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Abstract— In this paper, we further study the recently in-
troduced notion of norm-controllability, which captures the
responsiveness of a nonlinear system with respect to applied
inputs in terms of the norm of an output map. We give suffi-
cient conditions for this property based on higher-order lower
directional derivatives, which generalize the results obtained in
our earlier work and help to establish norm-controllability for
systems with outputs having relative degree greater than one.
Furthermore, we illustrate the obtained results by means of a
chemical reaction example.

I. INTRODUCTION

When considering dynamical systems with inputs and

outputs, a key question is how the applied inputs affect

the behavior of the states and outputs of the system. In

this respect, various properties are of interest. For example,

one fundamental system property is controllability, which is

usually formulated as the ability to reach any state from any

other state by choosing an appropriate control input (see,

e.g., [1, 2]). Another important question is whether bounded

inputs lead to bounded system states or outputs. This ques-

tion is dealt with in the context of input-to-state stability

(ISS) [3] and L∞ stability (see, e.g., [4]), respectively, where

an upper bound on the system state and the infinity norm

of the output, respectively, are considered in terms of the

infinity norm of the input.

In other settings, a problem complementary to the above is

of interest. Namely, one would like to obtain a lower bound

on the system state or the output in terms of the norm of the

applied inputs. This could, e.g., be the case in the process

industry, where one wants to determine whether and how an

increasing amount of reagent yields an increasing amount of

product, or in economics, where certain inputs such as the

price of a product or the number of advertisements influence

the profit of a company. Furthermore, in case of systems

subject to bounded disturbances, it is interesting to obtain a

lower bound for the effect of the worst case disturbance on

the system states or the output.

In order to deal with the above questions, in our earlier

work [5] we introduced the notion of norm-controllability. As
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the wording suggests, in contrast to point-to-point control-

lability, we consider the norm of the system state (or, more

generally, of an output), and ask how it is affected by the

applied inputs. In particular, we are interested in whether this

norm can be made large by applying large enough inputs for

sufficiently long time. The definition of norm-controllability

(see Section II) is such that the reachable set of the system

projected on the output space can be lower bounded in terms

of the norm of the applied inputs and the time horizon over

which they were applied. In this respect, norm-controllability

can be seen as complementary to the concepts of ISS and

L∞ stability, respectively.

Besides introducing the concept of norm-controllability,

the main contribution of [5] was to provide a sufficient

Lyapunov-like condition for this property, which requires the

existence of a function V whose derivative can be lower-

bounded in terms of the input u. This condition, however,

can be restrictive and is in general not satisfied for a system

whose output y has a relative degree greater than one. In this

paper, we resolve this issue and provide relaxed sufficient

conditions for a system to be norm-controllable in terms

of higher-order derivatives of V (see Theorems 1 and 2 in

Section III). This generalization is nontrivial and the involved

higher-order derivatives are not classical ones but higher-

order lower directional derivatives (see, e.g., [6, 7]). A further

generalization compared to the results in [5] is that the

obtained sufficient conditions only have to hold on a subset

of R
n satisfying a suitable control-invariance condition. In

this case, norm-controllability can be established on this set.

Finally, we illustrate the obtained results by means of a

chemical reaction example, where we examine the influence

of the concentration of the reagent in the inlet stream on the

amount of the obtained product.

II. PRELIMINARIES AND SETUP

Let R≥0 := {x ∈ R : x ≥ 0} denote the set of nonnegative

real numbers. Let id : R
n → R

n be the identity function, i.e.,

id(x) = x for all x ∈ R
n. For a set S ⊆ R

n, let int(S) denote

its interior and ∂S its boundary.

We consider nonlinear control systems of the type

ẋ = f(x, u), y = h(x), x(0) = x0 (1)

with state x ∈ R
n, output y ∈ R

k, and input u ∈ U ⊆ R
m,

where the set U of admissible input values can be any closed

subset of R
m (or the whole R

m). Suppose that f ∈ C k̄−1

for some k̄ ≥ 1 and ∂k̄−1f/∂xk̄−1 is locally Lipschitz

in x and u. Input signals u(·) to the system (1) satisfy

u(·) ∈ L∞
loc(R≥0, U), where L∞

loc(R≥0, U) denotes the set of
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all measurable and locally bounded functions from R≥0 to

U . We say that a set B ⊆ R
n is rendered control-invariant

for system (1) by a set Ū ⊆ U , if for every x0 ∈ B and

every u(·) satisfying u(·) ∈ L∞
loc(R≥0, Ū) the corresponding

state trajectory satisfies x(t) ∈ B for all t ≥ 0. We assume

that the system (1) exhibits the unboundedness observability

property (see [8] and the references therein), which means

that for every trajectory of the system (1) with finite escape

time tesc, also the corresponding output becomes unbounded

for t → tesc. This is a very reasonable assumption as one

cannot expect to measure responsiveness of the system in

terms of an output map h (as we will later do) if a finite

escape time cannot be detected by this output map.

Let µ : R≥0 → R≥0 be a function satisfying µ(s) ≥ s for

all s ∈ R≥0. For every b > 0, denote by Ub := {u ∈ U : b ≤
|u| ≤ µ(b)} the set of all admissible input values with norm

in the interval [b, µ(b)], which we assume to be nonempty.

Furthermore, for every a, b > 0, denote by

Ua,b := {u(·) : u(t) ∈ Ub, ∀t ∈ [0, a]} ⊆ L∞
loc(R≥0, U) (2)

the set of all measurable and locally bounded input signals

whose norm takes values in the interval [b, µ(b)] on the time

interval [0, a]. Let Rτ{x0,U} ⊆ R
n ∪{∞} be the reachable

set of the system (1) at time τ ≥ 0, starting at the initial

condition x(0) = x0 and applying input signals u(·) in

some set U ⊆ L∞
loc(R≥0, U). The reachable set Rτ{x0,U}

contains ∞ if for some u(·) ∈ U a finite escape time tesc ≤ τ
exists. Furthermore, let R≤τ{x0,U} :=

⋃
0≤t≤τ Rt{x0,U}.

Define Rτ
h(x0,U) as the radius of the smallest ball in the

output space centered at y = 0 which contains the image of

the reachable set Rτ{x0,U} under the output map h(·), or

∞ if this image is unbounded.

Definition 1 ([5]): The system (1) is norm-controllable

from x0 with scaling function µ and gain function γ, if there

exist a function µ : R≥0 → R≥0 satisfying µ(s) ≥ s for all

s ∈ R≥0 and a function γ : R≥0 × R≥0 → R≥0 which is

non-decreasing in the first argument and a K∞-function in

the second argument, such that for all a > 0 and b > 0

Ra
h(x0,Ua,b) ≥ γ(a, b), (3)

where Ua,b is defined in (2). �

Loosely speaking, the above definition means that for each

fixed time horizon a, the output y can be made large by

applying an input with large magnitude b. On the other hand,

for fixed b, an increasing time horizon a should lead to a

nondecreasing magnitude of the output. For a more detailed

discussion regarding the concept of norm-controllability as

well as illustrating examples (which also further explain the

role of the scaling function µ), the reader is referred to [5].

III. NORM-CONTROLLABILITY: RELAXED SUFFICIENT

CONDITIONS

In our earlier work [5], we obtained a Lyapunov-like

sufficient condition for norm-controllability involving first-

order lower directional derivatives. In this section, we show

how this condition can be relaxed. First, we consider the

situation where not the first-order directional derivative as

in [5], but some k-th order lower directional derivative, can

be lower bounded in terms of |u| for some fixed k ≥ 1. This

helps to establish norm-controllability not only for systems

with output maps of relative degree r = 1, but also for

systems with higher relative degree outputs. After that, we

will consider the more general situation where for different

regions in the state space, lower directional derivatives of

different order can be lower bounded in terms of |u|. Fur-

thermore, while in [5] we established norm-controllability

on R
n, in this paper we also treat the more general case

where the sufficient condition is only satisfied in a subset

of R
n satisfying a suitable control-invariance condition, and

hence norm-controllability can only be established there.

A. Higher-order lower directional derivatives

For a function V : R
n → R, define as in [6, 9] the lower

directional derivative of V at a point x ∈ R
n in the direction

of a vector h1 ∈ R
n as

V (1)(x;h1) := lim inf
tց0,h̄1→h1

(1/t)
(
V (x + th̄1) − V (x)

)
.

Note that at each point x ∈ R
n where V is continu-

ously differentiable, it holds that V (1)(x;h1) = Lh1
V =

(∂V /∂x)h1. Furthermore, if V (1)(x;h1) exists, define as

in [6, Equation (3.4a)] (compare also the earlier work [7])

the second-order lower directional derivative of V at a point

x in the directions h1 and h2 as1

V (2)(x;h1, h2) := lim inf
tց0,h̄2→h2

(2/t2)
(
V (x + th1 + t2h̄2)

− V (x) − tV (1)(x;h1)
)
.

In general, if the corresponding lower-order lower directional

derivatives exist, for k ≥ 1 define the kth-order lower

directional derivative as

V (k)(x;h1, . . . , hk) := lim inf
tց0,h̄k→hk

(k!/tk)

×
(
V (x + th1 + · · · + tkh̄k) − V (x) − tV (1)(x;h1)

− · · · − (1/(k − 1)!)tk−1V (k−1)(x;h1, . . . , hk−1)
)
. (4)

We will later consider lower directional derivatives of a

function V along the solution x(·) of system (1). For k ≤ k̄,

we obtain the following expansion for the solution x(·) of

system (1), starting at time t′ at the point x := x(t′) and

applying some constant input u:

x(t) = x + (∆t)h1 + · · · + (∆t)khk + o((∆t)k+1) (5)

1In contrast to [6, 7], here we include the factor 2 (and later, in (4), the
factor k!) into the definition of higher-order lower directional derivatives. We
take this slightly different approach such that later, at each point where V

is sufficiently smooth, these lower directional derivatives reduce to classical
directional derivatives (without any extra factors as in [6, 7]).
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with ∆t := t − t′ and

h1 := ẋ(t′) = f(x, u),

h2 := (1/2)ẍ(t′) = (1/2)∂f/∂x|(x,u)f(x, u),

. . .

hk := (1/k!)x(k)(t′). (6)

In order to facilitate notation, in the following we write

V (k)(x; f(x, u)) := V (k)(x;h1, . . . , hk) for the kth-order

lower directional derivative of V at the point x along the

solution of (1) when a constant input u is applied, i.e., with

h1, . . . , hk given in (6). It is straightforward to verify that at

every point where V is sufficiently smooth, V (k)(x; f(x, u))
reduces to Lk

fV |(x,u) (compare [6, Section 3] and [7, p.73]),

where Lk
fV |(x,u) is the kth-order Lie derivative of V along

the vector field f . Namely, if V is sufficiently smooth,

the kth-order lower directional derivative reduces to the

kth-order directional derivative (i.e., lim inf in (4) can be

replaced by lim without varying hk ([6, Proposition 3.4]))

which in this case exists and is equal to Lk
fV ([7, p.73]).

B. Sufficient condition involving higher-order directional

derivatives

Theorem 1: Suppose there exist a set Ū ⊆ U and a

closed set B ⊆ R
n which is rendered control-invariant

by Ū for system (1). Furthermore, suppose there exist a

continuous function ω : R
n → R

q, 1 ≤ q ≤ n, a function

V : R
n → R, which for some 1 ≤ k ≤ k̄ is k times

continuously differentiable on R
n \ W with W := {x ∈

R
n : ω(x) = 0} and ∂kV/∂xk is locally Lipschitz there,

functions α1, α2, χ, ρ, ν ∈ K∞, a function µ : R≥0 → R≥0

satisfying µ(s) ≥ s for all s ∈ R≥0, and for each x ∈ B a

set U(x) ⊆ Ū , such that the following holds:

• For all x ∈ B,

ν(|ω(x)|) ≤ |h(x)|, (7)

α1(|ω(x)|) ≤ V (x) ≤ α2(|ω(x)|). (8)

• For each b > 0 and x ∈ B,

U(x) ∩ Ub 6= ∅. (9)

• For all (x, u) ∈ B × R
m such that u ∈ U(x) and

|ω(x)| ≤ ρ(|u|), we have

V (j)(x; f(x, u)) ≥ 0 j = 1, . . . , k − 1, (10)

V (k)(x; f(x, u)) ≥ χ(|u|). (11)

Then the system (1) is norm-controllable from all x0 ∈ B
with scaling function µ and gain function

γ(a, b) = ν
(
α−1

2

(
min

{ 1

k!
akχ(b) + V (x0), α1(ρ(b))

}))
.

(12)

Remark 1: For the special case of k = 1, Ū = U and

B = R
n, Theorem 1 in [5] is recovered. �

Remark 2: We allow V to be not continuously differ-

entiable for all x where ω(x) = 0 in order to be able to

fulfill the assumptions of the Theorem. In particular, for

k = 1, V ∈ C1 together with (8) would imply that the

gradient of V vanishes for all x where ω(x) = 0, and thus

it would be impossible to satisfy (11) there. Also for k ≥ 2,

allowing V to be not continuously differentiable for all x
where ω(x) = 0 helps in finding V satisfying (10)–(11);

this is in particular true later for the situation of Theorem 2,

where we generalize the results of Theorem 1 such that (10)–

(11) can hold for flexible k. In the two examples we consider

later on, we will choose V (x) = |ω(x)|. �

Proof of Theorem 1: In the following, we will develop

two technical lemmas and then obtain the proof of Theorem 1

by combining them. Let a, b > 0 be arbitrary but fixed,

and assume in the sequel that the hypotheses of Theorem 1

are satisfied. Furthermore, we assume that no u(·) ∈ Ua,b

leads to a finite escape time tesc ≤ a, for otherwise, by the

unboundedness observability property, also Ra
h(x0,Ua,b) =

∞, and thus (3) is satisfied with γ as in (12) and we are

done. The idea of the proof is to construct a piecewise

constant input signal u(·) ∈ Ua,b such that when applying

this input signal, the corresponding output trajectory satisfies

y(a) = h(x(a)) ≥ γ(a, b). The first lemma considers the

initial phase and proves that V can be increased, and is

in particular needed for the case where ω(x0) = 0, i.e.,

x0 ∈ W . To this end, define the set

Xb,κ := {x ∈ B : κ ≤ |ω(x)| ≤ ρ(b)} (13)

with κ satisfying 0 ≤ κ ≤ ρ(b).

Lemma 1: Let u0 ∈ U(x0) ∩ Ub and assume that x0 ∈
Xb,0. There exists some τ > 0 such that for all t ∈ (0, τ ],
it holds that V (x(t)) > V (x0) and hence in particular

V (x(t)) > 0, where x(·) is the trajectory of the system (1)

that results from applying the constant input u0 during this

time interval.

Proof: See appendix. �

Next, we consider the situation where the state x is already

away from the set W . Then, according to our assumptions,

V is k times continuously differentiable and ∂kV/∂xk is

locally Lipschitz, which we can use to show that if some

input ui is “good” at some point xi in the sense that V (k)

is positive, it is also “good” for nearby xi.

Lemma 2: Consider some time instant 0 ≤ s < a with

x(s) ∈ R≤a{x0,Ua,b}, and assume that x(s) ∈ Xb,δ for

some δ > 0; furthermore, pick an arbitrary us ∈ U(x(s)) ∩
Ub. Then, for each 0 < ε ≤ 1, there exists a number

∆(ε, δ) > 0 such that V (k)(x(t)) ≥ (1 − ε)χ(b) and

V (j)(x(t)) − V (j)(x(s)) ≥ 1 − ε

(k − j)!
χ(b)(t − s)k−j (14)

for all j = 0, . . . , k − 1 and all t ∈ [s, s + ∆(ε, δ)] ∩ [0, a],
where x(·) is the trajectory that results from applying the

constant input us during this time interval, and V (j)(x(t)) :=
V (j)(x(t); f(x(t), us)) = Lj

fV |(x(t),us) for j = 1, . . . , k− 1

and V (0)(x(t)) := V (x(t)).

Proof: The proof of Lemma 2 is omitted in this conference

paper due to space restrictions, but can be found in an online

version of this paper [10]. �
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Combining Lemmas 1 and 2, we are now able to prove

Theorem 1. Fix an arbitrary 0 < ε̄ < 1. Denote by Λb the

sublevel set

Λb :=
{
x ∈ R

n : V (x) ≤ α1(ρ(b))
}
. (15)

We construct a desired input signal in a recursive fashion

using the following algorithm. This input signal will by

construction satisfy u(t) ∈ Ū for all t ∈ [0, a]; hence, the

resulting state trajectory x(·) will remain in the set B in this

time interval if x0 ∈ B.

Step 0: Consider x0 ∈ B. If x0 ∈ int(Λb), then by (8) we

have |ω(x0)| < ρ(b) and so x0 ∈ Xb,0 according to (13). We

can then pick some u0 ∈ U(x0)∩Ub, which exists by (9), and

apply Lemma 1 to find a time τ > 0 such that the trajectory

corresponding to the constant control u ≡ u0 satisfies

V (x(t)) > V (x0) and hence in particular also V (x(t)) > 0
for all 0 < t ≤ τ . Pick some t1 ∈ (0,min{τ, a}]; note

that t1 can be chosen arbitrarily small. Apply the constant

input u ≡ u0 on the interval [0, t1) for as long as the resulting

trajectory x(·) does not hit ∂Λb. If we have x(t) ∈ ∂Λb for

some t ∈ (0, t1), then denote this time t by ť1 and skip

to Step 2, otherwise proceed to Step 1. If x0 ∈ ∂Λb, let

t1 = ť1 := 0 and skip to Step 2. If already x0 /∈ Λb, then

let t1 := 0, pick some u1 ∈ U(x0)∩Ub which exists by (9),

and apply the constant input u ≡ u1 on the interval [0, a)
for as long as the resulting trajectory x(·) does not hit ∂Λb.

If x(t) ∈ ∂Λb for some t ∈ [0, a), then denote this time t by

ť1 and skip to Step 2, otherwise skip to Step 3.

Step 1: If x(t1) ∈ ∂Λb, then let ť1 := t1 and skip to

Step 2. Otherwise, x(t1) ∈ int(Λb). Let δ̄ := α−1
2

(
V (x(t1))

)

and note that δ̄ > 0 according to the definition of t1 in

Step 0. From (8) and the definition of Λb we have δ̄ ≤
|ω(x(t1))| < ρ(b), hence x(t1) ∈ Xb,δ̄ by (13). We can

thus pick some u1 ∈ U(x(t1)) ∩ Ub and apply Lemma 2

with s = t1, us = u1, ε = ε̄ and δ = δ̄ to find a ∆(ε̄, δ̄)
such that the trajectory corresponding to the constant control

u ≡ u1 on the interval [t1,min{t1+∆(ε̄, δ̄), a}) satisfies (14)

with s = t1 and ε = ε̄ on this interval. Apply the constant

input u ≡ u1 on this interval for as long as the resulting

trajectory x(·) does not hit ∂Λb. If we have x(t) ∈ ∂Λb

for some t ∈ (t1,min{t1 + ∆(ε̄, δ̄), a}), then denote this

time t by ť1 and skip to Step 2. If this does not happen

but t1 + ∆(ε̄, δ̄) ≥ a, then skip to Step 3. Otherwise, let

t2 := t1+∆(ε̄, δ̄). In this case, x(t2) ∈ Λb and, by Lemma 2,

V (x(t2)) > V (x(t1)) according to (14) with j = 0 and

s = t1. So, we can check that x(t2) ∈ Xb,δ̄ in the same way

as we did earlier for x(t1). Therefore, we can repeat Step 1

for t2, t3, . . . (but without changing the value of δ̄).

Step 2: We have x(ť1) ∈ ∂Λb, i.e., V (x(ť1)) = α1(ρ(b)).
If ť1 = a then skip to Step 3. Otherwise, pick some ǔ1 ∈
U(x(ť1))∩Ub, which exists by (9). Apply the constant input

u ≡ ǔ1 on the interval [ť1, ť2) where ť2 := min{inf{t :
t > ť1, x(t) ∈ ∂Λb}, a}. This interval is non-empty; in fact,

ť2 ≥ min{ť1 + ∆(1/2, δ̌), a} where δ̌ := α−1
2 (α1(ρ(b)))

and ∆(·, ·) comes from Lemma 2. To see why this is true,

note that δ̌ ≤ |ω(x(ť1))| ≤ ρ(b) according to (8) and the

definition of ť1. Hence we can apply Lemma 2 with s = ť1,

us = ǔ1, ε = 1/2 (or any other constant 0 < ε < 1), δ = δ̌
and j = 0 in order to conclude that V (x(t))−V (x(ť1)) > 0
for all t ∈

(
ť1,min{ť1 + ∆(1/2, δ̌), a}

]
, which implies that

indeed ť2 ≥ min{ť1 + ∆(1/2, δ̌), a}. Moreover, if ť2 < a
then x(ť2) ∈ ∂Λb and we can repeat Step 2 for ť2, ť3, . . .

Step 3: We have now reached the time t = a and we

have constructed the following control input defined on the

interval [0, a), with the control values ui, ǔj and the times

ti, ťj as specified above (those times that are never defined

are treated as ∞):

u(t) =





u0 0 ≤ t < min{t1, ť1}
ui ti ≤ t < min{ti+1, ť1, a}, i = 1, 2, . . .
ǔj ťj ≤ t < min{ťj+1, a}, j = 1, 2, . . .

This input, extended with the last value (u0, ui or ǔj) at

t = a (and arbitrarily for t > a), satisfies u ∈ Ua,b, as by

construction, u(t) ∈ Ub for all t ∈ [0, a]. For each 0 <
ε̄ < 1, this input signal is piecewise constant in the interval

[0, a] with only finitely many different values ui and ǔj ; this

follows from the construction in Step 1 and the argument

given in Step 2. The state trajectory x(·) resulting from the

application of the control input u(·) to the system (1) has the

following properties. First, consider the case where t1 > 0
(recall from Step 0 that this corresponds to x0 ∈ int(Λb)).
By recursively applying (14) with j = k − 1 and ε = ε̄,

for t1 ≤ t ≤ min{ť1, a} we have V (k−1)(x(t)) ≥ (1 −
ε̄)(t− t1)χ(b)+V (k−1)(x(t1)) ≥ (1− ε̄)(t− t1)χ(b), where

the second inequality follows from (10) with j = k − 1,

x = x(t1) and u = u1. Integrating this inequality from t1
to t, we obtain V (k−2)(x(t)) ≥ (1/2)(1− ε̄)(t− t1)

2χ(b) +
V (k−2)(x(t1)). Repeating the above k − 2 times results in

V (x(t)) ≥ (1/k!)(1 − ε̄)(t − t1)
kχ(b) + V (x(t1)) for all

for t1 ≤ t ≤ min{ť1, a}; furthermore, recall from Step 0

that V (x(t1)) > V (x0) due to Lemma 1. Next, if ť1 <
a, then for ť1 ≤ t ≤ a the construction guarantees that

V (x(t)) ≥ V (x(ť1)) = α1(ρ(b)). Finally, if t1 = 0 (recall

from Step 0 that this corresponds to x0 /∈ int(Λb)), then

the preceding inequality V (x(t)) ≥ α1(ρ(b)) is satisfied for

all 0 ≤ t ≤ a. Combining the above yields V (x(a)) ≥
min{(1/k!)(1− ε̄)(a− t1)

kχ(b)+V (x0), α1(ρ(b))}. Hence,

using (8), we have

|ω(x(a))| ≥ α−1
2

(
min

{
(1/k!)(1 − ε̄)(a − t1)

kχ(b)

+ V (x0), α1(ρ(b))
})

.

Finally, using (7), we obtain

|h(x(a))| ≥ ν
(
α−1

2

(
min

{
(1/k!)(1 − ε̄)(a − t1)

kχ(b)

+ V (x0), α1(ρ(b))
}))

.

As u(·) is contained in Ua,b and as the above calculations

hold for arbitrary x0 ∈ B, it follows that

Ra
h(x0,Ua,b) ≥ ν

(
α−1

2

(
min

{
(1/k!)(1 − ε̄)(a − t1)

kχ(b)

+ V (x0), α1(ρ(b))
}))

(16)
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for all x0 ∈ B. Note that (16) holds for every 0 < ε̄ ≤ 1,

and according to Step 0, either t1 = 0 or t1 can be

chosen arbitrarily small. Thus, as the left-hand side of (16)

is independent of ε̄ and t1, we can let ε̄ → 0 and t1 → 0
(in case t1 is not 0) and arrive at the desired bound (3) with

γ as defined in (12). The function γ satisfies the required

properties of Definition 1, i.e., γ(·, b) is nondecreasing for

each fixed b > 0 and γ(a, ·) ∈ K∞ for each fixed a > 0.

This concludes the proof of Theorem 1. �

In the following, we show that in Theorem 1, the assump-

tion that the set B is control-invariant under Ū can be relaxed.

Namely, for each x ∈ B, let a set U(x) ⊆ U be given such

that the hypotheses of Theorem 1 expressed by (9)–(11)

are satisfied, and define Ũ := ∪x∈BU(x). If B is control-

invariant under Ũ , we have the situation of Theorem 1 (with

Ū = Ũ ); if not, consider the following.

Proposition 1: In Theorem 1, the assumption that a set

Ū exists such that the set B is control-invariant under Ū can

be replaced by the following. For each b > 0, there exists

a set Hb ⊆ R
n with Hb ∩ Λb = ∅ and Λb defined by (15)

such that if x0 ∈ B and u(t) ∈ Ub ∩ Ũ for all t ≥ 0, then

x(t) ∈ B ∪ Hb for all t ≥ 0. �

Proof: The proof of Proposition 1, which shows that the

construction of the piecewise constant input signal in the

proof of Theorem 1 is still valid under the new hypotheses,

is omitted in this conference paper due to space restrictions,

but can be found in an online version of this paper [10]. �

Remark 3: The condition in Proposition 1 means that

each trajectory x(·) cannot exit B before exiting Λb. In other

words, when at some time instant t we have x(t) ∈ Λb, then

also x(t) ∈ B. �

C. Sufficient condition involving lower directional deriva-

tives of different order

In this section, we generalize the previous results to the

case where the control-invariant set B can be partitioned into

several regions where (10)–(11) holds for different k. To this

end, for a set X ⊆ R
n and ℓ ≥ 1, denote by Rℓ(X) a

partition of X such that X = ∪ℓ
i=1Ri and Ri is closed for

all 1 ≤ i ≤ ℓ. Note that R1(X) = X.

Theorem 2: Suppose there exist a set Ū ⊆ U and a

closed set B ⊆ R
n which is rendered control-invariant

by Ū for system (1). Furthermore, suppose there exist a

partition Rℓ(B) for some ℓ ≥ 1 with corresponding integer

constants 1 ≤ k1 < k2 < ... < kℓ ≤ k̄, a continuous function

ω : R
n → R

q, 1 ≤ q ≤ n, a function V : R
n → R,

which is kℓ times continuously differentiable on R
n \ W

with W := {x ∈ R
n : ω(x) = 0} and ∂kℓV/∂xkℓ is locally

Lipschitz there, functions α1, α2, χ, ρ, ν ∈ K∞, a function

µ : R≥0 → R≥0 satisfying µ(s) ≥ s for all s ∈ R≥0, and

for each x ∈ B a set U(x) ⊆ Ū , such that the hypotheses of

Theorem 1 expressed by (7)–(9) are satisfied as well as the

following: For all (x, u) ∈ R
n × R

m such that x ∈ Ri for

some 1 ≤ i ≤ ℓ, u ∈ U(x), and |ω(x)| ≤ ρ(|u|), we have

V (j)(x; f(x, u)) ≥ 0 j = 1, . . . , ki − 1, (17)

V (ki)(x; f(x, u)) ≥ χi(|u|). (18)

Then the system (1) is norm-controllable from all x0 ∈ R
n

with scaling function µ and gain function

γ(a, b) = ν
(
α−1

2

(
min

{
Ψ(a, b) + V (x0), α1(ρ(b))

}))
,

where

Ψ(a, b) = min
i∈{1,...,ℓ}

(kℓ − ki)!

kℓ!
akiχi(b). (19)

Proof: The proof of Theorem 2 is omitted in this confer-

ence paper due to space restrictions, but can be found in an

online version of this paper [10]. �

Remark 4: In the special case of ℓ = 1, Theorem 1 is

recovered. �

Remark 5: It is straightforward to verify that Proposi-

tion 1 also can be applied to Theorem 2, i.e., the assumption

that a set Ū exists which renders B control-invariant can be

relaxed as described in Proposition 1. Furthermore, the re-

sults of Theorem 2 can also be extended in a straightforward

way to the case where the sets Ri of the partition Rℓ(B)
depend on the magnitude of the applied input, i.e., Ri =
Ri(b). Namely, in this case, the condition of Theorem 2

expressed by (17)–(18) is modified as follows. For each

(x, u) ∈ R
n ×R

m and each b > 0 such that x ∈ Ri(b), u ∈
U(x) ∩ Ub, and |ω(x)| ≤ ρ(b), it holds that (17) is satisfied

and V (ki)(x; f(x, u)) ≥ χi(b). With this modification, the

proof works exactly the same, as for each fixed b > 0, the

same fixed partition (depending on b) is considered. �

Example 1: Consider an isothermal continuous stirred

tank reactor (CSTR) in which an irreversible, second-order

reaction from reagent A to product B takes place [11]:

dCA/dt =
q

V
(CAi

− CA) − kC2
A

dCB/dt = − q

V
CB + kC2

A,

where CA and CB denote the concentrations of species A
and B (in [mol/m3]), respectively, V is the volume of the

reactor (in [m3]), q is the flow rate of the inlet and outlet

stream (in [m3/s]), k is the reaction rate (in [1/s]), and CAi

is the concentration of A in the inlet stream, which can be

interpreted as the input. Using x1 := CA, x2 := CB , c :=
q/V and u := CAi

, one obtains the system

ẋ1 = −cx1 − kx2
1 + cu =: f1(x, u)

ẋ2 = kx2
1 − cx2 =: f2(x). (20)

The physically meaningful states and inputs are x1 ≥ 0, x2 ≥
0, u ≥ 0, i.e., nonnegative concentrations of the two species.

We are interested in the amount of product B per time unit,

i.e. in the output y = h(x) = qx2.

Consider the region B := {x : 0 ≤ x2 ≤ (k/c)x2
1},

and for each x ∈ B, let U(x) := R≥0. Hence also Ũ :=
∪x∈BU(x) = R≥0. The set B is not rendered control-

invariant by Ũ ; however, one can show that for each b > 0,

the set Hb := {x : x1 ≥ δ(b), x2 ≥ (k/c)x2
1} with

δ(b) := (−c +
√

c2 + 4ckb)/(2k) satisfies the conditions

of Proposition 1. Let 0 < ε, θ < 1, and for b ≥ 0 define

ϕ1(b; ε) := (−(3 − ε)c +
√

(3 − ε)2c2 + 16ckθb)/(4k),
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Fig. 1. Partition of the control-invariant region B and the set Hb in
Example 1.

ϕ2(b) := min{cb/(8(c + k)),
√

cb/(8(c + k))} and Φ(b) :=
min{ϕ1(b; ε), ϕ2(b)}. Now consider the following partition

of B, which is also exemplarily depicted in Figure 1:

R1(b) := {x ∈ B : 0 ≤ x2 ≤ ε(k/c)x2
1, x1 ≥ Φ(b)},

R2(b) := {x ∈ B : (εk/c)x2
1 ≤ x2 ≤ (k/c)x2

1, x1 ≥ Φ(b)},
R3(b) := {x ∈ B : 0 ≤ x2 ≤ (k/c)x2

1, x1 ≤ Φ(b)}.
Taking ω(x) = x2 and V (x) = |ω(x)|, one obtains

that V (1)(x; f(x, u)) ≥ 0 for all x ∈ B and

V (1)(x; f(x, u)) ≥ (1 − ε)kx2
1 ≥ (1 − ε)kΦ2(b) =: χ1(b)

for all x ∈ R1. For all x ∈ R2 and u ∈ U(x) ∩ Ub, we get

V (2)(x; f(x, u)) ≥ 2(1 − θ)kcbΦ(b) =: χ2(b),

for all x1 ≤ ϕ1(b; ε), which holds if x2 ≤ (εk/c)ϕ2
1(b; ε) =:

ρ(b). Finally, for all x ∈ R3 and u ∈ U(x) ∩ Ub, we obtain

that V (2)(x; f(x, u)) ≥ 0 and V (3)(x; f(x, u)) ≥ kc2b2 =:
χ3(b). Furthermore, it is straightforward to verify that for

each b > 0, Hb ∩ Λb = ∅, where Λb = {x : |x2| ≤ ρ(b)}.

Summarizing the above, we can apply Theorem 2 with ℓ =
3, k1 = 1, k2 = 2, k3 = 3, α1 = α2 = µ = id and ν =
qid together with Remark 5 and Proposition 1 to conclude

that the system (20) is norm-controllable from all x0 ∈ B
with scaling function µ = id and gain function γ(r, s) =
q min{Ψ(r, s) + V (x0), ρ(s)} with Ψ defined in (19). An

interpretation of this fact is as follows. If x2 ≤ (k/c)x2
1,

then a sufficiently large amount of reagent A compared to

the amount of product B is present in the reactor in order

that the amount of product B can be increased. On the other

hand, if x2 > (k/c)x2
1, then already too much product B is

inside the reactor such that its amount will first decrease (due

to the outlet stream), no matter how large the concentration

of A in the inlet stream (i.e., the input u) is, and hence the

system is not norm-controllable for such initial conditions.

IV. CONCLUSIONS

In this paper, we obtained two sufficient conditions for a

system to be norm-controllable. The first one involves kth-

order lower directional derivatives for some fixed k, while the

second involves higher-order lower directional derivatives of

different order. These conditions allow us to establish norm-

controllability for output maps with arbitrary relative degree.

Furthermore, we illustrated the obtained results through a

chemical reaction example.

APPENDIX

Proof of Lemma 1: First, note that an input u0 as defined

in the lemma exists, as according to (9), U(x0) ∩ Ub 6= ∅.

Let h(t) := 1/tk
(
x(t) − x0 − th1 − · · · − tk−1hk−1

)
for

t > 0, where h1, . . . , hk−1 are defined as in (6) with t′ = 0,

x = x0, and u = u0. Note that h varies continuously in t
and limtց0 h(t) =: hk according to (5). Furthermore, for

t > 0, define the function

g(t) := k!/tk
(
V (x0 + th1 + · · · + tkh(t)) − V (x)

− tV (1)(x0;h1) − · · · − tk−1V (k−1)(x0;h1, . . . , hk−1)
)

Consider g− := lim inftց0 g(t). By the definitions of g and

V (k), it holds that

g− = lim inf
tց0

g(t) ≥ V (k)(x0; f(x0, u0)) ≥ χ(|u0|) ≥ χ(b).

The first inequality holds because in the definition of V (k)

in (4), the infimum over all h̄k with h̄k → hk is taken, while

in g− the specific choice h̄k = h(t) → hk is used. Thus, by

definition of the (one-sided) limit inferior, for every ε > 0
there exists a τ > 0 such that for all 0 < t ≤ τ , it holds that

g(t) ≥ g− − ε ≥ χ(b) − ε, (21)

and thus

V (x(t)) = V (x0 + th1 + · · · + tkh(t))

= (1/k!)g(t)tk + V (x0) + tV (1)(x0;h1)

+ · · · + tk−1V (k−1)(x0;h1, . . . , hk−1)
(21),(10)

≥ 1

k!
(χ(b) − ε)tk + V (x0) > V (x0) ≥ 0.

The second but last inequality is due to the fact that ε can

be made arbitrarily small such that χ(b) > ε. �
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