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Abstract— A bang-bang controller is proposed which is able
to ensure reference signal tracking with prespecified time-
varying error bounds (the funnel) for nonlinear systems with
relative degree one or two. For the design of the controller only
the knowledge of the relative degree is needed. The controller
is guaranteed to work when certain feasibility assumptions are
fulfilled, which are explicitly given in the main results. Linear
systems with relative degree one or two are feasible if the system
is minimum phase and the control values are large enough.

I. INTRODUCTION

Consider the single-input, single-output nonlinear system

ẋ = F (x, u), x(0) = x0 ∈ Rn,
y = H(x),

(1)

where F : Rn × R → Rn, n ∈ N, is locally Lipschitz
continuous and H : Rn → R is continuous. For a given
reference signal yref : R≥0 → R, we would like to achieve
approximate reference signal tracking with a bang-bang
feedback controller, i.e. u(t) ∈ {U−, U+} for all t ≥ 0 and
some U− < U+. Furthermore, we are aiming for guaranteed
transient behavior of the error signal e := y − yref in the
sense that the controller guarantees strict time-varying error
bounds given by a so-called funnel

F := { (t, e) ∈ R≥0 × R | ϕ−(t) ≤ e ≤ ϕ+(t) } , (2)

where ϕ± : R≥0 → R is the prespecified (time-varying)
error bound with ϕ−(t)< 0<ϕ+(t) for all t≥ 0, see also
Figure 1.
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Fig. 1. The funnel F : A time-varying error bound.

The controller is governed by a switching logic whose
output is a boolean variable q : R≥0 → {true, false}
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which yields the control law

u(t) =
{
U−, if q(t) = true,

U+, if q(t) = false.
(3)

The overall feedback system is illustrated in Figure 2.

ẋ = F (x, u)
y = H(x)

y

Switching
logic + −yref

FunnelU+U−

eq

u

Fig. 2. Overall system structure.

The main purpose of this paper is twofold: On the one
hand, we would like to find feasibility assumptions which
take into account that, in general, an input signal with only
two values cannot achieve arbitrary control objectives. On
the other hand, we would like to find a switching logic
which achieves the control objectives for feasible systems.
We are aiming for a universal controller in the sense that
the definition of the controller (given by the switching logic)
does not involve the systems dynamics at all.

The feasibility assumption can be further distinguished
into qualitative properties versus quantitative bounds of the
systems dynamics. A qualitative property like the relative
degree (see Definitions 2.1 and 3.1) yields different controller
designs, while quantitative bounds do not influence the con-
troller design but restrict the applicability of the controller. In
this paper we will present controller designs for the relative
degree one and two case.

We assume that the switching logic can also use derivatives
of the error signal; in fact, for the relative degree two case
the error e and its derivative ė is used to obtain the switching
signal. For the relative degree one case only the error itself
is needed.

Tracking control with prespecified strict time-varying error
bounds has been studied first in [1] where the funnel con-
troller was introduced. Funnel control itself is based on ideas
from high-gain control and λ-tracking (see for example the
survey [2]). There have been several extensions of the funnel
controller, e.g. more general gain functions [3] and higher
relative degree via backstepping and filters [4], [5]. A similar
approach with a switched controller was proposed earlier in
[6]; however, there the freedom to choose the time-varying
bounds was more restricted and the gain was monotone.
These results yielded universal controllers which were able
to control all systems with some qualitative property (for
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example, relative degree one with stable zero dynamics).
However, the price of the generality is that the input must be
allowed to become arbitrarily large, which is problematic in
applications. The first result concerning the funnel controller
with input saturation was presented in [7] which was based
on a model of an exothermic reactor. We will later use
this model for illustrating the behavior of our bang-bang
controller. Until now input saturation was only considered
for the relative degree one case [8], [9]; input saturation for
relative degree two systems is work in progress [10]. The
design of the bang-bang funnel controller is inspired by the
above results on funnel control with input saturation and the
feasibility assumptions are very similar when U± are the
bounds from the input saturation.

The key advantages of the bang-bang funnel controller
in comparison to classical controllers are, firstly, the same
advantages the continuous funnel controller from [1] has: no
knowledge of the systems parameters is necessary for the
controller design and prespecified transient behavior can be
guaranteed. Secondly, in comparison to the continuous funnel
controller, the bang-bang funnel controller is much simpler
because it only uses two control values and doesn’t need
a time varying gain function. Furthermore, the bang-bang
funnel controller is a piecewise linear system and certain
aspects are therefore easier to analyze. Finally, the switching
logic is still well defined when the error leaves the funnel;
therefore, we believe the bang-bang funnel controller is also
more robust to time delays (this is ongoing research). How-
ever, in applications where a continuous controller signal is
desired or where the input should not be saturated all the
time, the bang-bang funnel controller is not applicable.

Using the bang-bang controller governed by a discrete
switching logic together with a continuous system yields
a hybrid system (see e.g. [11] and the references therein
for an overview). The prespecified error bounds given by
the funnel can be seen as a time-varying generalization of
the invariance problem for hybrid systems as studied e.g.
in [12]. In general, the coupling of continuous and discrete
dynamics could lead to problems concerning the existence
of solutions; however, by implementing the switching logic
with some hysteresis effect this solvability problem can be
avoided. For switched systems (average) dwell times are
important, because in practical applications arbitrarily fast
switching is often not possible and from a mathematical point
of view dwell times also exclude so-called Zeno-behavior
(i.e. infinitely many switches in finite time). The main results
in this paper also give conditions when the switching times
of the control input have an (average) dwell time.

The structure of the paper is as follows. The main results
for the relative degree one case are given in Sections II and
the relative degree two case is considered in Section III.
In both cases, first the precise meaning of relative degree
is defined. Afterwards, the switching logic is given and
some general properties of the closed loop are highlighted.
Afterwards, the two main results, Theorem 2.4 and Theorem
3.4, are given. For the relative degree one case we apply the
bang-bang funnel controller to an exothermic reactor model.

Throughout the paper we use ‖f‖ for the supremum norm
of the function f : R → R; by |x| for x ∈ Rn we denote
the Euclidean vector norm and |A| denotes the induced norm
of the matrix A ∈ Rm×n. For defining predicates (i.e. for
functions with values in the set {true, false}) we use the

notation [statement] ∈ {true, false}. Solutions of differ-
ential equations are considered in the sense of Carathéodory,
i.e. solutions are assumed to be absolutely continuous and
fulfill the differential equation almost everywhere.

Due to space limitations we omit the proofs of all results
and refer to the longer version of this paper [13].

II. RELATIVE DEGREE ONE CASE

Definition 2.1 (Relative degree one): The system (1) is
said to have (global) relative degree one (with positive
gain) when there exist locally Lipschitz continuous functions
f : R × Rn−1 → R, h : R × Rn−1 → Rn−1, continuous
g : R × Rn−1 → R>0 and a diffeomorphism Φ : Rn →
R×Rn−1, x 7→ (y, z) which equivalently transforms (1) to

ẏ = f(y, z) + g(y, z)u, y(0) = y0, (4a)
ż = h(y, z), z(0) = z0, (4b)

where (y0, z0) = Φ(x0).
For the relative degree one case we propose the following

simple switching logic:

q(0−) = [e(0) ≥ 0],
q(t) = S(e(t), ϕ+(t), ϕ−(t), q(t−)),

(5)

where S : R× R× R× {true, false} → {true, false}
is the switching predicate given by

S(e, e, e, qold) := [e ≥ e ∨ (e > e ∧ qold)]. (6)

Since ϕ+(t) > ϕ−(t) for all t ≥ 0 the switching logic (5)
together with (3) can also be described by a state diagram
as shown in Figure 3.

u(t) = U− u(t) = U+

e(t) ≤ ϕ−(t)

e(t) ≥ ϕ+(t)

e(t) > ϕ−(t)

e(t) < ϕ+(t)

Fig. 3. The switching logic for the relative degree one case.

Note that for e > e, the following equivalence holds

S(e, e, e, qold) ⇔ ¬S(−e,−e,−e,¬qold),

which explains the symmetry in Figure 3.
The following lemma is essential to prove existence of

solutions of the closed loop.
Lemma 2.2 (Well-defined causal switching logic): For

every continuous error function e : [0, T )→ R, 0 < T ≤ ∞,
there exists a unique causal right-continuous switching signal
q : [0, T ) → {true, false} fulfilling (5). Furthermore, if
e is absolutely continuous with right-continuous bounded
derivative ė and

inf
t≥0

ϕ+(t) + inf
t≥0
−ϕ−(t) := λ+ + λ− > 0 (7)

then the switching signal has a positive dwell time τd > 0,
i.e. two switches of q are at least τd apart. In fact

τd ≥ λ++λ−
‖ė‖ .

Note that in Lemma 2.2 we did not assume that the error
evolves within the funnel. A direct consequence of Lemma
2.2 is the following result for the closed loop.

691



Corollary 2.3 (Closed loop well posed): Consider the
system (1) in closed loop with the bang-bang controller
given by (3) and (5), where e := y−yref for some continuous
reference signal yref : R≥0 → R. Then for every initial
value x0 ∈ Rn there exists a unique maximal solution
(x, q) : [0, ω) → Rn × {true, false}, 0 < ω ≤ ∞ of the
closed loop.

Note that Corollary 2.3 neither claims nor assumes that the
error signal evolves within the funnel, even finite escape time
is not excluded at this point. To prove that the error evolves
within the funnel, we need some additional feasibility as-
sumptions which are formulated in the following theorem.

Theorem 2.4 (Relative degree one main result): Assume
that (1) has relative degree one, i.e. (1) is equivalent to (4).
Consider a funnel F as given by (2) and assume additionally
that the funnel boundaries ϕ± : R≥0 → R as well as the
reference signal yref : R≥0 → R are absolutely continuous
with right-continuous derivatives. Assume that the initial
conditions for (4) fulfill

y0 − yref(0) ∈ [ϕ−(0), ϕ+(0)], z0 ∈ Z0 ⊆ Rn−1

and assume that for every continuous y : [0,∞) → R with
ϕ−(t) ≤ y(t) − yref(t) ≤ ϕ+(t) for all t ≥ 0 and all initial
values z0 ∈ Z0 there exist a unique (global) solution z :
R≥0 → Rn−1 of the zero dynamics (4b); for t > 0 let

Zt :=

 z(t)

∣∣∣∣∣∣
z : [0, t]→ Rn−1 solves (4b) for some
z0 ∈ Z0 and for some y : [0, t]→ R with
ϕ−(τ) ≤ y(τ)− yref(τ) ≤ ϕ+(τ) ∀τ ∈ [0, t]

.
If the feasibility conditions

U− <
ϕ̇+(t)+ẏref(t)−f(yref(t)+ϕ+(t),zt)

g(yref(t)+ϕ+(t),zt)

U+ > ϕ̇−(t)+ẏref(t)−f(yref(t)+ϕ−(t),zt)
g(yref(t)+ϕ−(t),zt)

(8)

hold for all t ≥ 0 and all zt ∈ Zt then the closed loop
composed of the system (1) or, equivalently, (4) and the
bang-bang controller (3) governed by the switching logic (5)
has the following properties:

1) There exists a unique (global) solution (x, q) : R≥0 →
Rn × {true, false}.

2) The error e := y − yref evolves within the funnel, i.e.
(t, e(t)) ∈ F for all t ≥ 0.

3) If f and g are uniformly bounded on
⋃
t≥0[yref(t) +

ϕ−(t), yref(t) + ϕ+(t)] × Zt, ẏref is bounded and (7)
holds then the jumping times of u or, equivalently, the
switches of q have a positive dwell time τd > 0.

Remarks 2.5: 1) The feasibility conditions (8) can be
simplified by using upper bounds for the funnel bound-
aries (and their derivatives), the zero dynamics, and the
reference signal (and its derivative):

U−<−‖ϕ̇+‖+‖ẏref‖+Fmax
Gmin

, U+>
‖ϕ̇−‖+‖ẏref‖+Fmax

Gmin
,
(9)

where Fmax := max|y|≤Ymax,|z|≤Zmax |f(y, z)|,
Gmin := min|y|≤Ymax,|z|≤Zmax g(y, z) > 0, Ymax :=
‖yref‖ + max{‖ϕ+‖, ‖ϕ−‖} and Zmax is an upper
bound for the zero dynamics, i.e. all solutions of (4b)
with |y(t)| ≤ Ymax, for all t ≥ 0, fulfill z(t) ≤ Zmax

for all t ≥ 0 (in particular, the initial value z0 must
be bounded by Zmax). A consequence of considering
this more conservative feasibility assumption is that
U− < 0 and U+ > 0 has to hold which is often

too restrictive especially for nonlinear systems, see
Example 2.6.

2) Consider a linear system with relative degree one in
normal form [14] (see also [5, Lem. 3.5])

ẏ = αy + s>z + γu y(0) = y0,

ż = py +Qz z(0) = z0,

where α ∈ R, s, p ∈ Rn−1, Q ∈ R(n−1)×(n−1) and
γ > 0. Assume that the initial value for the zero
dynamics is bounded say by M > 0. If the linear
system is minimum phase, i.e. Q is Hurwitz with
|eQt| ≤ Ce−λt, C, λ > 0, then boundedness of y
implies

|z(t)| ≤ Ce−λt|z0|+
∫ t

0

Ce−λ(t−s)|p||y(s)| ds

≤ CM + C
λ Ymax =: Zmax.

Hence with Fmax = |α|Ymax + |s>|Zmax and Gmin =
γ the condition (9) is always fulfilled when U− < 0
and U+ > 0 are large enough.

3) The sets Zt ⊆ Rn−1, t ≥ 0, are defined by considering
y : R≥0 → R as an input to the system governed by
(4b). For the definition of Zt it is not assumed that
y solves the closed loop, it is merely assumed that y
evolved within the funnel on the interval [0, t]. For the
feasibility assumptions (8), it is not needed that the
sets Zt are uniformly bounded as long as f and 1/g
do not get unbounded for unbounded t 7→ zt ∈ Zt. In
particular, it is therefore possible to apply the result
also to time-varying systems by the common trick of
including time as an additional differential equation
ṫ = 1.

4) The bang-bang controller works also when the funnel
boundaries are not bounded away from zero; however,
then the length of the switching intervals will converge
to zero. The corresponding behavior for the continuous
funnel controller from [1] is that the gain k(t) grows
unbounded (however, all continuous funnel controller
results are only formulated for the case that the funnel
boundaries are bounded away from zero). In contrast
to the continuous funnel controller, this undesired
behavior can already be excluded by assuming (7)
which allows that one of the two funnel boundaries ap-
proaches zero. In fact, (7) can be further weakened (cf.
(15)) such that both funnel boundaries can approach
zeros, as long as they don’t do it simultaneously.

Example 2.6: We consider a model of exothermic chem-
ical reactions which was used in [7] to study the funnel
control with input saturation. In the notation of the present
paper the model with one reactant and one product reads as

ẏ = br(z1, z2, y)− qy + u, y(0) = y0 > 0,
ż1 = c1r(z1, z2, y) + d(zin

1 − z1), z1(0) = z0
1 ≥ 0,

ż2 = c2r(z1, z2, y) + d(zin
2 − z2), z2(0) = z0

2 ≥ 0,

where b ≥ 0, q > 0, c1 < 0, c2 ∈ R, d > 0, zin
1/2 ≥ 0 and r :

R≥0×R≥0×R>0 → R≥0 is assumed to be locally Lipschitz
continuous with r(0, T ) = 0 for all T > 0. The reference
signal is yref(t) = y∗ > 0 for all t ≥ 0. In [7] the input
is saturated to some interval [U−, U+] with U− < U+, i.e.
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u(t) ∈ [U−, U+] for all t ≥ 0, and the feasibility assumption
in [7] is that there exists γ ∈ R2

>0 with (c1, c2)γ ≤ 0 and

∃ρ−, ρ+ > 0 ∃y > y∗ ∀y ∈ [y∗, y] ∀z1, z2 ∈ Z0 :
0 < U− + ρ− < qy − br(z1, z2, y) < U+ − ρ+.

where Z0 :=
{

(z1, z2) ∈ R2
≥0

∣∣ (z1, z2)γ < (zin
1 , z

in
2 )γ

}
.

It can be shown that Z0 is positively invariant for every y :
R→ R>0. Hence, in the notation of Theorem 2.4, Zt ⊆ Z0

for all t ≥ 0 if (z0
1 , z

0
2) ∈ Z0. Now [7, Rem. 2] shows that

for every funnel F whose funnel boundaries ϕ± fulfill

ϕ+(t) ∈ (0, y − y∗], ϕ−(t) ∈ (−y∗, 0),
ϕ̇+(t) > −ρ−, ϕ̇−(t) < ρ+,

the feasibility assumption (8) holds. A simulation of the
bang-bang controller applied to the above model with pa-
rameters as given in [7, Sec. 3.3] is shown in Figure 4.

0 0.5 1 1.5 2 2.5 3
240

260

280

300

320

340

0 0.5 1 1.5 2 2.5 3
300

350

400

450

500

o
u
tp

u
t

y
(t

) y(t)
y∗
Funnel

time t

time t

in
p
u
t

u
(t

)

Fig. 4. The bang-bang funnel controller applied to an exothermic reactor
model.

III. RELATIVE DEGREE TWO CASE

Definition 3.1 (Relative degree two): The system (1) is
said to have (global) relative degree two (with positive
gain) when there exist locally Lipschitz continuous functions
f : R × R × Rn−2 → R, h : R × R × Rn−2 → Rn−2,
continuous g : R×R×Rn−2 → R>0 and a diffeomorphism
Φ : Rn → R× R× Rn−2, x 7→ (y, ẏ, z) which equivalently
transforms (1) to

ÿ = f(y, ẏ, z) + g(y, ẏ, z)u y(0) = y0, ẏ(0) = ẏ0,

(10a)
ż = h(y, ẏ, z) z(0) = z0, (10b)

where (y0, ẏ0, z0) = Φ(x0).
The switching logic for the relative degree two case

requires a second funnel for ė given by

Fd :=
{

(t, ė) ∈ R≥0 × R
∣∣ ϕd−(t) ≤ ė ≤ ϕd+(t)

}
, (11)

where ϕd−(t) < 0 < ϕd+(t) for all t ≥ 0. The idea to use a
derivative funnel originates from the recent work [10]. This
funnel might reflect real physical bounds for ė or might
be used as a design parameter for the controller. Anyway,

the derivative funnel Fd cannot restrict ė in such a way
that e cannot decrease or increase fast enough to follow the
boundaries of the original funnel F ; in fact it must hold that

∀t ≥ 0 : ϕd+(t) > ϕ̇−(t) and ϕd−(t) < ϕ̇+(t), (12)

where we assumed that the funnel boundary functions ϕ± :
R≥0 → R are absolutely continuous with right-continuous
derivatives. In addition to the derivative funnel a “safety
distance” ε± > 0 from the corresponding funnel boundary
ϕ± is needed to prevent the error e from leaving the
funnel F . This distance will play an essential role in the
feasibility assumptions later; at this point we already make
the following assumption:

∀t ≥ 0 : ϕ+(t)−ε+ > 0 and ϕ−(t)+ε− < 0. (13)

The switching logic is now given by q0(0−) = [e(0) ≥ 0],
q(0−) = q0(0−) and

q0(t) = S
(
e(t), ϕ+(t)− ε+, ϕ−(t) + ε−, q0(t−)

)
q(t) =

{
S
(
ė(t),min{ϕ̇+(t), 0}, ϕd−(t), q(t−)

)
, if q0(t),

S
(
ė(t), ϕd+(t),max{ϕ̇−(t), 0}, q(t−)

)
, else,

(14)

where S is the switching predicate as given in (6). The
switching logic (applied to the control law (3)) is illustrated
as a simplified state diagram in Figure 5.

U− U+

ė(t) ≤ ϕd
−(t)

ė(t) ≥ min{ϕ̇+(t), 0}

q0 =true

decrease e

U+ U−

ė(t) ≥ ϕd
+(t)

ė(t) ≤ max{ϕ̇−(t), 0}

q0 =false

increase e

e(t) ≤ ϕ−(t) + ε− e(t) ≥ ϕ+(t)− ε+

Fig. 5. The switching logic for the relative degree two case.

The reasoning behind the switching logic (14) is as follows
(see also the schematic illustration in Figure 6): Whenever
the error gets close to the upper funnel boundary, i.e. e(t) ≥
ϕ+(t)− ε+, we would like to decrease e(t), a task which is
encoded by q0(t) = true. To do this we have to decrease
ė which under certain feasibility assumptions is possible by
applying u(t) = U−. It will take some time until ė is small
enough, which is the case when ė(t) ≤ ϕ̇+(t) because then
the distance to the upper funnel boundary starts increasing.
At this point we could keep u(t) = U− until the error gets
close to the lower funnel boundary. However, this would

693
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ϕ−(t)
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q0 =true

decrease e
q0 =false

increase e
q0 =true

decrease eė(t)

t

ϕd+(t)

ϕd−(t)

ϕ̇−(t)

ϕ̇+(t)

Fd

Fig. 6. A schematic illustration how the error and its derivative evolve
under the switching logic (14), the vertical lines indicate the switching of the
predicate q0 which indicates wether we would like to decrease or increase
the error.

unnecessarily decrease ė(t) further, which implies that when
we want to increase the error later (when we got close
the lower funnel boundary) it will take longer until ė(t) is
big enough so that the distance of e(t) to the lower funnel
boundary is increasing. That is why we stop decreasing ė by
setting u(t) = U+ when the lower derivative funnel boundary
is hit, i.e. when ė(t) ≤ ϕd−(t). If we still want to decrease
the error, we have to stop increasing the derivative of the
error when ė(t) ≥ ϕ̇+(t) or ė(t) ≥ 0.

A similar result as Lemma 2.2 holds also for the relative
degree two case.

Lemma 3.2 (Well-defined causal switching logic):
For every continuously differentiable error function
e : [0, T ) → R, 0 < T ≤ ∞ there exists
a unique causal right-continuous switching signal
q : [0, T )→ {true, false} fulfilling (14). If additionally ė
is bounded and absolutely continuous with right-continuous
bounded derivative ë and

0 < λ ∧ 0 < τ+(‖ë‖) ∧ 0 < τ−(‖ë‖) (15)

where λ := inft≥0 ϕ+(t)−ε+−supt≥0 ϕ−(t)−ε−, τ+(δ) :=
inft≥0 inf

{
|τ |
∣∣ ϕd+(t)−max{ϕ̇−(t+ τ), 0} ≤ τδ

}
and

τ−(δ) := inft≥0 inf
{
|τ |
∣∣min{ϕ̇+(t), 0}−ϕd−(t+ τ) ≤ τδ

}
then the switching signal has an average dwell time [15]

τa ≥ 1
‖ė‖
λ +min{τ+(‖ë‖),τ−(‖ë‖)}

with chattering bound two, i.e. the number of switches
N(t, T ) in every time interval [t, T ) is bounded by 2+ T−t

τa
.

Corollary 3.3 (Closed loop well posed): Consider
system (1) with relative degree two in closed loop
with the bang-bang controller given by (14) and (3)
where e := y − yref for some continuously differentiable
reference signal yref : R≥0 → R. Then for every initial
value x0 ∈ Rn there exists a unique maximal solution
(x, q0, q) : [0, ω)→ Rn×{true, false}×{true, false},
0 < ω ≤ ∞.

As in the relative degree one case, Corollary 3.3 does not
assume or claim that the error evolves within the funnel. For
this some additional feasibility assumptions are needed.

Theorem 3.4 (Relative degree two case main result):
Assume that (1) has relative degree two, i.e. (1) is
equivalent to (10). Consider a funnel F as given by (2)
whose differentiable boundary functions ϕ± : R≥0 → R
have absolutely continuous derivatives with right-continuous
second derivatives and fulfill (13) for some ε± > 0.
Choose a derivative funnel Fd as in (11) whose funnel
boundaries ϕd± : R≥0 → R are absolutely continuous with
right-continuous derivative and fulfill assumption (12). Let
yref : R≥0 → R be a differentiable reference signal whose
derivative is absolutely continuous with right-continuous
second derivative. Assume that the initial conditions for
(10) fulfill

y0 − yref(0) ∈ [ϕ−(0) + ε−, ϕ+(0)− ε+],

ẏ0 − ẏref(0) ∈ [ϕd−(0), ϕd+(0)], z0 ∈ Z0 ⊆ Rn−2

and assume that for every differentiable y : [0,∞)→ R with
ϕ−(t) ≤ y(t) − yref(t) ≤ ϕ+(t), ϕd−(t) ≤ ẏ(t) − ẏref(t) ≤
ϕd+(t) and for every initial value z0 ∈ Z0 there exists a
unique (global) solution z : R≥0 → Rn−2 of the zero
dynamics (10b); for t > 0 let

Zt :=

 z(t)

∣∣∣∣∣∣∣∣
z : [0, t]→ Rn−1 solves (10b) for some
z0 ∈ Z0 and for some y : [0, t]→R with
ϕ−(τ) ≤ y(τ)− yref(τ) ≤ ϕ+(τ) and
ϕd
−(τ) ≤ ẏ(τ)− ẏref(τ) ≤ ϕd

+(τ) ∀τ ∈ [0, t]

.
If there exist δ± > 0 with

δ+ > max{ϕ̇d−(t), ϕ̈−(t), 0} and

−δ− < min{ϕ̇d+(t), ϕ̈+(t), 0} ∀t ≥ 0

such that the first set of feasibility conditions

U− <
−δ−+ÿref(t)+f(yt,ẏt,zt)

g(yt,ẏt,zt)
,

U+ > δ++ÿref(t)+f(yt,ẏt,zt)
g(yt,ẏt,zt)

,
(16)

hold for all t ≥ 0 and all (yt, ẏt, zt) ∈ [yref(t) +
ϕ−(t), yref(t)+ϕ+(t)]×[ẏref(t)+ϕd−(t), ẏref(t)+ϕd+(t)]×Zt,
and if the second set of feasibility conditions

ε+ ≥
(‖ϕd

−‖+‖min{ϕ̇+,0}‖)2

2δ−
, ε− ≥

(‖ϕd
+‖+‖max{ϕ̇−,0}‖)2

2δ+
(17)

hold then the bang-bang controller (3) governed by the
switching logic (14) applied to (1) or, equivalently, (10)
achieves the control objectives, i.e. the closed loop has the
following properties:

1) There exists a (global) unique solution (x, q0, q) :
R≥0 → Rn × {true, false} × {true, false}.
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2) The error e := y − yref evolves within the funnel F
and the derivative of the error ė evolves within the
derivative funnel Fd, i.e. (t, e(t)) ∈ F and (t, ė(t)) ∈
Fd for all t ≥ 0.

3) If f and g are uniformly bounded on
⋃
t≥0[yref(t) −

ϕi(t), yref(t) +ϕ+]× [ẏref +ϕd−, ẏref +ϕd+]×Zt, ÿref is
bounded, ϕd± are bounded and (15) holds for all δ > 0
then the switching signal q has a positive average dwell
time τa > 0.

Remarks 3.5: 1) The two main results, Theorem 2.4
and Theorem 3.4, do not depend on the initialization
q(0−) and q0(0−) for the switching logic. However,
the choice in (5) and (14) intuitively improves per-
formance, because the control action is in the “right”
direction just from the start and not only after the first
boundary is hit.

2) The second feasibility assumption (17) might be in
contradiction with the assumption (13). However, in-
creasing/decreasing U± (without changing anything
else) allows for bigger δ± so that (17) yields arbi-
trarily small lower bounds for ε± and (13) is not in
contradiction with (17) anymore.

3) As for the relative degree one case it is possible to
simplify the feasibility assumption (16) by considering
upper bounds for the funnel boundaries (and their
derivatives), the zero dynamics, and the reference
signal (and its derivatives). In particular, for minimum
phase linear systems with relative degree two it follows
then that (16) holds whenever U− < 0 and U+ > 0
are large enough.

4) The feasibility assumptions could possibly be made
less conservative by introducing time-varying safety
distances ε±(t). Typically the funnels are large with
large derivatives at the beginning, hence require larger
safety distances by (17), and on the other hand tighter
funnels with small derivatives later in time restrict
the size of the safety distance by (13) although, at
least locally, (17) does not require big safety distances
anymore.

5) The first feasibility assumption (16) looks very similar
to the feasibility assumption in Theorem 2.4 applied to
ė and Fd. The two main differences are that, firstly, ϕ̇d±
are replaced by uniform lower/upper bounds δ∓ and,
secondly, (16) has to hold on the whole funnel region
and not only on the boundary. The reason for both is
that we need a certain minimum decrease/increase of
ė in the whole funnel (and not only on the boundary)
to ensure that we can quantify the overshoot of e (in
fact, condition (17) is this quantification).

6) The switching logic for the relative degree two case
is hierarchically composed, where the outer switching
logic is identical (apart from the safety distance) to
the switching logic of the relative degree one case.
The authors were already able to define a switching
logic for the relative degree three case based on a
hierarchical composition similar to the one presented
here, but due to space limitations this result is not
included here. In fact, it seems much more interesting
to come up with a general solution for an arbitrary
relative degree; this is ongoing research.

IV. CONCLUSIONS

A universal controller was proposed which only uses two
input values and is governed by a simple switching logic.
This switching logic depends on the relative degree of the
system, otherwise no knowledge of the system is necessary
to design the controller. Feasibility assumptions are given
which ensure that approximate reference signal tracking with
strict time-varying error bounds is achieved. We assumed that
the gain function g in the relative degree normal forms is
positive; however, it should be possible to extend the results
to an unknown (but definite) sign of the gain function by
slightly changing the switching logic to first detect the sign
of the gain function.

The nature of the controller seems to make it more
“robust” than the continuous funnel controller because, in
contrast to the latter, the bang-bang funnel controller is still
well defined when the error leaves the funnel, for example
when a time delay is present. A precise robustness result is
a future research topic.

The switching logic for the relative degree two case
already hints to switching logics for higher relative degrees;
this is a topic of ongoing research.
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