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Abstract— We study stability of hybrid systems described
as feedback interconnections of smaller subsystems, within
a Lyapunov-based ISS small-gain analysis framework. We
focus on constructing a weak (nonstrictly decreasing) Lya-
punov function for the overall hybrid system from weak ISS-
Lyapunov functions for the subsystems in the interconnection.
Asymptotic stability of the hybrid system is then concluded by
applying results of LaSalle type. The utility of this approach
is illustrated on feedback systems arising in event-triggered
control and quantized control.

I. INTRODUCTION

It was observed in [1] that hybrid systems can be
naturally viewed as feedback interconnections of smaller
subsystems, as exemplified by—but not limited to—the
idea that a hybrid system is a feedback interconnection of
its continuous and discrete dynamics. The utility of this
observation is that it renders applicable to hybrid systems
the small-gain analysis tools, which are well established
in systems theory (see, e.g., [2, Chapter 10]) and have
proved very helpful in analysis—as well as design—of
several classes of systems (such as control systems with
saturation [3] and networked control systems [4]). The
specific instance of a small-gain theorem most relevant here
applies to nonlinear state-space systems and relies on the
notion of input-to-state stability (ISS) [5]. This ISS small-
gain theorem states that a feedback interconnection of two
ISS systems is asymptotically stable if a composition of
their ISS gain functions is smaller than identity.

One important advantage of ISS small-gain theorems is
that they enable explicit construction of Lyapunov functions
for the overall system starting with ISS-Lyapunov functions
for the individual subsystems. Such constructions were
studied for continuous-time systems in [6] and for discrete-
time systems in [7]. For hybrid systems, Lyapunov-based
small-gain theorems of this kind were investigated in [8]
and [9]. The present paper takes this line of research
in a somewhat different direction; namely, we focus on
constructing weak (i.e., nonstrictly decreasing) Lyapunov
functions which enable stability analysis with the help of re-
sults of Barbashin-Krasovskii-LaSalle type. The individual
ISS-Lyapunov functions that we start with are also “weak”
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in the sense that they are allowed to decrease nonstrictly
along the continuous dynamics for one subsystem and the
discrete dynamics for the other subsystem, respectively;
thus the subsystems are not required to be ISS. A pre-
liminary variant of such a construction for the case of a
hybrid system decomposed into its continuous and discrete
dynamics appeared in [8]; here we develop a much more
general result and study its implications (see Section III).

Compared to stability theorems based on strictly de-
creasing Lyapunov functions, stability results of LaSalle
type suffer from several limitations. In particular, they do
not allow the presence of external disturbances and are
not helpful for characterizing robustness of stability under
perturbations of the system. Nevertheless, in the setting
of hybrid systems we find that working with nonstrictly
decreasing Lyapunov functions is a very natural approach
that is capable of yielding useful results. This approach is
natural because it is often convenient to look for Lyapunov
functions that, for example, decrease along the continuous
flow while remaining constant during discrete events, or
vice versa. To support the claim that this approach is useful,
we employ it to analyze two classes of control synthesis
algorithms of current interest: event-triggered control and
quantized feedback control (see Section IV).

II. PRELIMINARIES

A. Derivatives and comparison functions

For a continuously differentiable (C1) function V :
R

n → R and a vector v ∈ R
n we will write the directional

derivative of V along v as V ′(x; v) := 〈∇V (x), v〉, where
∇V denotes the gradient of V. Our construction of weak
Lyapunov functions for interconnected systems involves
taking a maximum of two C1 functions, which results in a
function that is typically not C1 but just locally Lipschitz.
We extend the above directional derivative notation to Lip-
schitz functions by interpreting it as the Clarke derivative:

V ′(x; v) = V ◦(x; v) := lim sup
h→0+, y→x

(V (y + hv) − V (y))/h.

For C1 functions, the two derivative concepts coincide. The
following is a consequence of [10, Prop. 2.1.2 and 2.3.12].

Lemma 1 Consider two functions V1 : R
n → R and

V2 : R
n → R with well-defined Clarke derivatives for

all x ∈ R
n and v ∈ R

n. Introduce three sets A :=
{x : V1(x) > V2(x)}, B := {x : V1(x) < V2(x)},
Γ := {x : V1(x) = V2(x)}. Then, for any v ∈ R

n, the
function U(x) := max{V1(x), V2(x)} satisfies U ′(x; v) =
V ′

1(x; v) ∀x ∈ A, U ′(x; v) = V ′
2(x; v) ∀x ∈ B, and

U ′(x; v) ≤ max{V ′
1(x; v), V ′

2(x; v)} ∀x ∈ Γ.
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The following lemma was proved in [6].

Lemma 2 Let1 χ1, χ2 ∈ K∞ satisfy χ1 ◦ χ2(r) < r for
all r > 0. Then, there exists a K∞ function ρ such that
• χ1(r) < ρ(r) < χ−1

2 (r) for all r > 0;
• ρ(r) is C1 on (0,∞) and ρ′(r) > 0 for all r ∈ (0,∞).

B. Hybrid system model
Motivated by hybrid system models proposed in [11], we

consider hybrid systems with inputs that are described by a
combination of continuous flow and discrete jumps, of the
following form (see also [12]):

ẋ = f(x,w), (x,w) ∈ C (1)
x+ = g(x,w), (x,w) ∈ D (2)

where x ∈ R
n, w ∈ R

m, C,D are sets closed in R
n ×R

m

and such that C∪D ⊆ R
n×R

m, and f and g are continuous
maps from R

n × R
m to R

n. The solutions of the hybrid
system are defined on so-called hybrid time domains. A set
E ⊂ R≥0 ×Z≥0 is called a compact hybrid time domain if
E = ∪J

j=0([tj , tj+1], j) for some finite sequence of times
0 = t0 ≤ t1 ≤ · · · ≤ tJ . E is a hybrid time domain if for
all (T, J) ∈ E, E ∩ ([0, T ] × {0, 1, . . . , J}) is a compact
hybrid time domain. A hybrid signal is a function defined
on a hybrid time domain. A hybrid input is a hybrid signal
w : domw → R

m such that w(·, j) is Lebesgue measurable
and locally essentially bounded for each j. A hybrid arc is
a hybrid signal x : domx→ R

n such that x(·, j) is locally
absolutely continuous for each j. A hybrid arc x : domx→
R

n and a hybrid input w : domw → R
m are a solution

pair to the hybrid model (1), (2) if: domx = domw; for all
j ∈ Z≥0 and almost all t ∈ R≥0 such that (t, j) ∈ domx we
have (x(t, j), w(t, j)) ∈ C and ẋ(t, j) = f(x(t, j), w(t, j));
and for (t, j) ∈ domx such that (t, j+1) ∈ domx we have
(x(t, j), w(t, j)) ∈ D and x(t, j + 1) = g(x(t, j), w(t, j)).
Here, x(t, j) represents the state of the hybrid system after
t time units and j jumps. Under appropriate regularity
conditions on C,D, f, g the hybrid system possesses solu-
tions, which may be non-unique (see [11]). Similarly, one
can define solutions for hybrid systems for the case of no
inputs [13]. A solution is called complete if its domain is
unbounded. The hybrid system model considered in [11],
[13] actually replaces the differential equation in (1) and
the difference equation in (2) by inclusions, with f and
g becoming set-valued maps satisfying suitable regularity
assumptions; it is straightforward to adapt the results that
follow to this more general setting.

In this paper we consider the situation where the hybrid
system takes the form (1), (2) without the inputs, i.e.,

ẋ = f(x), x ∈ C (3)
x+ = g(x), x ∈ D (4)

1A continuous function γ : R≥0 → R≥0 is of class K if it is zero at
zero and strictly increasing. It is of class K∞ if it is unbounded; note that
K∞ functions are globally invertible. A function β : R≥0×R≥0 → R≥0

is of class KL if β(·, t) is of class K for each fixed t ≥ 0 and β(r, t) is
decreasing to zero as t → ∞ for each fixed r ≥ 0.

and is then decomposed as follows:

ẋ1 = f1(x1, x2), ẋ2 = f2(x1, x2), x ∈ C (5)
x+

1 = f1(x1, x2), x+

2 = g2(x1, x2), x ∈ D (6)

where x := (x1, x2) which is a shorthand notation we use
for (xT

1 , x
T
2 )T , xi ∈ R

ni , f := (f1, f2), g := (g1, g2),
and n := n1 + n2. We regard this system as a feedback
connection of two hybrid subsystems, one having state x1

and input x2 and the other having state x2 and input x1.
Decomposing the hybrid system (1), (2) in this way is very
natural and not restrictive; for example, we can always
realize it as a feedback interconnection of its continuous
and discrete dynamics.

C. (Pre-)asymptotic stability

We now define the desired asymptotic property of solu-
tions that we want to achieve for the system (3), (4), which
we will be able to establish as an eventual consequence
of our weak Lyapunov function construction. This stability
property is a variant of the asymptotic stability notion,
which is standard in the nonlinear systems literature; for hy-
brid system models considered here, it is discussed in [13].
For simplicity, we limit ourselves here to global stability
properties with respect to an equilibrium at the origin. The
hybrid system (3), (4) is globally pre-asymptotically stable
(pre-GAS) if all its solutions satisfy

|x(t, j)| ≤ β(|x(0, 0)|, t+ j) (7)

for all (t, j) ∈ domx, where β is a function of class KL. If
a system is pre-GAS then all complete solutions converge
to 0. Completeness is not part of the stability definition,
and needs to be checked separately. As shown in [13,
Theorem S3], for hybrid systems with local existence of
solutions, establishing completeness of solutions amounts
to ruling out the possibility of finite escape time (during
flow) and of jumping out of C ∪ D; the former can be
done using well-known results on ODEs (and in fact (7)
precludes finite escape time), while the latter is automatic
when C ∪D = R

n. If all solutions are complete, then the
prefix “pre-” is dropped.

III. CONSTRUCTION OF WEAK LYAPUNOV FUNCTIONS

In this section we present the main result of the paper,
which specifies how to construct a weak Lyapunov function
by using appropriate weak ISS-Lyapunov functions for sub-
systems in a feedback interconnection when an appropriate
small gain condition is satisfied. Implications of this result
for system trajectories are then discussed.

A. Main result

Consider the hybrid system (3), (4) decomposed as (5), (6).

Assumption III.1 There exist C1 functions Vi : R
ni →

R≥0, i = 1, 2 such that the following hold:
1) There exist functions ψi1, ψi2 ∈ K∞ such that for all
xi ∈ R

ni , i = 1, 2 we have ψi1(|xi|) ≤ Vi(xi) ≤ ψi2(|xi|).
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2) There exist functions χi ∈ K∞, i = 1, 2, a positive
definite function α1 : R≥0 → R≥0, and a function R :
R

n2 → R≥0 such that for all x ∈ C we have

V1(x1) ≥ χ1(V2(x2)) ⇒

V ′
1(x1; f1(x)) ≤ −α1(V1(x1)), (8)

V2(x2) ≥ χ2(V1(x1)) ⇒

V ′
2(x2; f2(x)) ≤ −R(x2). (9)

3) There exist a positive definite function λ2 : R≥0 → R≥0

satisfying λ2(s) < s ∀s > 0 and a function Y : R
n1 → R≥0

such that for all x ∈ D we have

V1(g1(x)) ≤ max{V1(x1) − Y (x1), χ1(V2(x2))}, (10)
V2(g2(x)) ≤ max{λ2(V2(x2)), χ2(V1(x1))} (11)

where χi are the same as in item 2.
4) The following small-gain condition holds:

χ1 ◦ χ2(s) < s ∀s > 0. (12)

The next result asserts the existence of a weak Lyapunov
function nondecreasing along trajectories of the overall
hybrid system, suitable for an application of a Barbashin-
Krasovskii-LaSalle-type theorem as we show afterwards.

Theorem 1 Consider the hybrid system (5), (6). Suppose
that Assumption III.1 holds. Let ρ ∈ K∞ be generated via
Lemma 2 using χ1, χ2. Let

V (x) := max{V1(x1), ρ(V2(x2))}. (13)

Then, there exist ψ1, ψ2 ∈ K∞, a positive definite function
σ : R≥0 → R≥0 with σ(s) < s ∀s > 0, and a positive semi-
definite function S : R≥0 → R≥0 such that the following
hold:
1) For all x ∈ R

n we have ψ1(|x|) ≤ V (x) ≤ ψ2(|x|).
2) For all x ∈ C we have

V ′(x; f(x)) ≤ max{−α1(V (x)),−S(x2)}. (14)

3) For all x ∈ D we have

V (g(x)) ≤ max{V (x) − Y (x1), σ(V (x))}. (15)

Proof: Since ρ is generated using χ1, χ2 via Lemma
2, we have

χ1(r) < ρ(r) and χ2(r) < ρ−1(r) ∀r > 0. (16)

Let q(r) := ρ′(r). The proof of item 1 is straightforward
and it is omitted. We now establish item 2. Let S(·) :=
q(V2(·)) · R(·) and σ(·) := max{χ1 ◦ ρ−1(·), ρ ◦ λ2 ◦
ρ−1(·), ρ◦χ2(·)}. By construction of ρ (see (16)) we easily
see that σ(s) < s for all s > 0. We introduce three
subsets of R

n and investigate the behavior of V on each
one intersected with C (and later with D). Define

A := {(x1, x2) : V1(x1) < ρ(V2(x2))},

B := {(x1, x2) : V1(x1) > ρ(V2(x2))},

Γ := {(x1, x2) : V1(x1) = ρ(V2(x2))}.

Consider first x ∈ A ∩ C. Here V (x) = ρ(V2(x2)) and
so (9) applies by virtue of (16), hence V ′(x; f(x)) =
q(V2(x2)) · V

′
2(x2; f2(x)) ≤ −q(V2(x2))R(x2) = −S(x2).

Next, consider x ∈ B∩C so that V (x) = V1(x1). Now (8)
applies and we have

V ′(x; f(x)) = V ′
1(x1; f2(x))

≤ −α1(V1(x1)) = −α1(V (x)). (17)

Finally, consider x ∈ Γ ∩ C. Using Lemma 1 and
noting that Γ is contained in the closure of both A
and B, we can use the same inequalities as above
to obtain V ′(x; f(x)) ≤ max{V ′

1(x1; f1(x)), q(V2(x2)) ·
V ′

2(x2; f2(x))} ≤ max{−α1(V (x)),−q(V2(x2))R(x2)} =
max{−α1(V (x)),−S(x2)}. Therefore, (14) holds.

We now establish item 3. Using the definition of V in
(13) and item 3 of Assumption III.1, we have for all x ∈ D:

V (g(x)) = max{V1(g1(x)), ρ(V2(g2(x)))}

≤ max {V1(x1) − Y (x1), χ1(V2(x2)),

ρ ◦ λ2(V2(x2)), ρ ◦ χ2(V1(x1))}

≤ max
{

V (x) − Y (x1), χ1 ◦ ρ
−1(V (x)),

ρ ◦ λ2 ◦ ρ
−1(V (x)), ρ ◦ χ2(V (x))

}

≤ max{V (x) − Y (x1), σ(V (x))}.

Therefore, (15) is verified.

Remark 1 We can draw stronger conclusions if either R(·)
or Y (·) or both are positive definite functions rather than
merely nonnegative. If both R(·) and Y (·) are positive
definite, then V becomes a strong Lyapunov function (i.e.,
strictly decreasing away from 0).

Remark 2 The following “natural decomposition” of the
hybrid system (3), (4) is often of interest:

ẋ1 = f1(x1, x2), ẋ2 = 0, x ∈ C

x+

1 = x1, x+

2 = g2(x1, x2), x ∈ D
(18)

where we can call x1 and x2 the continuous and discrete
state variables, respectively. Note that x1 does not change
during the jumps while x2 does not change during the
flow. Suppose that there exist C1 functions V1 and V2 and
functions ψij , χi, α1, λ2 such that (8), (11) and items 1 and
4 of Assumption III.1 hold (all functions are from the same
classes as in Assumption III.1). Let V be defined via (13).
Then, it is easy to see that (9) holds with R(·) ≡ 0 and (10)
holds with Y (·) ≡ 0, hence Theorem 1 applies.

B. Consequences for trajectories

We can translate the properties of the weak Lyapunov
function V established in Theorem 1 into a stability prop-
erty of the system trajectories by using Theorem 23 of [13],
which is a version of the Barbashin-Krasovskii-LaSalle
theorem for hybrid systems. That result and the conclusion
of Theorem 1 imply that the system (5), (6) is pre-GAS if
V does not stay constant and positive along any complete
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solution. Interestingly, by a further analysis but without
assuming anything beyond the hypotheses of Theorem 1, we
can show that V cannot stay constant and positive along any
solution satisfying the following mild condition. Let us say
that a hybrid time domain (or a hybrid arc defined on this
domain) has flow followed by a jump if its projection onto
the t-axis contains two intervals [tk, tk+1] and [tk+1, tk+2]
with tk < tk+1. This name is justified by the fact that a
flow occurs on [tk, tk+1], followed by a jump at t = tk+1.

Proposition 1 Let the hypotheses of Theorem 1 hold, and
let V be defined via (13). Then, V does not stay constant
and positive along any solution of (5), (6) that has flow
followed by a jump.

Proof: We continue to use the notation and calculations
of the proof of Theorem 1. First, note that V actually
decreases strictly on B ∩ C (during flow) and on A ∩ D
(during jumps), i.e., we have

V ′(x; f(x)) < 0 ∀x ∈ B ∩ C, (19)

V (g(x)) < V (x) ∀x ∈ A ∩D. (20)

The first of these properties is an immediate consequence
of (17). To see why the second one is true, consider
x ∈ A ∩ D so that V (x) = ρ(V2(x2)) > V1(x1).
We have V (g(x)) = max{V1(g1(x)), ρ(V2(g2(x)))}.
By (10) and (16), V1(g1(x)) ≤ max{V1(x1) −
Y (x1), χ1(V2(x2))} < ρ(V2(x2)) = V (x). On the other
hand, by (11) and (16) again, ρ(V2(g2(x))) ≤ max{ρ ◦
λ2(V2(x2)), ρ◦χ2(V1(x1))} ≤ max{ρ◦λ2◦ρ

−1(V (x)), ρ◦
χ2(V (x))} < V (x). Hence, (20) is established.

Now, suppose that there is a trajectory with the indicated
property along which V stays equal to a positive constant.
Consider the interval [tk, tk+1] that comes from the defini-
tion of “flow followed by a jump,” so that x(t, k) ∈ C for
t ∈ [tk, tk+1) and the next jump will happen at t = tk+1.
We cannot have x(t, k) ∈ B ∩ C for any t ∈ [tk, tk+1),
because then (19) applied with x = x(t, k) would force
V (x(·, k)) to decrease during flow. Hence, x(t, k) ∈ A ∪
Γ ∀t ∈ [tk, tk+1). We thus have V (x(t, k)) = ρ(V2(x(t, k))
on this interval, and V2(x(·, k)) must remain constant during
flow. As for V1(x(·, k)), by (8) and (16) it decreases during
flow when x(·, k) is in A sufficiently close to Γ or in Γ\{0}.
However, x(·, k) cannot reach Γ while remaining in A∪Γ if
V1 decreases and V2 stays constant. Thus x(tk+1, k), which
is the state right before the next jump, must be in A, hence
in A ∩ D. But then V will decrease during this jump by
virtue of (20), and we reach a contradiction. .

We can now state the following as a direct corollary
of [13, Theorem 23] and our Theorem 1 and Proposition 1.

Corollary 1 Suppose that the hybrid system (5), (6) fulfills
Assumption III.1, and let V be defined via (13). If V does
not stay constant and positive along any complete solution
of (5), (6) that does not have flow followed by a jump, then
the system is pre-GAS.

In other words, by Proposition 1 solutions that have flow
followed by a jump do not require any further attention,
and it is just the other complete solutions that we need
to analyze separately. More precisely, all complete hybrid
solutions can be classified into the following three types:
(i) (eventually) continuous solutions, i.e., solutions which
(possibly after jumping finitely many times) only flow;
(ii) (eventually) discrete solutions, i.e., solutions which
(possibly after flowing for some finite time) only jump; and
(iii) solutions that continue to have both flow and jumps for
arbitrarily large times. While it may be difficult to check
whether a given solution is of type (iii), this is not necessary.
Indeed, every solution of type (iii) has flow followed by a
jump, and Proposition 1 rules out the possibility of our weak
Lyapunov function V being constant and positive along
such solutions. The possibility of V being constant and
positive along solutions of types (i) and (ii) is something
that needs to be analyzed separately. To this end, it is useful
to observe that if V is constant along a solution that is
eventually continuous, then there is a purely continuous
solution along which V is constant, and the same is true
for eventually discrete vs. purely discrete solutions. So, only
purely continuous and purely discrete solutions need to be
checked. In practice, these classes of solutions are not very
rich and we expect to be able to quickly rule out either the
existence of such solutions or the possibility of V staying
constant and positive along them. We will see examples
of such reasoning in Section IV, where it will go through
thanks to additional structure relating the flow and jump sets
to the gain functions. What we mean by this is that in the
general setting considered so far, the flow and jump sets C
and D are completely separate from the gain functions χ1

and χ2, while in the design examples treated in Sections IV-
A and IV-B there is a close relation between them.

IV. TWO APPLICATIONS

A. Emulation with event-triggered sampling

In this section we revisit results in [14]. Consider a
continuous-time plant ẋ = f(x, u) for which a state
feedback controller u = k(x) was designed to globally
asymptotically stabilize the closed-loop system. Suppose
that we want to implement the controller in a sampled-data
fashion so that we take samples of x(·) at times tk, k ∈ N
and let u(t) = k(x(tk)), t ∈ [tk, tk+1). The sampling times
tk will be designed in an event-driven fashion. To this end,
introduce an auxiliary variable e(t) := x(tk) − x(t) and
assume that there exist C1 functions V1, V2 : R

n → R and
ψij , χ1, α1 ∈ K∞, i, j = 1, 2 such that for all x, e we have

ψ11(|x|) ≤V1(x) ≤ ψ21(|x|), ψ12(|e|) ≤ V2(e)≤ ψ22(|e|),
(21)

V1(x) ≥ χ1(V2(e)) ⇒

〈∇V1, f(x, k(x+ e))〉 ≤ −α1(V1(x)). (22)

Let χ2 ∈ K∞ be arbitrary and satisfy

χ1 ◦ χ2(s) = χ2 ◦ χ1(s) < s ∀s > 0. (23)
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Our triggering strategy is to update the control whenever
V2(e) ≥ χ2(V1(x)), which leads to the following closed-
loop hybrid system:

ẋ = f(x, k(x+ e)), ė = −f(x, k(x+ e)), (x, e) ∈ C

x+ = x, e+ = 0, (x, e) ∈ D (24)

where C := {(x, e) : V2(e) ≤ χ2(V1(x))} and D :=
{(x, e) : V2(e) ≥ χ2(V1(x))}.

Proposition 2 Suppose that there exist Lyapunov functions
V1, V2 and functions ψij , χi, α1 ∈ K∞, i, j = 1, 2 such that
(21)–(23) hold. Let V be defined via (13). Then, there exist
functions ψ1, ψ2 ∈ K∞ such that the following holds for
the system (24): ψ1(|(x, e)|) ≤ V (x, e) ≤ ψ2(|(x, e)|),

V ′
(

(x, e); (f(x, k(x+ e)),−f(x, k(x+ e)))
)

≤ −α1(V (x, e)) ∀(x, e) ∈ C,

and V (x, 0) ≤ V (x, e) ∀(x, e) ∈ D.

Proof: Note that for all (x, e) ∈ D we have that the
following holds: V1(x

+) = V1(x). In view of this and (22),
the conditions (8) and (10) of Assumption III.1 hold (with
Y ≡ 0). Consider an arbitrary χ̄2(s) > χ2(s),∀s > 0 and
such that χ1 ◦ χ̄2(s) < s ∀s > 0; such a χ̄2 always exists
since the inequality (23) is strict. Then, we have that for
(x, e) ∈ C the following is vacuously true:

V2(e) ≥ χ̄2(V1(x)) ⇒ 〈∇V2(e),−f(x, k(x+e))〉 ≤−R(e)

where R(·) can be arbitrary. Moreover, for all e we have
V2(e

+) = V2(0) = 0. Hence, the conditions (9) and (11) of
Assumption III.1 hold (with arbitrary λ2). By construction,
the small gain condition (item 4 of Assumption III.1) holds,
and the conclusion follows from Theorem 1.

To apply Corollary 1, according to the remarks following
that corollary we need to check complete solutions that
are either purely continuous or purely discrete (ignoring of
course the trivial solution at the origin). Here we know that
after a jump we must flow, since jumps reset e to 0. Thus,
the only solutions that we need to analyze are purely con-
tinuous ones. However, in view of the ISS condition (22),
the definition of C, and the small-gain condition (23), such
flow-only behavior is possible only when both x and e
converge to 0. Hence, V cannot stay constant and positive
along any such solution. Finally, all solutions are complete
because the properties of V in Theorem 1 guarantee their
boundedness and we have C ∪ D = R

n by construction.
We have arrived at the following result.

Corollary 2 The origin is a globally asymptotically stable
equilibrium of the closed-loop hybrid system (24).

B. Quantized feedback control

This example is in some sense more specialized than
the previous one, because we will only work with linear
dynamics. On the other hand, this additional structure will
permit us to explicitly construct the Lyapunov functions

V1, V2 (which will be quadratic) and derive expressions
for the gain functions χ1, χ2 (which will be linear gains),
instead of just assuming their existence as we did in the
previous example.

Consider the linear time-invariant system ẋ = Ax+Bu
where x ∈ R

n, u ∈ R
m, and A is a non-Hurwitz matrix. We

assume that this system is stabilizable, so that there exist
matrices P = P T > 0 and K such that

(A+BK)TP + P (A+BK) ≤ −I. (25)

We denote by λmin(·) and λmax(·) the smallest and the
largest eigenvalue of a symmetric matrix, respectively. By
a quantizer we mean a piecewise constant function q :
R

n → Q, where Q is a finite or countable subset of R
n,

for which there exist positive numbers M (the range of q,
which can be a finite number or ∞ depending on whether Q
is finite or countable) and ∆ (the quantization error bound)
satisfying |z| ≤ M ⇒ |q(z) − z| ≤ ∆. We assume that
q(x) = 0 for x in some neighborhood of 0 (in order that
the equilibrium at 0 be preserved under quantized control).
It is well known that quantization errors in general destroy
asymptotic stability, in the sense that the quantized feedback
law u = Kq(x) is no longer stabilizing. To overcome this
problem, we will use quantized measurements of the form

qµ(x) := µq(x/µ), µ > 0. (26)

The quantizer qµ has range Mµ and quantization error
bound ∆µ. The “zoom” variable µ will be the discrete
variable of the hybrid closed-loop system, initialized at
some fixed value. The feedback law will be u = Kqµ(x).
We consider the following scheme for updating µ, which
we refer to as the “quantization protocol”:

µ̇ = 0, (x, µ) ∈ C

µ+ = Ωµ, (x, µ) ∈ D

where C := {(x, µ) : |qµ(x)| ≥ (Θ + ∆)µ}, D :=
{(x, µ) : |qµ(x)| ≤ (Θ + ∆)µ}, Ω ∈ (0, 1), and Θ >
√

λmax(P )2‖PBK‖∆/
√

λmin(P ). The overall closed-
loop hybrid system then looks like

ẋ = Ax+BKqµ(x), µ̇ = 0, (x, µ) ∈ C

x+ = x, µ+ = Ωµ, (x, µ) ∈ D
(27)

which is the “natural decomposition” as in Remark 2.
The idea behind achieving asymptotic stability is to

“zoom in”, i.e., decrease µ to 0 in a suitable discrete
fashion. To simplify the exposition, we will assume that
the condition |x| ≤ Mµ always holds, i.e., x always
remains within the range of qµ. This is automatically
true if M is infinite, and can be guaranteed by a proper
initialization of µ if a bound on the initial state x(0) is
available. For finite M and completely unknown x(0), this
can be achieved by incorporating an initial “zooming-out”
scheme and subsequently ensuring that the condition is
never violated (see [15] for details). For a Lyapunov-based
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small-gain analysis of a quantization scheme that includes
zoom-outs, see the recent work [16].

Lemma 3 Consider the hybrid system (27). Let V1(x) :=
xTPx, with P and K from (25). Let V2(µ) := µ2. Pick two
numbers ε1 and ε2 satisfying 0 < ε1 < ε2 and

Θ ≥
√

λmax(P )2‖PBK‖∆(1 + ε2)/
√

λmin(P ). (28)

Then:
1) For all (x, µ) ∈ C we have

V1(x) ≥ χ1V2(µ) ⇒

〈∇V1(x), Ax+BKqµ(x)〉 ≤ −c1V1(x), (29)

V2(µ) ≥ χ2V1(x) ⇒ 〈∇V2(µ), 0〉 ≤ −c2V2 (30)

with c1 := ε1/((1 + ε1)λmax(P )), χ1 :=
4λmax(P )‖PBK‖2∆2(1 + ε1)

2, χ2 :=
1/(4λmax(P )‖PBK‖2∆2(1 + ε2)

2), and any c2 > 0.
2) For all (x, µ) ∈ D we have V1(x

+) = V1(x) and
V2(Ωµ) = Ω2V2(µ) < V2(µ).

This lemma, whose proof we omit, yields the following.

Proposition 3 Assumption III.1 holds for the system (27)
and, hence, the conclusion of Theorem 1 holds.

To conclude asymptotic stability, we can apply Corol-
lary 1. If x(0) = 0 then, since µ(0) is constrained to be
positive, we will have a solution that only jumps and along
which µ → 0, hence V does not stay constant. It is not
difficult to see that every x(0) 6= 0 and every µ(0) > 0
give a solution that has flow followed by a jump. Indeed,
after finitely many jumps µ becomes small enough so that
(x, µ) ∈ C and flow must occur, and then due to (29) x will
eventually become small enough so that (x, µ) ∈ D and a
jump must occur. In fact, [17], [15], [18] contain results
along these lines (see in particular Lemma IV.3 in [18]).
Finally, it is clear that all solutions are complete because
the dynamics are linear and C ∪D = R

n. We have shown

Corollary 3 The origin is a globally2 asymptotically stable
equilibrium of the closed-loop hybrid system (27).

The above quantization protocol has a clear geometric
interpretation. We zoom in if the quantized measurements
show that |x| ≤ (Θ+2∆)µ, which is guaranteed to happen
whenever |x| ≤ Θµ. The condition (28) means that for
each µ, the ball of radius Θµ around the origin contains
the level set of V1 superscribed around the ball of radius
2‖PBK‖∆µ, outside of which V1 is known to decay
(thus ensuring that the zoom-in will be triggered). Similar
constructions appeared in [17], [15] but they did not employ
the small-gain argument and were arguably less transparent.

2Recall that we required the condition |x| ≤ Mµ to hold for all times.
When M is finite, this actually restricts the admissible initial conditions
(x(0), µ(0)). However, as shown in [15], if M large enough compared to
∆ then an initial “zooming-out” scheme can be used to guarantee that the
above requirement is fulfilled from some time onwards.

V. CONCLUSIONS

For a hybrid system realized as a feedback interconnec-
tion of ISS subsystems satisfying a small-gain condition,
we presented a construction of a weak Lyapunov function
for the overall system starting from weak ISS-Lyapunov
functions for the subsystems. We explained how asymptotic
stability can be concluded with the help of this weak Lya-
punov function and results of Barbashin-Krasovskii-LaSalle
type for hybrid systems, and illustrated this approach in two
application-motivated control design contexts. The results
were presented in a somewhat specialized setting, in order
to make them simple to state and easy to understand. Sev-
eral generalizations, such as allowing differential/difference
inclusions instead of equations and capturing stability with
respect to general compact sets, will be reported elsewhere.
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