
Quasi-ISS Reduced-Order Observers and Quantized Output Feedback

Hyungbo Shim, Daniel Liberzon, and Jung-Su Kim

Abstract— We formulate and study the problem of designing
nonlinear observers whose error dynamics are input-to-state
stable (ISS) with respect to additive output disturbances as long
as the plant’s input and state remain bounded. We present a
reduced-order observer design which achieves this quasi-ISS
property when there exists a suitable state-independent error
Lyapunov function. We show that our construction applies to
several classes of nonlinear systems previously studied in the
observer design literature. As an application of this robust
observer concept, we prove that quantized output feedback
stabilization is achievable when the system possesses a quasi-
ISS reduced-order observer and a state feedback law that yields
ISS with respect to measurement errors. A worked example is
included.

I. INTRODUCTION

The basic problem addressed in this paper is the design
of nonlinear observers that possess robustness to additive
disturbances affecting the output measurements. In addition
to asking that the state estimation error converge to 0 in the
absence of such disturbances, we want it to still converge
to 0 if a disturbance is present but converges to 0, and to
remain bounded if the disturbance is bounded. For nonlinear
systems, a natural way to formulate this robustness property
is in terms of input-to-state stability (ISS) of the state
estimation error with respect to the output disturbance, within
the framework introduced in [17].

Somewhat surprisingly, it appears that this observer design
problem—which is quite basic and easy to formulate—has
not been systematically studied in the literature. The two
exceptions we are aware of are the papers [16] and [12]. The
former paper proposed a novel observer design technique for
a class of nonlinear systems based on passivation of the error
dynamics. It then showed that, when an additional condition
is satisfied, the observer can be redesigned to provide an
ISS-like property with respect to the output measurement
disturbance, with the ISS gain depending on the size of the
input and the output. The more recent paper [12] considers
the problem of stabilizing a nonlinear system by quantized
output feedback control. In this setting, the output quanti-
zation error plays the role of a measurement disturbance. It
is shown in [12] that if an observer with the ISS property
mentioned above exists and, moreover, a controller providing
ISS with respect to the state estimation error is available, then
quantized output feedback stabilization is achievable.
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In this paper, we join the independent efforts that have led
to the work reported in [16] and [12] and present new results
both on the ISS nonlinear observer design problem itself
and on its quantized output feedback control application.
Unlike in these earlier works, the focus of this paper is
on reduced-order observers. Similarly to [16], we allow the
ISS gain to depend on the supremum norms of the input
and the state up to the current time. This property, which
we call “quasi-ISS,” is precisely defined in Section II. Our
main result is Theorem 1 in Section III. It establishes the
quasi-ISS property of a reduced-order observer design based
on a coordinate transformation under the assumption that
there exists a state-independent error Lyapunov function.
We also include a worked example. In Section IV we
further study this state-independent error Lyapunov function
assumption, with the goal of identifying useful classes of
systems for which it holds and hence a quasi-ISS observer
can be constructed. We show that several system classes
previously studied in the nonlinear observer design literature
(specifically, in [1], [5], [8], [10], [19]) fall into this category.
In Section V we turn our attention to the quantized output
feedback stabilization problem formulated in [12]. We prove
that with a quasi-ISS reduced-order observer in place of a
truly ISS full-order observer as in [12], a stabilization result
analogous to the one from [12] can be obtained (although the
proof is quite different). Finally, Section VI offers a quick
summary and outlook.

II. PRELIMINARIES

We consider a general nonlinear system (“plant”)

ẋ = f(x, u)

y = h(x)
(1)

where x ∈ R
n is the plant state, u ∈ R

m is the control
input, y ∈ R

p is the output, f is locally Lipschitz, and h is
continuously differentiable with locally Lipschitz derivative
(called a C1

L function in this paper). In addition, it is assumed
that f(0, 0) = 0 and h(0) = 0.

A state observer for the plant is a pair consisting of a
dynamical system and a static map

˙̂
ξ = F (ȳ, ξ̂, u)

x̂ = H(ȳ, ξ̂, u)
(2)

where ξ̂ ∈ R
l is the observer state, x̂ ∈ R

n is the estimate
of the plant state x, and ȳ is the measurement of y that may
be corrupted by a disturbance d:

ȳ := y + d. (3)
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For (2) to be an asymptotic observer, it is necessary for the
estimate x̂ to converge to the plant state x (i.e., x̂(t) → x(t)
as t → ∞)1 when d ≡ 0. As explained in the introduction,
we want the observer to have a stronger property charac-
terizing robustness to nonzero d. Before we formalize this
property, we introduce the notation

x̃ := x̂ − x

for the state estimation error. We use the shorthand notation

a ∨ b := max{a, b}.

(Alternatively, the sum could be used instead of the maxi-
mum in the following definition to arrive at an equivalent
property, but the formulation in terms of the maximum is
more convenient for our purposes.)

Definition 1 (Quasi-ISS observer) We say that the sys-
tem (2) is a quasi-ISS observer for the plant (1) if there
exists a function β̃ ∈ KL and, for each K > 0, there exists
a function γ̃K ∈ K∞ such that

|x̃(t)| ≤ β̃(|x̃(0)|, t) ∨ γ̃K(‖d‖[0,t]) (4)

whenever ‖u‖[0,t] ≤ K and ‖x‖[0,t] ≤ K.

The quasi-ISS observer property means that as long as the
plant’s control u and state x remain uniformly bounded, the
dynamics of the state estimation error x̃ are ISS with respect
to the disturbance d. The following example is intended to
motivate why for nonlinear systems it is somewhat natural
to ask for the boundedness of u and x.

Example 1: Consider the plant ẋ = −x + x2u with y =
x. Obviously, ˙̂x = −x̂ + y2u is an asymptotic observer.
However, with the perturbed measurement ȳ = y + d, the
error dynamics become ˙̃x = −x̃ + 2xud + ud2. This system
is ISS from d to x̃ when u(t) and x(t) are bounded, and the
ISS gain function depends on the bounds on u and x.

III. QUASI-ISS (REDUCED-ORDER) OBSERVERS

We assume that there exists a global coordinate change2

z = Φ(x) such that the system (1) is globally diffeomorphic
to a system with linear output of the form

ż =

[

ż1

ż2

]

=

[

f1(z1, z2, u)
f2(z1, z2, u)

]

= f(z, u)

y = z1

(5)

where z1 ∈ R
p and z2 ∈ R

n−p. (By abuse of notation, we
use the same f for (5) as in (1).)

Since Φ and its inverse are C1, there exist class-K func-
tions pK and qK , parameterized by the constant K, such
that |Φ(x̂)−Φ(x)| ≤ pK(|x̂−x|) and |Φ−1(ẑ)−Φ−1(z)| ≤
qK(|ẑ − z|) under the condition that |x| ≤ K (and thus,
|z| = |Φ(x)| ≤ K̄ with some K̄). This means, in particular,

1The convergence property is meaningful only when the trajectory x of
the plant does not have a finite escape time.

2The coordinate transformation is given by Φ(x) = [h(x)T , φ(x)T ]T

with a C1

L function φ : R
n
→ R

n−p that makes Φ(x) a globally one-to-
one map and ∂Φ

∂x
(x) nonsingular for all x.

that once we have a quasi-ISS observer for (5), a quasi-
ISS observer for (1) is obtained under the coordinate change
Φ−1 with x̂ := Φ−1(ẑ). Therefore, we are interested in
the construction of a quasi-ISS observer for (5) in this
section. Such a quasi-ISS observer, of order n − p, will
now be presented. In fact, the construction is based on
the reduced-order observer design of [7], [15] under the
following assumption.

Assumption 1 (Reduced-order error Lyapunov function)
There exist a C1

L function l : R
p → R

n−p, a C1 function
V : R

n−p → R, and class-K∞ functions αi, i = 1, . . . , 4,
such that, for all e, z and u,

(a) α1(|e|) ≤ V (e) ≤ α2(|e|),

∣

∣

∣

∣

∂V

∂e
(e)

∣

∣

∣

∣

≤ α4(|e|),

(b)
∂V

∂e
(e)

(

[f2(z1, e + z2, u) +
∂l

∂z1
(z1)f1(z1, e + z2, u)]

− [f2(z1, z2, u) +
∂l

∂z1
(z1)f1(z1, z2, u)]

)

≤ −α3(|e|),

(6)

and there exists a class-K∞ function α such that

α(s)α4(s) ≤ α3(s). (7)

Theorem 1 Under Assumption 1, the system

˙̂
ξ = f2(ȳ, ξ̂ − l(ȳ), u) +

∂l

∂z1
(ȳ)f1(ȳ, ξ̂ − l(ȳ), u)

ẑ1 = ȳ

ẑ2 = ξ̂ − l(ȳ)

(8)

where ξ̂ ∈ R
n−p is the observer state, and ẑ1 and ẑ2 are

the estimates of z1 and z2, respectively, becomes a quasi-ISS
reduced-order observer for the system (5).

Proof: Define ξ := z2 + l(z1). Then, the plant (5) is
globally converted into

ż1 = f1(z1, ξ − l(z1), u)

ξ̇ = f2(z1, ξ − l(z1), u) +
∂l

∂z1
(z1)f1(z1, ξ − l(z1), u)

=: F (z1, ξ, u)

y = z1

in which F is defined for convenience. With this F , the
reduced-observer (8) is simply written as ˙̂

ξ = F (ȳ, ξ̂, u).
Let e := ξ̂ − ξ. Then, from Assumption 1, we obtain that

V̇ =
∂V

∂e
(e)

{

f2(z1 + d, ξ̂ − l(z1 + d), u)

+
∂l

∂z1
(z1 + d)f1(z1 + d, ξ̂ − l(z1 + d), u)

− f2(z1, ξ − l(z1), u) −
∂l

∂z1
(z1)f1(z1, ξ − l(z1), u)

}
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=
∂V

∂e
(e)

{

f2(z1 + d, ξ̂ − l(z1 + d), u)

+
∂l

∂z1
(z1 + d)f1(z1 + d, ξ̂ − l(z1 + d), u)

− f2(z1 + d, ξ − l(z1 + d), u)

−
∂l

∂z1
(z1 + d)f1(z1 + d, ξ − l(z1 + d), u)

}

+
∂V

∂e
(e) {F (ȳ, ξ, u) − F (y, ξ, u)} .

Since Assumption 1(b) holds for any z1, it follows that

V̇ ≤ −α3(|e|) +
∂V

∂e
(e) {F (ȳ, ξ, u) − F (y, ξ, u)}

≤ −α3(|e|) + α4(|e|)γ(z1, ξ, u)ρ(|d|)

where γ is a continuous positive function and ρ is a class-K
function such that

|F (z1 + d, ξ, u) − F (z1, ξ, u)| ≤ γ(z1, ξ, u)ρ(|d|)

whose existence has been proven in [3], [4]. Therefore, it
follows from (7) that, for an arbitrary ε ∈ (0, 1), we have

|e| ≥ α−1
(

(1 − ε)−1γ(z1, z2 + l(z1), u)ρ(|d|)
)

=⇒ V̇ ≤ −εα3(|e|). (9)

Now, under the condition that |z(τ)| ≤ K and |u(τ)| ≤ K
for 0 ≤ τ ≤ t, it can be shown by standard arguments (see,
e.g., [17]) that there exist a class-KL function β̄ and a class-
K∞ function γ̄K parameterized by K such that

|e(t)| ≤ β̄(|e(0)|, t) ∨ γ̄K(‖d‖[0,t]). (10)

Recalling (8), we have that

z̃ =

[

z̃1

z̃2

]

:=

[

ẑ1 − z1

ẑ2 − z2

]

=

[

d
e − (l(z1 + d) − l(z1))

]

,

which leads to

|z̃| ≤ |d| + |e| + θK(|d|) and |e| ≤ |z̃2| + θK(|d|) (11)

where θK is a class-K function, parameterized by K, such
that |l(z1+d)−l(z1)| ≤ θK(|d|) when |z1| ≤ K. Combining
(10) and (11), it follows that

|z̃(t)| ≤ β̄(|e(0)|, t) + γ̄K(‖d‖[0,t]) + θK(|d(t)|) + |d(t)|

≤ β̄(|z̃2(0)| + θK(|d(0)|), t) + χK(‖d‖[0,t]) (12)
≤ 2β̄(|z̃2(0)| + θK(|d(0)|), t) ∨ 2χK(‖d‖[0,t])

where χK(s) := γ̄K(s) + θK(s) + s. By the identity α(a +
b) ≤ α(2a) ∨ α(2b) for class-K functions, we have that

β̄(|z̃2(0)|+θK(|d(0)|), t) ≤ β̄(2|z̃2(0)|, t)∨ β̄(2θK(|d(0)|), t)

≤ β̄(2|z̃2(0)|, t) ∨ β̄(2θK(‖d‖[0,t]), 0)

=: β̌(|z̃2(0)|, t) ∨ θ̄K(‖d‖[0,t]). (13)

With (12) and (13), we finally obtain that

|z̃(t)| ≤ 2β̌(|z̃(0)|, t) ∨ 2θ̄K(‖d‖[0,t]) ∨ 2χK(‖d‖[0,t])

=: β̃(|z̃(0)|, t) ∨ γ̃K(‖d‖[0,t]),

which proves that the quasi-ISS observer property holds.

Example 2: Consider the system

ẋ1 = x1 + 2x2 + 4x3
2 + 2u

ẋ2 = x3
2 + u

y = x1

(14)

which is taken from [2]. This system is already in the
form (5) (with z replaced by x), and Assumption 1 is
satisfied with V (e) = e2/2, l(x1) = −(1/4)x1, and α3(s) =
(1/2)s2. Indeed, the left-hand side of (6) becomes

e
(

[(e + x2)
3 + u−

1

4
(x1 + 2(e + x2) + 4(e + x2)

3 + 2u)]

− [x3
2 + u −

1

4
(x1 + 2x2 + 4x3

2 + 2u)]
)

= −
1

2
e2

which verifies the claim. Therefore, the quasi-ISS reduced-
order observer is given by

˙̂
ξ = −

1

4
ȳ −

1

2
(ξ̂ +

1

4
ȳ) +

1

2
u

x̂1 = ȳ

x̂2 = ξ̂ +
1

4
ȳ.

(15)

(The dynamics of this observer are actually linear.)

IV. CLASSES OF SYSTEMS THAT ADMIT QUASI-ISS
REDUCED-ORDER OBSERVERS

In Section III we have constructed a quasi-ISS reduced-
order observer under Assumption 1. However, Assumption 1
itself is not a constructive one because finding such functions
V and l would be rather difficult in general. In addition,
the class of plants (5) that admit Assumption 1 is not
very clear.3 In this section, we make use of the existing
nonlinear observer design methods in the literature in order
to characterize the classes of systems satisfying Assumption
1 and to obtain the required V and l. This job is done by
way of the following lemma.

Lemma 1 Suppose that the plant (5) has C1 vector fields,
and that a C1 full-order observer in the form

˙̂z = g(y, ẑ, u), ẑ ∈ R
n, (16)

is designed. If the error convergence is verified with a
quadratic Lyapunov function

W (z̃) =
1

2
z̃T P z̃, z̃ := ẑ − z, P = P T > 0 (17)

and the derivative of W is upper bounded by a quadratic
term, i.e.,

Ẇ = z̃T P [g(z1, z̃ + z, u) − f(z, u)] ≤ −k1|z̃|
2, ∀ z̃, z, u

(18)
with k1 > 0, then Assumption 1 follows.

Proof: We note that, by the fact that ẑ(t) = z(t) if
ẑ(0) = z(0), we should have that g(y, ẑ, u) = f(ẑ, u) =
f(z1, ẑ2, u) if z̃1 = ẑ1 − y = 0 (see [13], [16]).

3The work by Praly [13] has studied a necessary condition and a sufficient
condition for the existence of such a state-independent error Lyapunov
function V (e).
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Now, let us write

W (z̃) =
1

2
[z̃T

1 , z̃T
2 ]

[

P1 PT
2

P2 P3

] [

z̃1

z̃2

]

.

Then, from the assumption (18),

Ẇ = [z̃T
1 , z̃T

2 ]

[

P1 PT
2

P2 P3

] [

g1(y, ẑ, u) − f1(z, u)
g2(y, ẑ, u) − f2(z, u)

]

≤ −k1|z̃|
2.

We rewrite the above when z̃1 = 0:

Ẇz̃1=0 = z̃T
2 P2(f1(z1, ẑ2, u) − f1(z1, z2, u))

+ z̃T
2 P3(f2(z1, ẑ2, u) − f2(z1, z2, u))

= z̃T
2 P3[(f2(z1, ẑ2, u) − f2(z1, z2, u))

+ P−1
3 P2(f1(z1, ẑ2, u) − f1(z1, z2, u))]

≤ −k1|z̃2|
2.

(19)

This inequality implies Assumption 1 with e = z̃2, V (e) =
1
2eT P3e, and l(z1) = P−1

3 P2z1, which completes the
proof.

Now we catalog some classes of systems for which the
functions V and l of Assumption 1 are easily obtained.

1) Systems (1) that can be transformed into the form of

ẋ = Ax + f(y, u), y = Cx

with (A,C) detectable. For this class, the observer
design by Linearized Error Dynamics [10] can be
applied to obtain the full-order observer ˙̂x = Ax̂ +
f(y, u) + L(Cx̂ − y) with (A + LC) Hurwitz. This
design also yields a quadratic error Lyapunov function
W (e) = 1

2eT Pe with Ẇ ≤ −k1|e|
2, k1 > 0.

Therefore, Lemma 1 guarantees Assumption 1.
2) Systems (1) that can be transformed into the form

y = x1

ẋ1 = x2 + f1(x1, u)

ẋ2 = x3 + f2(x1, x2, u)

...
ẋn−1 = xn + fn−1(x1, . . . , xn−1, u)

ẋn = fn(x, u)

(20)

where fi’s are globally Lipschitz uniformly with re-
spect to x. These systems admit the High-Gain Ob-
server design, studied in [5] and [8]. It has been shown
in [5] that the high-gain (full-order) observer yields a
quadratic error Lyapunov function for the assumption
of Lemma 1, hence Assumption 1 holds.

3) Systems (1) that can be transformed into the form

ẋ = Ax + Gγ(Hx) + f(y, u), y = Cx

where (A,C) is detectable, γ(·) is decentralized (in
the sense defined in [1]), and γi(·) is nondecreasing.
For this class, the Circle Criterion Observer design has
been proposed in [1] under the condition that there
exist Γ, L and K such that the system ė = (A +
LC)e − Gv, z = Γ(H + KC)e has a strictly positive

real transfer function. Then, the full-order observer is
given by

˙̂x = Ax̂+L(Cx̂−y)+Gγ(Hx̂+K(Cx̂−y))+f(y, u).

The proof in [1] uses the Circle Criterion, and since the
Circle Criterion yields a quadratic Lyapunov function
with a quadratic upper bound on its derivative, the
assumption of Lemma 1 also holds for this case, from
which Assumption 1 follows.

4) A motivation for the format of Assumption 1 dates
back to [19], in which the following condition is given
for nonlinear observer design: For the plant (5), there
exists a positive definite symmetric matrix P ∈ R

n×n

such that

x̃T P
∂f

∂x
(x, u)x̃ ≤ −k1|x̃|

2,

∀x ∈ R
n,∀u ∈ R

m,∀ x̃ ∈ {x̃ ∈ R
n : x̃1 = 0}

with k1 > 0, where x̃T = [x̃T
1 , x̃T

2 ] with x̃1 ∈ R
p.

Using the mean-value theorem, it can be shown that
the above condition implies Assumption 1 similarly to
the proof of Lemma 1.

V. QUANTIZED OUTPUT FEEDBACK

Let the plant be represented again in the form (5) after
a suitable coordinate transformation. By an output quantizer
we mean a piecewise constant function q : R

p → Q, where
Q is a finite subset of R

p. We introduce the quantization
error

d := q(y) − y. (21)

As in [11], [12], we assume that there exist positive numbers
M and ∆ (called the quantizer’s range and error bound) such
that the following condition holds:

|y| ≤ M =⇒ |d| ≤ ∆. (22)

Suppose that Assumption 1 holds and a quasi-ISS ob-
server (8) has been designed as in Theorem 1. With d
given by (21), this observer acts on the quantized output
measurements

ȳ = q(y).

Since the quantizer saturates outside a bounded region in
the output space (the ball of radius M around the origin),
we must work on this bounded region and the quasi-ISS
formulation will turn out to be adequate.

Next, suppose that a “nominal” controller (i.e., the con-
troller that we would apply if the state z were exactly known)
is given in the form of a static feedback u = k(z). We can
now define a (dynamic) quantized output feedback law by

u = k(ẑ) = k(z + z̃)

where ẑ is the state estimate generated by the observer and
z̃ = ẑ − z is the state estimation error. We impose the
following assumption on the feedback law k.
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Assumption 2 (ISS controller) The system

ż = f(z, k(ẑ)) = f(z, k(z + z̃))

is ISS with respect to z̃, i.e.,

|z(t)| ≤ β̂(|z(0)|, t) ∨ γ̂
(

‖z̃‖[0,t]

)

(23)

for some β̂ ∈ KL and γ̂ ∈ K∞.

In other words, our state feedback law should provide ISS
with respect to a measurement disturbance, which in our case
is the observer’s state estimation error. We refer the reader
to [12] for a detailed discussion of Assumption 2 and an
overview of relevant literature.

The overall closed-loop system obtained by combining the
plant, the observer, and the control law can be written as

ż =

[

ż1

ż2

]

=

[

f1(z1, z2, k(ẑ))
f2(z1, z2, k(ẑ))

]

˙̂
ξ = f2(q(z1), ξ̂ − l(q(z1)), k(ẑ))

+
∂l

∂z1
(q(z1))f1(q(z1), ξ̂ − l(q(z1)), k(ẑ))

ẑ =

[

ẑ1

ẑ2

]

=

[

q(z1)

ξ̂ − l(q(z1))

]

.

(24)

We know from the proof of Theorem 1 that for e = ξ̂ − ξ,
where ξ = z2 + l(z1), the bound (10) holds. Combining this
with (23) and the first inequality in (11), we can show that

∣

∣

∣

∣

(

z(t)

ξ̂(t)

)∣

∣

∣

∣

≤ β

(∣

∣

∣

∣

(

z(0)

ξ̂(0)

)∣

∣

∣

∣

, t

)

∨ γK

(

‖d‖[0,t]

)

(25)

where β ∈ KL and γK a class-K∞ function valid for
‖z‖[0,t] ≤ K and ‖u‖[0,t] = ‖k(ẑ)‖[0,t] ≤ K. To arrive
at (25), it is enough to apply a standard ISS cascade argument
(cf. [17]) working in the (z, e)-coordinates. Below we will
use the obvious fact that β(s, 0) ≥ s for all s.

Take κl to be some class-K∞ function with the property
that

|l(z1)| ≤ κl(|z1|) ∀ z1.

Similarly, take κu to be some class-K∞ function with the
property that

|k(z)| ≤ κu(|z|) ∀ z.

Let
K := M ∨ κu(2M + ∆ + κl(M + ∆)). (26)

We are now ready to state the following result, which
provides an ultimate bound on the solutions of the closed-
loop system starting in a suitable region.

Proposition 1 With M and ∆ as in (22) and K as defined
in (26), assume that

γK(∆) < M. (27)

Suppose that the initial condition of the closed-loop sys-
tem (24) satisfies

∣

∣

∣

∣

(

z(0)

ξ̂(0)

)∣

∣

∣

∣

< E0 (28)

where E0 > 0 is such that

β(E0, 0) = M. (29)

Then the corresponding solution satisfies

lim sup
t→∞

∣

∣

∣

∣

(

z(t)

ξ̂(t)

)∣

∣

∣

∣

≤ γK(∆). (30)

Proof: As long as the inequality
∣

∣

∣

∣

(

z(t)

ξ̂(t)

)
∣

∣

∣

∣

≤ M

is true, we have

|y(t)| = |z1(t)| ≤ M

hence by (22)

|d(t)| = |q(z1(t)) − z1(t)| ≤ ∆ , (31)

and we also have

|z(t)| ≤ M ≤ K

and

|u(t)| = |k(ẑ(t))| ≤ κu(|ẑ(t)|)

≤ κu(|q(z1(t))| + |ξ̂(t)| + |l(q(z1(t)))|)

≤ κu(M + ∆ + M + κl(M + ∆)) ≤ K.

Define the time

T := sup

{

t ≥ 0 :

∣

∣

∣

∣

(

z(t)

ξ̂(t)

)∣

∣

∣

∣

< M

}

≤ ∞

which is well defined because of (28) and since E0 ≤
β(E0, 0) = M . For t ∈ [0, T ], by the above calculations
we know that the bounds (25) and (31) are valid. In view
of (27), (28), and (29) we have

∣

∣

∣

∣

(

z(t)

ξ̂(t)

)∣

∣

∣

∣

< M ∀ t ∈ [0, T ].

If T were finite, this would be a contradiction, hence T = ∞
and the above analysis is valid for all time.

Since β ∈ KL, for every ε > 0 there exists a time T (ε)
such that

β

(∣

∣

∣

∣

(

z(0)

ξ̂(0)

)∣

∣

∣

∣

, t

)

≤ ε ∀ t ≥ T (ε) (32)

hence
∣

∣

∣

∣

(

z(t)

ξ̂(t)

)∣

∣

∣

∣

≤ ε ∨ γK(∆) ∀ t ≥ T (ε).

This proves (30).
For the ultimate bound (30) to guarantee contraction, we

need to know that
γK(∆) < E0.

In view of (29) this requires

β(γK(∆), 0) < M (33)

which is a strengthening of (27). Note that γK depends on
K which in turn depends on M , i.e., M affects both sides
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of the inequality (33). However, we can always satisfy (33)
by selecting ∆ to be small enough (compared to M ). Or,
if the left-hand side of (33) grows slower than linearly in
M , it is enough to choose M large enough. Basically, (33)
then means that we must have sufficiently many quantization
regions. The same comments apply to the condition (27).

The above result is especially useful in situations where
the quantization can be dynamic, in the sense that the
parameters of the quantizer can be changed on-line by the
control designer [11]. We can then improve on the ultimate
bound (30) by using a “zooming” strategy. Consider a
dynamic quantizer

qµ(y) := µq
( y

µ

)

where µ is a “zoom” variable. This new quantizer has range
Mµ and error bound ∆µ. Because of (33) we can find a
value µ < 1 for which

β(γK(∆), 0) < Mµ.

We know there is a time t̄ at which we will have
∣

∣

∣

∣

(

z(t̄)

ξ̂(t̄)

)∣

∣

∣

∣

< Eµ

where Eµ is such that

β(Eµ, 0) = Mµ.

Calculating this time is a matter of having some knowledge
of β and using its property (32) with ε small enough.
(An alternative approach using ISS-Lyapunov functions is
described in [12].)

Redefine K using Mµ and ∆µ instead of M and ∆,
and call it Kµ. Applying the same analysis as before with
Mµ, Kµ, ∆µ instead of M , K, ∆, respectively, for t ≥ t̄,
we obtain the smaller ultimate bound γKµ

(∆µ). We can
then pick a smaller value of µ and repeat the procedure.
In principle, we can decrease µ to 0 in this way and obtain
asymptotic convergence. We can also use “zooming out” to
increase µ initially if (28), (29) do not hold at t = 0. Being
able to do this requires strengthening (33) to

β(γKµ
(∆µ), 0) < Mµ ∀µ > 0.

Further details on this zooming procedure (in a slightly
different setting) can be found in [12]. In practice, there are
limitations on how small or how large the zoom variable can
be, and these would determine the size of the ultimate bound
and the region of attraction.

Finally, we revisit Example 2 from Section III. It is shown
in [2] that for the system (14), the feedback law

u = k(z) = −z1 − z2 − z3
2

satisfies our Assumption 2. Therefore, by using this nominal
controller together with the observer (15), the system can
be stabilized by quantized output feedback as shown in this
section.

VI. CONCLUSIONS

We formulated and studied the notion of a quasi-ISS
observer for nonlinear systems with additive output distur-
bances. We proposed a quasi-ISS reduced-order observer de-
sign based on a coordinate transformation and the existence
of a state-independent error Lyapunov function. We showed
that this construction applies to several classes of nonlinear
systems previously studied in the observer design literature.
As an application, we proved that quantized output feedback
stabilization is achievable when the system possesses a quasi-
ISS reduced-order observer and a state feedback controller
providing ISS with respect to measurement errors. We in-
cluded an example for which both of these assumptions are
satisfied and the design could be carried through.
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