintains the tracking error
within the funnel. Furthermore, we prove that under mild addi-
tional assumptions the considered system class satisfies these fea-
sibility assumptions if the selected control values are sufficiently
large in magnitude. Finally, we study the effect of time delays in the
feedback loop and we are able to show that also in this case the pro-
posed bang-bang funnel controller works under slightly adjusted
feasibility assumptions.

Index Terms— Bang-bang control, nonlinear systems, uncertain
systems.

I. INTRODUCTION

I S it possible to design a controller which only uses two
values, “bang-bang”, such that the output of an uncertain

system tracks an arbitrary reference signal with a prespecified
strict error bound guaranteeing a desired transient response as
well as a desired arbitrary tracking accuracy? The surprising
answer to this question is: Yes, provided the system in question
has a known relative degree and the two input values are
large enough.
Our main contribution is therefore the presentation of a new

controller design—the bang-bang1 funnel controller—which is
able to achieve the above objectives while remaining simple to
implement even for high relative degree systems. In particular,
we are “overcoming the obstacle of high relative degree” [16]
with a simple and intuitive controller.
The above question without the bang-bang assumption was

already posed and answered in 1991 by Miller and Davison
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1Here by “bang-bang-control” we mean the case that the controller produces
a scalar piecewise-constant input signal which can only attain two values
and with ; in most cases it actually holds that

although our theory does not need the latter assumption in general.

[15] for linear systems with arbitrary relative degree but the
prespecified error bounds were piecewise-constant with two
values only. The same affirmative answer for a more general
prespecified error bound, the funnel, was obtained by Ilchmann
et al. [7] where only the relative degree one case was considered
but the system class encompassed nonlinear systems, modeled
with functional differential equations, including hysteresis
effects and delays. The so-called funnel controller was later
successfully applied to systems with higher relative degree [8]
using a “backstepping” procedure. In the latter work a nice
review is given on known controller designs for systems with
high relative degree, see also [16] which discusses the “obsta-
cles of high relative degree” for adaptive control problems in
general. The funnel controller was also studied with respect to
input constraints, first for a model of chemical reactors [9] and
later for the general case [5], [6]. These works only considered
the relative degree one case and only recently it was possible
to construct a funnel controller with input saturations for the
relative degree two case [3]. The latter paper used the new
approach to introduce a funnel also for the derivative of the
error and strongly inspired our first work [12] on the bang-bang
funnel controller which considers relative degree one and two,
but the controller design in [12] is completely different from
the one in [3]. The current paper extends our results in [12] to
arbitrary relative degree without high “costs” on the design.
In fact, as shown in Fig. 2 our switching logic consists of
basically identical, simple blocks, where is the relative
degree. This is a major advantage over other methods like
backstepping where high implementation costs occur when the
relative degree is high.
The approach taken here is similar to sliding-mode control

[18] and there are sliding mode controllers available for arbi-
trary high relative degree [11]. However, in contrast to sliding
mode control, the bang-bang funnel controller explicitly defines
(time-varying) error bounds and is therefore also able to guar-
antee desired transient behavior whereas sliding mode control
only specifies the desired sliding surface without any additional
prespecified error bounds. Furthermore, slidingmode control by
design has the problem of implementation as the exact sliding on
the desired surface only appears in theory; for any practical im-
plementation somemeasure must be taken to prevent chattering.
The design of the bang-bang funnel controller is such that it can
readily be implemented and chattering does not occur.
The bang-bang funnel controller also shares many features

with event-based controllers [1], in particular, a control action
(change from to or vice versa) only takes
place when necessary (i.e. when the error signal approaches the
corresponding funnel boundary). However, we are not aware of
any event based control scheme capable of achieving reference
tracking with prespecified error accuracy for an unknown non-
linear system with arbitrary relative degree.
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Altogether the bang-bang funnel controller has the following
advantages and motivations:
i) In a digitally connected systems framework the commu-
nication from the controller to the system only needs one
bit and this bit is only sent when necessary.

ii) The control action might in reality only consist of “On”
and “Off” and our controller does take this into ac-
count explicitly (no pulse-width modulation or similar
techniques are needed); see also the recent work on
discrete-valued control, e.g., [19].

iii) Using the maximal possible input values yields faster
“convergence” compared to using the continuous funnel
controller with input constraints (in general, a time op-
timal control is often bang-bang).

iv) Due to time delays and hysteresis effects the implemen-
tation of simple sliding mode controller [18] usually re-
sults in a bang-bang controller; however, the resulting
switching signal is often only given implicitly and is not
designed explicitly. In contrast to sliding mode control,
we start our theoretical analysis directly from a switching
rule with locally finite switchings.

v) In some areas (e.g. power electronics) it is common to
use so-called averaging methods (for a recent overview
see e.g. [17]), i.e. a binary input signal is switched very
fast with a certain ratio of the two values. For the analysis
it is then assumed that the input is actually the continuous
value determined by this ratio; our approach allows for a
direct analysis of the systems behavior for a binary input
signal.

vi) Almost all controllers are now implemented digitally; a
bang-bang approach (or a controller with only a finite
set of possible values) is therefore a much more natural
approach.

vii) In contrast to continuous controllers the implementation
of a bang-bang controller is much simpler in general be-
cause it suffices to implement a simple finite automaton,
whereas a classical continuous controller might need to
carry out complexmathematics like (numerically) solving
differential equations in real time.

Clearly, using a bang-bang control is not always desirable,
e.g., when fast changes of the input values are not physically
possible. Furthermore, of course “there is no such thing as a
free lunch,” i.e., rather strong control objectives come with a
price: The input values might be very large, the time difference
between consecutive switches of the input values might be very
small and the proposed controller will need the measurement of
the first derivatives of the error, which might be in reality
not available for measuring. However, we see our main con-
tribution in providing a proof-of-concept for a new controller
design; an application to real world problems might need fur-
ther adjustments which are not in the main scope of this paper.
Therefore, a large part of this paper is devoted to the precise
definition of the controller and detailed proofs of the theoretical
results which also give an intuition why the controller works.
Our main results are not only “existence” results because we
also formulate “feasibility assumptions” which can be checked
provided that at least some bounds on the systems dynamics are
known and which, if satisfied, guarantee that our proposed con-
troller works as desired.
The paper is organized as follows. We start by presenting

a formal problem description in Section II and detail which

structural assumption we make. The switching logic is defined
afterwards in Section III. After the formal definition of the
switching logic we already formulate in Section III-C an impor-
tant consequence of our forthcoming main results, namely that
under rather mild assumptions the bang-bang funnel controller
works provided the input values and are
large enough. Our main result, Theorem 4.1, is formulated in
Section IV after the feasibility assumptions are formulated and
briefly explained. With the help of Theorem 4.2 we show that
the feasibility assumptions are not contradictory and present a
constructive procedure how to construct feasible funnels and
controller parameters. Since the closed loop is a hybrid system,
some effort must be taken to show that the system in closed
loop with the bang-bang funnel controller is well posed, i.e.,
the existence of local solutions must be shown. This is done
with the help of Theorem 5.3 in Section V. The proof of the
main result is carried out in Section VI and uses an inductive
argument to prove the result for arbitrary relative degree. In
Section VII we briefly discuss the possibilities of time delays
in the feedback loop and show that the bang-bang funnel
controller can tolerate them; the allowed size of the time delays
can again be checked with the help of feasibility assumptions.
Finally, we carry out simulation for a relative degree four
example in the Section VIII.
Throughout this paper we use the following notation. The

(Euclidian) norm of is denoted with . For defining
predicates (i.e., functions with values in the set
we use the notation [statement] ; the nega-
tion of a boolean variable is denoted by . For a function

and an interval we denote with
the truncation of to the interval given by
for all and otherwise. With ,
or short , we denote the set of all -times continuously dif-
ferentiable functions ; denotes piecewise
-times continuously differentiable functions (not necessarily
continuous). For a piecewise-continuous function and
let . With we de-
note the set of all measurable and essentially bounded func-
tions with the supremum norm . The set

denotes the set of all functions
with absolutely continuous -th derivative and right-con-
tinuous -th derivative and, additionally,
for all . Throughout this work denotes the
state dimension of the system and with is the
relative degree as defined in Section II-B.

II. PROBLEM FORMULATION AND STRUCTURAL ASSUMPTIONS

A. Overall System Structure and Control Objectives

We consider SISO systems described by a nonlinear differen-
tial equation

(1)

with known relative degree and positive “high frequency”
gain (see the following Section II-B for details). System (1) is
uncertain in the sense that we don’t have exact knowledge of
, and (for example the system description might con-

tain numerous unknown parameters). Our aim is to develop a
bang-bang funnel controller by a feedback mechanism as shown
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Fig. 1. Overall setup for the bang-bang funnel controller. (a) Overall system
structure. (b) The funnel : A time-varying error bound.

in Fig. 1(a) which ensures approximate tracking of a reference
signal .
In fact, we want to ensure that the error

(2)

meets prespecified (time-varying) error bounds which are given
by the funnel

(3)

where are the prespecified (time-varying)
error bounds, see also Fig. 1(b). Note that by saying “the error
evolves within the funnel” we formally mean for
all .
We use the index 0 for the funnel because we will also con-

sider funnels , for the -th derivative of .
In particular, the switching logic is allowed to take derivatives
of the error signal , but otherwise it has, apart from the relative
degree, no knowledge of the system (1). However, to meet the
desired error bounds the system must fulfill certain feasibility
assumptions, which can only be checked when certain bounds
on the system dynamics are known.
The most important property of the system class considered

here is an instantaneous input-output property that can be para-
phrased as follows for any :

(4)

and follows from the structural assumption below. Apart
from some boundedness conditions, nothing more is needed to

prove our main result. In fact, it is actually possible to even
further broaden the system class considered, e.g., by including
functional differential equation like hysteresis effects and time
delays as was done in [7]. However, we do not use this most
general setup in order to avoid technicalities and also to focus
more on the switching logic.

B. Structural Assumptions on the System Class and the
Reference Signal

Throughout this work we assume that system (1) has known
relative degree with positive gain, i.e. we make the fol-
lowing structural assumption.

There exists a coordinate transformation
(a diffeomorphism) ,

, which transforms (1) to
the equivalent system in Byrnes–Isidori normal form
[10]

(5)

where are locally Lipschitz continuous, is
positive and is a possibly known restriction for the
initial values of the -system ( means that
there is no knowledge). Furthermore, we assume that
the -system does not have a finite escape time for
any bounded “input” vector , i.e.

(6)

Since we will consider non-continuous inputs we have to
allow for solutions in the sense of Carathéodory, i.e. and
are absolutely continuous and (5) holds almost everywhere.

The original system (1) inherits this solution concept. For the
implementation of the bang-bang funnel controller the knowl-
edge of the Byrnes-Isidori normal form (and the corresponding
coordinate transformation) is not needed, however in order to
check the feasibility assumptions the knowledge of (at least cer-
tain bounds on) , and is needed.
We call the -system in (5) bounded input bounded state

(BIBS) with respect to the “inputs” if

(7)

Finally, we assume that the controller is able to obtain the
derivatives of the error signal ,
in particular we have to make the following assumption on the
reference signal:

and is absolutely
continuous with right-continuous derivative.
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Fig. 2. Illustration of the structure of the switching logic (9). The meaning of
the meta blocks will be discussed in Section VI, in particular,
is given by (16).

III. SWITCHING LOGIC

A. Overview and the Structure of the Switching Logic

As indicated in Fig. 1(a) the bang-bang control law is simply
given by

if ,
if

(8)

where is the output of the switching
logic which maps the error signal to the switching signal .
The switching logic is defined with the help of

blocks as follows, see also Fig. 2:

(9)

Before formally defining the blocks we want to highlight
some important properties of the switching logic. Each block
tries to ensure that the -th derivative of the error remains
within the funnel

where are the desired funnel boundaries satis-
fying the forthcoming feasibility assumptions ; in
addition ensures that is driven to a certain region spec-
ified by the input signals and

. The meaning of the internal signals and ,
is as follows (see also Fig. 6):

Here are design parameters of the block
representing a desired minimal or maximal value for (with
the aim to increase or decrease the previous derivative
by a certain rate). Finally, each block also has the design
parameters , the safety distances, which trigger an
event (hence a switch in the internal or external signals), when
the error gets close to the funnel boundaries. The interpretation
of the output of the switching logic is similar as above: If

we want to make negative enough so that
decreases sufficiently fast and if we want to make

positive enough to ensure a sufficiently increasing .
Due to the normal form (5) this can directly be achieved by
choosing or accordingly with sufficiently
large and .

Fig. 3. Illustration of the basic switching predicate and the corresponding
DLS (11) for some given “input signal” (thick solid line). The dots indicate
which switch trigger is active. Note that it is not assumed that is always
contained within the lower switching trigger and the upper switch trigger

and it is possible that is identical with one of the switching triggers for
some time.

B. The Definition of the Blocks

The main “ingredient” of each block is the following el-
ementary predicate function:

(10)

for and . The corresponding
dynamic logic system (DLS) on some interval is

(11)

where is the upper switch trigger and is the lower
switch trigger and is the “input” which drives the system.
A typical behavior of the DLS (11) is shown in Fig. 3.
Invoking the simple switching predicate the formal defini-

tions of the DLSs represented by the blocks
are as follows:

if ,
if ,

if ,

if ,

if ,
if ,
if ,
if ,

Note that will not be continuous in general, therefore is
not well defined. However, it will turn out that the switching
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Fig. 4. Schematic illustration of the closed-loop behavior of the bang-bang funnel controller for relative degree three case and constant funnel boundaries ; the
desired increase rate and are drawn with , the desired regions for in are highlighted as well as the safety region (given by

and drawn with ; is so small that it is not shown).

logic ensures that is piecewise continuously differentiable
and is then well defined.
Explicit definitions of the switching logic for the cases ,
and are given in the Appendix. For the case a

generic closed-loop behavior of the switching logic is illustrated
in Fig. 4 where, for simplicity, we have considered only constant
funnel boundaries. The meaning of the internal variables and
mentioned above is clearly visible: means we

want to decrease the error , i.e. we want to drive the derivative
into the desired region .When we hit the lower safety
distance for we switch to , which means now
we want to increase . Due to the higher relative degree we can
not directly influence the error via the control input, hence we
see a certain amount of overshoot.

C. A Simple Consequence of Our Forthcoming Main Results

If all funnel boundaries and the input values are already
fixed (e.g. due to physical constraints) then the feasibility as-
sumptions in the next section can be checked and our forth-
coming main result Theorem 4.1 shows then that feasibility
is sufficient for the applicability of the bang-bang funnel con-
troller. If one however has the freedom to choose the funnel
boundaries for the derivatives of the error and also the input
values then combining our main result with the forthcoming
Theorem 4.2 (stating that feasibility can be achieved by appro-
priately choosing the funnel boundaries) yields that the bang-
bang funnel controller always works as long as the input values

are large enough:
Corollary 3.1 (Bang-Bang Funnel Controller Works): Con-

sider the nonlinear system (1) satisfying with relative de-
gree , bounded set and the -system being BIBS,
a reference signal satisfying and, additionally, being
bounded with bounded derivatives, and a funnel for the error
signal given by satisfying

;

, in particular

, are (essentially) bounded;

.

Then there exist funnel boundaries , ,
safety distances , , and increase/decrease
rates , such that the bang-bang funnel
controller as given by (8), (9) and Section III-B works for large
enough input values and , i.e.
i) the closed loop as shown Fig. 1(a) has a global solution

,
ii) the error and its derivatives evolve within the funnels,
i.e. for all and

,
iii) no Zeno behavior occurs, i.e. the switching signal only

switches finitely often on every finite time interval.
Remark 3.2 (Positivity of in (5)): Assuming the existence of

a global relative degree for system (1) already implies that in
(5) cannot attain the value zero, hence it must be sign-definite; it
is therefore either globally positive or globally negative. All the
results here hold of course true also when is negative (just in-
terchange the roles of and ), but the sign must be known
a priori in order that the presented bang-bang funnel controller
works. However, if the sign of is not known one could add a
second larger safety distance (as trigger for the switching logic)
and the roles of and are interchangedwhenever the error
hits the smaller safety distance. This second safety distancemust
be designed such that if the sign of is guessed right at the be-
ginning, the smaller safety distance will never be hit and, if the
sign is guessed wrongly, then the smaller safety distance is such
that the error remains within the funnel when the right and

values are used. The corresponding adjustments of the fea-
sibility assumptions are straightforward and therefore omitted.

IV. FEASIBILITY ASSUMPTIONS AND MAIN RESULT

A. Conditions on the Funnel Boundaries

We have to assume that the funnel boundaries initially are
large enough to contain the initial error with a “safe” distance,
i.e.

,
.
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The funnel boundaries have to be at least as smooth as the corre-
sponding error signal evolving within it, hence we make the fol-
lowing smoothness and boundedness assumptions on the funnel
boundaries:

, ,
in particular, and its derivatives are bounded.

Since the control objective is to keep the error signal within
the corresponding funnel, the error must be able to decrease or
increase at least as fast as the funnel boundary, hence we have
to choose the funnel large enough such that it contains the
derivatives of the funnel boundaries of . An analo-
gous condition must also hold for the funnels and the deriva-
tives of their boundaries. Furthermore, the desired increase/de-
crease rate for the error signal must be consistent
with the funnel . Additionally, the safety regions are not al-
lowed to overlap. Altogether, we obtain the following feasibility
assumption:

and
:

B. Settling Times

For each block we would like to ensure that the signal
is in the desired region (specified by and ) after a specific
time. Therefore, we have to assume the existence of numbers

, for and ,
such that

and
,

,

as well as

,

, for
and

,

, for .

It will turn out that the feasibility assumption yields
(provided the other feasibility assumptions are satisfied) that
the numbers are upper bounds of the settling times in the
sense that within a time-span of the switching logic of block

ensures that has reached the desired region given by
and . The intuition of is then as follows: Assume

we already know that the block ensures that
is at least (if is true) or at most (if is false)
after the corresponding settling time or . Then it
takes an additional time of at most or

for the error signal to move from
the upper funnel boundary to the lower funnel boundary

or vice versa and definitely reaching the desired region on its
way.
In general, larger values for the settling times yield larger

overshoots. Hence the safety distances must be large enough
to prevent the signals leaving its corresponding funnel, re-
sulting in the above feasibility assumption .
Note that for the additional parameters and

appear in and . These parameters reflect the
maximal rate for the increase and decrease of the error signal

, which can be directly influenced by the input (due to the
relative degree assumption, see the next section). Furthermore,
note that we can allow and , because
the settling times of the blocks and don’t play any role
in and in the forthcoming analysis.
C. Feasibility of and

Up to now the feasibility assumptions did not depend on the
system (apart from the structural assumptions in Section II-B)
or on the actual input values and . The final feasibility
assumption basically says that should be large enough and
that should be small enough in order to achieve the con-
trol objectives. What “large or small enough” means depends,
firstly, on the necessary increase/decrease rates coming from
the previous feasibility assumption (in particular on the shapes
of the funnels) together with the following feasibility assump-
tion, which ensures that the increase/decrease rate for
suffices to keep within the last funnel and the spec-
ified regions.

and

for
all .

The necessary size for the input depends, secondly, on how fast
changes and, thirdly, of course on the system itself. For

example, the closer the positive function in (5) gets to zero
the bigger the amplitude of the input must be. Altogether this
yields the final feasibility assumption.

and
for

all , , ,
where

(12)

and

(13)

where is the set of possible initial values
for the -system in (5).

Note that the structural assumption (6) ensures that is
well defined and bounded when is bounded, however the
latter is not assumed here and neither is it assumed that is
uniformly bounded in .
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D. Main Result

We are now in the position to formulate our main result of
this work, which states that the above feasibility assumptions
are sufficient for the applicability of the proposed bang-bang
funnel controller.
Theorem 4.1 (The Bang-Bang Funnel Controller Works):

Consider the non-linear system (1) satisfying with known
relative degree , a reference signal satisfying ,
the funnels given as in (3) via the funnel boundaries
and , satisfying and
the bang-bang funnel controller given by the switching logic
defined in Section III driven by the error . If the
initial values2 are “safely” contained
within the corresponding funnels, i.e. holds, and the input
values are large enough in the sense of and

then the closed loop as in Fig. 2 has a global solution
such that has only

locally finitely many switches and the error and its derivatives
evolve within the funnels, i.e. for all

and all .
The proof is carried out in Section VI which itself is based on

the well posedness result in Section V.

E. Satisfiability of the Feasibility Assumptions

On a first glance the feasibility assumptions look rather tech-
nical and it is also not immediately clear whether they are satis-
fiable at all. The next result resolves this issue.
Theorem 4.2 (Feasibility): Consider a funnel given by

and satisfying (see Corollary 3.1). Then
there exist funnels given by , , and pa-
rameters , , ,
such that the feasibility assumptions hold. If, in
addition, the internal dynamics given by the -system in (5) are
BIBS with respect to the inputs , the set of ini-
tial values is bounded and is bounded for
then is satisfied for large enough and .

Proof: For the proof of the first claim we split and
each into two sufficient conditions:

and for .

and
for

.

,

, ,
and ,

, ,

,

, ,

and ,

, .

Assumptions and ensure existence of
such that Assumptions and hold for . Further-

2Due to the structural assumption the initial values
are given by and do not depend on

.

more, choose arbitrary and let, for notational
convenience, .
Inductively, assume now that, for some

we have already chosen , , and for
such that , and hold up to the index , holds
up to index and holds up to index .
We can now choose and small enough

such that and hold for the index . Afterwards we
can choose large enough such that and hold for
the index . Choose any and , then we can
choose a wide enough funnel given by sufficiently smooth
(according to ) boundaries and such that
and for the index are satisfied. Altogether we were
able to find , , and for such
that , and hold up to the index , holds
up to index and holds up to index .
Finally we can choose and sufficiently large such

that , and holds.
In order to show that is satisfied for large enough

and , we first observe that the boundedness assumption on
together with boundedness of the funnel boundaries ensures

that is uniformly bounded in . Now the BIBS-assumption
together with boundedness of implies boundedness of
uniformly in . Altogether, there exists compact sets
and such that and for all .
Continuity of and imply that is bounded in magnitude on
the compact set , say by , and is bounded away
from zero on , say by . Hence any and with

will make true.
Remark 4.3 (Competing Control Objectives): Although The-

orem 4.2 shows that the error funnel can nearly be arbitrary,
it should be clear that more strict control objectives will lead
to very large values for the input and also fast switching. Fur-
thermore, following the proof of Theorem 4.2 might yield very
conservative values for . An overestimation of the sufficient
input values can be avoided by allowing time-varying safety
distances . The problem of a constant safety distance is
most apparent when a fast transient behavior is desired which
is expressed with large values of together with high de-
mands on the tracking accuracy, expressed by a small value of

for . The latter enforces the safety distance
to be small as well. However, a small safety distance will

give the error not much time to “turn the corner” which is a par-
ticular problem when the funnel boundary shrinks rapidly (i.e.
fast transient behavior is desired). Often the funnel boundaries
decrease monotonically and the highest rate of change of the
funnel boundaries is at the beginning where also the size of the
funnel boundary is large. Hence in this situation a much larger
safety distance would be possible. In our theoretical results we
haven’t formalized the possibility for a time-varying safety dis-
tance, because the proofs are already technical enough. How-
ever, an illustration of using a time-varying safety distance can
be found in the case study [14].

V. WELL-POSEDNESS OF THE CLOSED LOOP

The closed loop as shown in Fig. 1(a) is a hybrid system, i.e.
it consists of continuous dynamics governed by (1) and dis-
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crete dynamics given by the switching logic (9). Hence it is
not clear in general whether for any initial value

with and
any reference signal there exists at least a local solution

for some . The
following lemma shows that right-continuity of the switching
signal in the open loop alone suffices to show existence of a
local maximally extended solution of the closed loop.
Lemma 5.1 (Right-Continuity & Well-Posedness, cf. [13]):

Consider system (1) satisfying with the controller (8) gov-
erned by some switching signal which is generated by some
causal3 switching logic . Let

be a function space which contains all possible
outputs of (1) for arbitrary locally integrable inputs (we do not
exclude finite escape time at this point). If for every de-
fined on the resulting switching signal is right-contin-
uous then the closed loop consisting of (1), (8) and is well
posed, i.e. for every initial value there exists a maxi-
mally extended solution ,

.
Proof: The proof is straight-forward and identical to the

one in [13, Lem. A.1] and therefore omitted.
Note that Lemma 5.1 does not exclude Zeno behavior, i.e. it is

not excluded yet that the switching times accumulate and the so-
lution stops at the accumulation point. However, it excludes the
appearance of so-called Filippov solutions [2] or sliding modes,
because for each initial value there is a (local) classical solution
starting at this initial value.
The following lemma shows that the DLS (11) induced by the

elementary switching predicate given by (10) produces right-
continuous outputs provided the switching triggers are contin-
uous and do not intersect. This is an essential property which
will be used together with Lemma 5.1 to show the well-posed-
ness of the closed loop from Fig. 1(a).
Lemma 5.2 (Property of the DLS Induced by ): Consider

the DLS (11) on some interval with some
. Assume are continuous

and, additionally

(14)

Then (11) has a unique solution
which is right-continuous, i.e. for all there exists

such that is constant on . Furthermore, the jumps
of cannot accumulate within any compact subset of , in
particular, is for all well
defined.

Proof: By construction, for any fixed ,
if, and only if,

and the upper trigger is hit, i.e., , or and
the lower trigger is hit, i.e., . By continuity of
and by (14) it follows that implies that

for all small enough .
In particular, there exists such that any

with either or
solves the DLS (11) on . Choose the maximal
such that the constant solves the DSL (11).

3In general, causality does not allow to depend on the derivatives ,
however because of the normal form (5) the values do not
depend on . Hence in the present situation, causality does not exclude that

depends on .

This implies that at the time a trigger was hit, i.e.
and we now can continue the solution by a

constant value again. Hence we have shown that we can extend
the solution onto a maximal interval . It remains to show
that . Seeking a contradiction, assume which
implies . Let . By continuity of

there exists such that

This implies that either for all or
on , hence there can be at most one jump

of on . Therefore is well defined and yields a
unique which can be, as above, extended. This contradicts
maximality of . In particular, this shows that the jumps of
cannot accumulate in any compact subset of , whence,

is well defined for all .
In order to use Lemma 5.1, observe that the normal form (5)

of system (1) implies that for any locally integrable input func-
tion the output is times continuously differentiable,
hence the output space is contained in the set of all such

with . We are now able to formulate
sufficient conditions which ensure well-posedness of the closed
loop.
Theorem 5.3 (Well-Posedness of the Closed Loop): Consider

the non-linear system (1) satisfying with known relative
degree , a reference signal satisfying , the funnels
given as in (3) via the funnel boundaries and ,

satisfying and the bang-bang funnel
controller given as in Section III driven by the error .
Then the closed loop as in Fig. 1(a) has for all initial values

, a unique maximally extended
solution , .
Furthermore, has in each compact interval within only
finitely many jumps.

Proof: Due to Lemma 5.1 it suffices to show that the
switching logic induces a causal operator
such that for all possible outputs the resulting switching
signal is right-continuous. First note that the open-loop
output of (1) for any locally integrable input fulfills

. Hence,
invoking , also , in particular, is continuous for

.
We will carry out an inductive argument to show that for all

the following claim holds: There exists a
sequence with and for such
that is constant, with

and fulfills either

if or

otherwise.
To show this claim for , consider a fixed error signal

. Lemma 5.2 together with and ,
applied to , yields that the DLS for in the -block has
a unique solution for which there
exists a strictly increasing sequence with and
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as such that is constant. Therefore
, in particular

where is either if on
the corresponding interval or otherwise.
Assume that the above claim holds for the index . To show

the claim for consider the block on the extended inter-
vals where and with input instead of .
Then Lemma 5.2 applied to each extended interval
together with (applied to index ) implies that the DLS
of Block yields a unique right-continuous solution on

for all initial values . Furthermore,
has only finitely many jumps on the compact interval
and is well defined. Choosing inductively as ini-
tial condition we see that

is the unique solution of the DLS in block with inputs
and . Since has finitely many jumps in each compact
interval, there exists a sequence with as
such that is constant. Consequently, the second

output of the block can be written as

where fulfills either

This proves the claim.
Applying the above arguments a last time to the

block results in a right-continuous unique solution
of the DLS in which has in

each compact interval within only finitely many jumps.

VI. PROOF OF THE MAIN RESULT

In order to prove Theorem 4.1 we rewrite the definition of the
switching logic in a recursive way (see also Fig. 2)

(15)

where, for

(16)

Fig. 5. Intermediate closed loop composed of system and switching logic
utilized to prove the main result.

and, finally

We will inductively consider the closed loop as shown in
Fig. 5 and prove certain properties thereof. The basic idea is to
reduce inductively the relative degree by taking the derivative
of the output signal and using the corresponding switching logic
with some additional input signals.
The following definition captures a desired property, “feasi-

bility”, of the intermediate switching logic in the closed loop
as in Fig. 5. Afterwards we will show two things: 1) the feasi-
bility assumptions from Section IV in combination
with the design of the switching logic as in Section III ensure
that each is feasible, and 2) feasibility of , ,
yields that our main result, Theorem 4.1, holds.
Definition 6.1 (Feasibility of ): Consider the closed loop

from Fig. 1(a) satisfying the well-posedness conditions from
Theorem 5.3. For and fixed reference
signal consider the map where
and is the output of system (1) for the given input and some
initial condition . The switching logic (in
the loop with ) together with are called feasible with
settling times if, and only if, the following
properties (i) and (ii) hold.
(i) In the case : (in the loopwith ) together
with is feasible with set-
tling times , where
denotes any solution of the closed loop and .

(ii) For given let , and be the corresponding
solutions of the closed loop composed of , and (8).
Introduce the following (logical) abbreviations for some
interval :
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Fig. 6. Illustration for understanding the feasibility property of the switching logic together with in the intermediate closed loop as shown in Fig. 5.
Condition (17a) ensures that remains within the funnel (provided the initial value was safely contained in ), conditions (17b) and (17c) ensure
that remains within the bluely shaded regions as long as initially was safely contained in the corresponding region; finally, conditions (17d) and (17e)
ensure that within a time span of length at most the signal reaches the bluely shaded region. Additionally, the output of the block is indicated.

Then for any interval for which
and hold the implications (17a)–(17e) are true

(17a)

(17b)

(17c)

(17d)

(17e)

The feasibility property is best understood by having a look at
Fig. 6.
In order to prove that the switching logics are feasible we

need the following technical result.
Lemma 6.2 (Overshoot bound, [14, Cor. 6.2]): Assume

is twice differentiable and let a continuous
be such that for all

. Furthermore, assume there exists such that
for all . Then, for every absolutely continuous

with essentially bounded derivative and
, it holds that for all if

Lemma 6.3 (Feasibility of ): Consider the closed loop from
Fig. 1(a) satisfying . For some initial values
, let the maximally extended solu-

tion, including the internal signals , be defined on
(whose existence is guaranteed by Theorem 5.3). Then the in-
ternal switching logics , together with

and settling times are feasible.
Proof: We prove this lemma by induction, beginning at

.
Step 1: Feasibility of .
Consider an interval for which and

hold.
Step 1a: We show (17a) for .
As shown in the proof of Theorem 5.3, is piecewise-

continuous with

(18)
and fulfills either

if or

otherwise. Invoking
for , the definition of together with (8)

yields the following implications for all :

(19)

Invoking we may assume existence of
such that
for all . Due to and it holds that

and, invoking ,
for all . Now if for some

then
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and yields and, analogously,

implies . Whence, (19)
yields that the time-varying region

is positively invariant for on , i.e. the graph
remains within for if

.
Step 1b: We show (17b) and (17c) for .
It suffices to show (17b) because (17c) can be shown anal-

ogously. Invoking , the definition of the switching logic
of block together with (8) yields immediately for all

the implications

Analogously as in Step 1 and invoking ,
implies

and implies

Hence, the region

is positively invariant for on and (17b) for
is shown.

Step 1c: We show (17d) and (17e) for .
Again it suffices to show (17d) because (17e) can be

shown analogously. Choose a minimal such
that if it ex-
ists and otherwise. Seeking a contradiction as-
sume . In particular, and therefore

. Because of
the switching logic yields on , hence

on and as in Step 1a

(20)

Therefore, we arrive at the following contradiction:

Step 2: We show that feasibility of implies feasibility of
.

Consider an interval for which and hold
and assume is feasible.
Step 2a: We show (17a).
Seeking a contradiction, assume that leaves the funnel
, i.e. there exists a minimal such that

or . It suffices to consider the first
case, the second case follows analogously.
The choice of together with implies ,

hence feasibility of together with yields .
By definition, feasibility of also implies feasibility of

, so we can repeat the previous argument to
conclude that holds. In particular, the implications
(17) for the index are true for any interval with

.
From it follows that there exists such that

and for all
. The switching logic ensures (independently of

and , due to (18) and ) that
and on , i.e. and are true
for the interval .
In the following we show that

for all .
Seeking a contradiction, assume the contrary for some

, then feasibility of together with (17b)
yield that for all . In
particular, on , i.e.
is monotonically increasing on , which contradicts

.
Hence and the

switching logic yields on and
if and

on if . Therefore, (17d) and (17b) for
(if ) or and (if , see also the
arguments from Step 1a) ensure that for all

.
In summary, we have shown that for all

and for all
. Invoking

Lemma 6.2 then implies

whence the sought contradiction .
Step 2b: We show (17b) and (17c).
These properties can be shown analogously as in Step 2a by

replacing the upper bound by if or by re-
placing the lower bound by if .
Step 2c: We show (17d) and (17e).
We only show (17d) because (17e) follows analo-

gously. Choose a minimal such that
if it exists and otherwise. If

then, by ,
and there is nothing to show; therefore, seeking

a contradiction, assume the contrary. Note that then
and hence . If and
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hold then it follows that the switching logic produces
and on . Therefore,

(17b) and (17d) of imply that on
. Hence we arrive at the sought contradiction

where we used
which follows from Step 2a.
We are now able to prove the main result.
Proof of Theorem 4.1: Due to Theorem 5.3 there ex-

ists a maximally extended solution for the error signal
, the switching signal

and the internal signals ,
, . Furthermore,

Lemma 6.3 shows that the intermediate switching logics in
connection with are feasible in the sense of Definition
6.1.
Step 1: We show remains within the corresponding

funnels on .
For this follows analogously as in Step 1a (if
) or Step 2a (if ) in the proof of Lemma 6.3. Induc-
tively, the feasibility of together with implies

for all . In particular, implies that
, , are bounded on .
Step 2: We show .
Seeking a contradiction, assume , then the continuous

signals , , are bounded on the compact
interval . Hence boundedness of as shown in Step 1
yields that , are bounded on . By (6)
in it follows that system (5) or, equivalently, (1) can not
have a finite escape time. Therefore, is only possible if
the switchings of or accumulate as .
Inductively, we will first show that each signal ,

, can not have an accumulation of switching
times as . Seeking a contradiction, assume that the
switching times of form an increasing sequence
with . This implies that and

for either all even or all odd
, without loss of generality consider even in the

following. Note that as .
Due to compactness of the interval and there ex-

ists and such that
for all with . Hence
for all even sufficiently large. Then the Mean Value The-
orem yields the existence of such that

. Since
as this contradicts boundedness of

. Therefore, the switching times of do not accumulate as
. In particular, there exists such that is

constant on . Assuming for the inductive argument that
are constant on for some , anal-

ogous arguments show that also cannot have an accumula-
tion of switching times toward .

Fig. 7. Closed loop with additional time delays for the error signal and
for the switching signal .

Finally, to show that does not have an accumulation of
switching times as , we first have to observe that bounded-
ness of , boundedness of and boundedness of
implies by continuity of and in (5) that also is bounded
on . Hence the same arguments as above also show that
has no accumulation of switching times.
Altogether this shows and, in particular, has locally

finitely many switches.

VII. TIME DELAYS IN THE FEEDBACK LOOP

An analysis of the arguments carried out in Section VI reveals
that the settling times play the role of a “time delay” in the inter-
mediate closed loop with as shown in Fig. 5, i.e. only after the
settling time has passed we know that the corresponding
signal decreases/increases fast enough such that the funnel
cannot be left. This behavior made it necessary to introduce

the safety distances and . Hence this approach already
includes some kind of time delay; we will formalize this intu-
ition in this section.
Due to the normal form induced by the error signal

can be directly influenced by the choice of the input signal as
shown in Step 1a of the proof of Lemma 6.3. Hence the inter-
mediate closed loop driven by has no inherent time delay,
i.e., . For this reason and can be set to zero
and the main result in Theorem 4.1 still holds. However, in prac-
tical applications, there might be a time delay between the mo-
ment the corresponding switch-trigger is hit and the moment the
switching logic reacts on this event. Furthermore, there might
be an additional time delay between the switching logic and the
actual input signal. Reasons for these time delays might be that
the (digital) controller is connected via a communication net-
work with delays, the test whether the switching triggers are hit
might be sampled, or the switching logic itself needs some time
to evaluate the new input signal. Altogether a feedback loop
with (constant) time delays and as shown in Fig. 7 is a
more realistic setup.
With only a slight change of the feasibility assumption

,
, , and

,
, ,
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and the new feasibility assumption

and, for all ,
and

, where

we obtain the same result as in Theorem 4.1 even when consid-
ering time delays.
Theorem 7.1 (Bang-Bang Funnel Controller & Time De-

lays): Consider the nonlinear system (1) and the bang-bang
funnel controller as in Section III with additional time delays
as shown in Fig. 7. Let the feasibility assumptions
with replaced by and the additional feasibility
assumption be satisfied. Then the bang-bang funnel
controller works, i.e. there exists a global solution of the closed
loop such that has locally finitely many switches and the error
and its derivatives evolve within the corresponding funnels, i.e.

for all and all .
Proof: The well-posedness result from Theorem 5.3 re-

mains valid without any modification. The remaining proof is
very much the same as the proof of Theorem 4.1 in Section VI,
the only difference is that in (17d) and (17e) the settling times

are replaced by and in Step 1 of the proof of Lemma
6.3 the following implications have to be taken into account:

Note that, in general, the expressions for cannot
be simplified with the help of because the latter is used to
establish a lower bound for while the former uses an upper
bound for .
Remark 7.2 (Feasibility and Time Delays): A similar state-

ment as in Theorem 4.2 is in general not possible when time
delays are present, i.e. given some funnel for the error fulfilling

and time delays it is not always possible to
construct funnel boundaries such that the feasibility conditions
are fulfilled. However, the feasibility construction according to
the proof of Theorem 4.2 reveals the maximal size of the “set-
tling times” which give an upper bound on the time delay
. In particular, it gives a guideline on the necessary sampling

rate of the switching logic.

VIII. RELATIVE DEGREE FOUR SIMULATION

In this section we carry out simulations for a relative degree
four example, where we take time delays due to the time sam-

Fig. 8. Bang-bang funnel controller applied to the nonlinear relative degree
four system (21): The output follows the reference signal within

the prespecfied bounds , the safety distance is shown as .

pling into account. To circumvent the problem of competing
control objectives as highlighted in Remark 4.3 and also to sim-
plify the feasibility assumptions we consider constant funnel
boundaries; in particular, the transient behavior is not in the
focus of this simulation. As an academic example we consider
the following nonlinear system:

(21)

where are parameters of which only the following
bounds are known: , , .
Note that the system with zero input and for will ex-
hibit finite escape time if . As reference signal we
choose which satisfies . We choose the
funnels, the bang-bang funnel controller parameters and the set-
tling times as follows:

Note that for simplicity we have chosen constant funnels,
i.e. we only illustrate the “steady state” performance and
not the transient behavior. In particular, the internal signals

of the switching logic are all identical
zero. It is not difficult to verify that the feasibility conditions

are fulfilled. Note that these parameters do not
depend on the actual system. The only control parameters
which depend on the system are and . In order to choose
feasible values for and we have to find bounds for the
terms in . First observe that, for all

With it can now easily be verified that

Hence, for all , and ,
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Fig. 9. The error and its derivatives with corresponding switching variables . The funnel boundaries are drawn as (note that the funnel boundaries
are not in the picture), the safety distances are shown as .

Altogether this guarantees that

is feasible (in the sense of ) for the bang-bang funnel con-
troller. Finally for carrying out the simulation we have to check
the maximal step size in view of the time delay introduced by
the sampled time axis. The feasibility assumption yields
the following upper bound for the simulation step size :

The simulation where carried out with the step size
and the parameters of (21) are

The overall tracking accuracy is shown in Fig. 8, which clearly
shows that the error follows the reference signal within the spec-
ified error bounds (given by ).
The behavior of the bang-bang funnel controller in detail

is shown in Fig. 9 where the error and its derivatives
for are plotted. In addition the

internal switching variables , and are shown
as well as the resulting (external) switching signal which
determines directly via

if ,
if

The switching frequency of the input is locally up to
and might seem high. However, it should be noted that a

relative degree four model in reality could arise from modeling
a mechanical system (relative degree two) in combination with a
model of the electro-mechanical actuator (relative degree two).
Since the electrical input is often realized with a digital con-
troller, a frequency of should be no problem.
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IX. CONCLUSION

We have presented a novel control design for tracking of
arbitrary reference signals and for nonlinear systems of which
only the relative degree and the sign of the “high fre-
quency gain” is known. The controller uses only two control
values (hence the name “bang-bang” funnel controller) and
the switching logic is easily implementable. Our proposed
controller assumes knowledge of the first derivatives of
the error and can therefore be seen as a (partial) state feedback
controller. Due the technicalities of the proof it is at the moment
not clear whether adding a simple observer to approximate the
derivatives of the errors still works and this is a question for
future research. However, due to the presence of the safety
distance we believe that the bang-bang funnel controller also
works in the presence of small errors in the measurement of the
derivatives of the error; furthermore, we have already shown
that the bang-bang funnel controller is robust with respect to
time delays. Currently, the bang-bang funnel controller uses a
logic which produces only two control values (corresponding
to “decreasing” or “increasing” certain signals), but a more
detailed logic could improve the performance of the closed
loop. For example, one could add a third region in the funnel
around zero and use a “neutral” value which keeps the error
signals constant; promising experimental results using this idea
are reported in [4]. Another interesting question is how the
ideas of the bang-bang funnel controller can be generalized to
also handle MIMO systems.

APPENDIX
THE SWITCHING LOGIC FOR , AND

For the definition of results (by “merging” the defi-
nitions for and in the right way) in the following DLS:

for we obtain

if ,

if ,

and for

if ,

if ,

if

if ,

if ,

if ,
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