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Abstract— We address the problem of stabilizing a
continuous-time linear time-invariant process under commu-
nication constraints. We assume that the sensor that measures
the state is connected to the actuator through a finite capacity
communication channel over which an encoder at the sensor
sends symbols from a finite alphabet to a decoder at the
actuator. We consider a situation where one symbol from the
alphabet consumes no communication resources, whereas each
of the others consumes one unit of communication resources to
transmit. This paper explores how the imposition of limits on
an encoder’s bit-rate and average resource consumption affect
the encoder/decoder/controller’s ability to keep the process
bounded. The main result is a necessary and sufficient condition
for a bounding encoder/decoder/controller which depends on
the encoder’s bit-rate, its average resource consumption, and
the unstable eigenvalues of the process.

I. INTRODUCTION

This paper addresses the problem of stabilizing a
continuous-time linear time-invariant process under commu-
nication constraints. As in [1–7], we assume that the sensor
that measures the state is connected to the actuator through
a finite capacity communication channel. At each sampling
time, an encoder sends a symbol through the channel. The
problem of determining whether or not it is possible to bound
the state of the process under this type of encoding scheme
is not new; it was established in [2–4] that a necessary and
sufficient condition for stability can be expressed as a simple
relationship between the unstable eigenvalues of A and the
communication bit-rate.

We expand upon this result by considering the notion that
encoders can effectively save communication resources by
not transmitting information, while noting that the absence of
an explicit transmission nevertheless conveys information. To
capture this, we suppose that one symbol from the alphabet
consumes no communication resources to transmit, whereas
each of the others consumes one unit of communication
resources. We then proceed to define the average cost per
symbol of an encoder, which is essentially the average frac-
tion of non-free symbols emitted. This paper’s main technical
contribution is a necessary and sufficient condition for the
existence of an encoder/decoder/controller that bounds the
state of the process. This condition depends on the channel’s
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bit-rate, the encoder’s average cost per symbol, and the
unstable eigenvalues of A.

Our result extends [2] in the sense that as the constraint on
the average cost per symbol is allowed to increase (becomes
looser), our necessary and sufficient condition becomes the
condition from [2]. As with [2–4], our result is constructive
in the sense that we describe a family of encoder/decoder
pairs that bound the process when our condition holds. A
counterintuitive corollary to our main result shows that if the
process may be bounded with bit-rate r, then there exists a
bounding encoder/decoder/controller with bit-rate r which
uses no more than 50% non-free symbols in its symbol-
stream.

The remainder of this paper is organized as follows.
Section III contains the main negative result of the paper,
namely that boundedness is not possible when our condition
does not hold. To prove this result we actually show that
it is not possible to bound the process with a large class of
encoders — which we call M -of-N encoders — that includes
all the encoders with average cost per symbol not exceeding
a given threshold. Section IV contains the positive result of
the paper, showing that when our condition does hold, there
is an encoder/decoder pair that can bound the process; we
provide the encoding scheme.

II. PROBLEM STATEMENT

Consider a stabilizable linear time-invariant process

9x “ Ax`Bu, x P Rn, u P Rm, (1)

for which it is known that xp0q belongs to a known bounded
set X0 Ă Rn. A sensor that measures the state xptq is
connected to the actuator through a finite-data-rate, error-
free, and delay-free communication channel. An encoder
collocated with the sensor samples the state once every
T time units, and from this sequence of measurements
txpkT q : k P Ną0u causally constructs a sequence of
symbols tsk P A : k P Ną0u from a nonempty finite
alphabet A. Without loss of generality, A “ t0, 1, . . . , Su
with S – |A| ´ 1. The encoder sends this symbol sequence
through the channel at the rate of 1 symbol every T time units
to a decoder/controller collocated with the actuator, which
causally constructs the control signal uptq, t ě 0 from the
sequence of symbols tsk P A : k P Ną0u that arrive at the
decoder.

The positive time T P Rą0 between successive samplings
is called the sampling period. The non-negative bit-rate
r P Rě0 of the channel is the rate of transmitted information
in units of bits per time unit. For a channel capable of
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transmitting one symbol from an alphabet A every T time
units, the bit-rate is given by

r –
log2 |A|
T

“
log2pS ` 1q

T
. (2)

We assume that the symbol 0 P A can be transmitted
without consuming any communication resources, but the
other S symbols each require one unit of communication
resources per transmission. One can think of the “free”
symbol 0 as the absence of an explicit transmission. The
“communication resources” at stake may be energy, time, or
any other resource that may be consumed in the course of the
communication process. In order to capture the average rate
at which an encoder consumes communication resources,
we define the average cost per symbol of an encoder as
follows: We say an encoder has average cost per symbol
not exceeding γmax if there exists a non-negative integer N0

such that for every symbol sequence tsku the encoder may
generate, we have

1

N2

N1`N2´1
ÿ

k“N1

Isk‰0 ď γmax `
N0

N2
(3)

for all positive integers N2, N1, where Isk‰0 – 1 if the kth
symbol is not the free symbol, and 0 if it is. The summation
in (3) captures the total resources spent transmitting symbols
sN1

, sN1`1, . . . , sN1`N2´1. Motivating this definition of av-
erage cost per symbol is the observation that the lefthand
side has the intuitive interpretation of the average cost per
transmitted symbol between symbols sN1

and sN1`N2´1. As
N2 Ñ 8, the rightmost term vanishes, leaving γmax as an
upper bound on the average long-term cost per symbol of
the symbol sequence. Note that the average cost per symbol
γmax of any encoder always satisfies γmax P r0, 1s and does
not depend on the sampling period T .

Whereas the bit-rate r only depends on the symbol al-
phabet A and sampling period T , the average cost per
symbol of an encoder/decoder pair depends on every possible
symbol sequence it may generate, and therefore may in
general depend on the encoder/decoder pair, the controller,
the process (1), and the initial condition xp0q.

The specific question considered in this paper is: under
what conditions on the bit-rate and average cost per symbol
does there exist a controller and encoder/decoder pair that
keep the state of the process (1) bounded?

III. NECESSARY CONDITION FOR BOUNDEDNESS WITH
LIMITED-COMMUNICATION ENCODERS

It is well known from [2–4] that it is possible to construct
a controller and encoder/decoder pair that bounds the process
(1) with bit-rate r only if

r ln 2 ě
ÿ

i:<λirAsě0

|λirAs|, (4)

where ln denotes the base-e logarithm, and the summation
is over all eigenvalues of A with nonnegative real part. The
following result characterizes the necessary bit-rate when one
poses constraints on the encoder’s average cost per symbol

γmax. Specifically, when γmax ă S{pS ` 1q a bit-rate larger
than (4) is necessary, but provided that γmax ě S{pS ` 1q
the condition reduces to (4).

Theorem 1: Consider a channel with a sampling period
T and an alphabet with S nonfree symbols and one free
symbol, and an encoder/decoder pair with average cost per
symbol not exceeding γmax. If this pair keeps the state of
the process (1) bounded for every initial condition x0 P X0,
then we must have

r fpγmax, Sq ln 2 ě
ÿ

i:<λirAsě0

λirAs, (5)

where the bit-rate r is related to S and T via Equation (2),
the function f : r0, 1s ˆ r0,8q Ñ r0,8q is defined as

fpγ, Sq–

#

Hpγq`γ log2 S
log2pS`1q 0 ď γ ď S

S`1

1 S
S`1 ă γ ď 1,

(6)

and Hppq– ´p log2ppq ´ p1´ pq log2p1´ pq is the base-2
entropy of a Bernoulli random variable with parameter p.

l

Remark 1: It is worth making three observations regard-
ing the function f . First, by inspection, fpγ, Sq is continuous
in γ for any fixed S. Second, fpγ, Sq is monotone nonin-
creasing in S for any fixed γ P r0, 1s, which implies that
smaller alphabets are preferable to large ones when trying
to satisfy (5) with a given fixed bit-rate. The reasoning is
as follows: for a particular fixed bit-rate, an encoder may
either rapidly transmit symbols from a small alphabet or
slowly transmit symbols from a large alphabet. In the former
case, since the free symbol occupies a larger fraction of the
alphabet, it will tend to be used more frequently, resulting
in lower resource consumption. The third observation is
that the average cost per time unit, which is γ{T , can be
made arbitrarily small while still satisfying (5). Depending
on which one of the parameters γ, T, S is fixed, the others
can be chosen in the following ways:

1) If the average cost per symbol γ is fixed, one could
pick T very large to make γ{T as small as desired.
Then, leveraging the fact that

rfpγ, Sq “

#

Hpγq`γ log2 S
T 0 ď γ ď S

S`1
log2pS`1q

T
S
S`1 ă γ ď 1

(7)

is monotone increasing in S for fixed γ, pick S
large enough to satisfy (5). This approach has two
downsides: First, with a large sampling period, the
state, although remaining bounded, can grow quite
large between transmissions. Second, large S means
that the encoder/decoder pair must store and process
a large symbol library, adding complexity to the pair’s
implementation.

2) If the sampling period T is fixed, one picks γ small so
as to make γ{T as small as desired, then increases S
as in the previous case to satisfy (5). Like the previous
case, this approach requires a large symbol library.

3) If the symbol alphabet size S is fixed, one can choose
sequences γk, Tk for which γk{Tk Ñ 0 but for which
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(5) is satisfied for large enough k. For example, the
sequences

γk – e´k, Tk – e´k
?
k, k P Ną0

have the property that γk Ñ 0, Tk Ñ 0, and
γk{Tk Ñ 0, but Hpγkq{Tk Ñ 8, so leveraging
(7) we conclude that rkfpγk, Sq ln 2 Ñ 8 (where
rk – log2pS ` 1q{Tk). This means that one can find
k P Ną0 to make the average cost per time unit
γk{Tk arbitrarily small, and also satisfy the necessary
condition (5). The drawback of this approach is that to
achieve a small sampling period T in practice requires
an encoder/decoder pair with a very precise clock.

Remark 2: The addition of the “free” symbol effectively
increases the bit-rate without increasing the rate of resource
consumption, as seen by the following two observations:
‚ Without the free symbols, the size of the alphabet would

be S and the bit-rate would be log2pSq{T . It could
happen that this bit-rate is too small to bound the
plant, yet after the introduction of the free symbol, the
condition (5) is satisfied.

‚ Since γmax is the fraction of non-free symbols, the
quantity rγmax is the number of bits per time unit spent
transmitting non-free symbols. But since fpγ, Sq ě γ,
again we see that the free symbols help satisfy (5). To
see that fpγ, Sq ě γ, observe that for any S P Ną0,
fp¨, Sq is concave and reaches 1 before the identity
function does, hence it’s everywhere above the identity
function on p0, 1q, and it matches the identity function
at the endpoints 0 and 1.

A. Proof of Theorem 1

We lead up to the proof of Theorem 1 by first establishing
three lemmas centered around a restricted large class of
encoders called M -of-N encoders. We first define M -of-N
encoders, which essentially partition their symbol sequences
into N -length codewords, each with M or fewer non-free
symbols. Lemma 1 demonstrates that every encoder with a
bounded average cost per symbol is an M -of-N encoder for
appropriate N and M . Next, in Lemma 2 we establish a
relationship between the number of codewords available to
an M -of-N encoder and the function f as defined in (6).
Then, in Lemma 3 we leverage previous work to establish
a necessary condition for an M -of-N encoder to bound the
state of the process. Finally, the proof of Theorem 1 leverages
these three results.

We now introduce the class of M -of-N encoders. For N P

Ną0, we define an N -symbol codeword to be a sequence

ts`N`1, s`N`2, . . . , s`N`Nu

of N consecutive symbols starting at an index k “ `N ` 1,
with ` P Ně0. For M P Rě0 with M ď N , we say an
M -of-N encoder is an encoder for which every N -symbol
codeword has M or fewer non-free symbols, i.e.,

`N`N
ÿ

k“`N`1

Isk‰0 ďM, @` P Ně0. (8)

The total number of distinct N -symbol codewords available
to an M -of-N encoder is thus given by

LpN,M,Sq–

tMu
ÿ

i“0

ˆ

N

i

˙

Si, (9)

where the ith term in the summation counts the number of
N -symbol codewords with exactly i non-free symbols.

Note that in keeping with the problem setup, the M -of-N
encoders considered here each draw their symbols from the
symbol library A – t0, 1, . . . , Su and transmit symbols with
sampling period T .

An intuitive property of M -of-N encoders is that have
they average cost per symbol not exceeding M{N . The proof
is omitted for brevity.

The fact that an M -of-N encoder refrains from sending
“expensive” codewords effectively reduces its ability to trans-
mit information. Indeed, since an M -of-N encoder takes
NT time units to transmit one of LpN,M,Sq codewords,
effectively the encoder can transmit merely log2 LpN,M,Sq

NT
bits of useful information per time unit. For M ă N , this is
strictly less than the bit-rate r.

The first lemma, proved in the appendix, shows that the
set of M -of-N encoders is “complete” in the sense that
every encoder with average cost per symbol not exceeding a
finite threshold γmax is actually an M -of-N encoder for N
sufficiently large and M « γmaxN .

Lemma 1: For every channel with bit-rate r and any
encoder/decoder pair with average cost per symbol not
exceeding γmax P r0, 1s, and every constant ε ą 0, there
exist M P Rě0 and N P Ną0 with M ă Nγmaxp1` εq such
that the encoder/decoder pair is an M -of-N encoder. l

The next lemma establishes a relationship between the
number of codewords LpN,M,Sq available to an M -of-N
encoder and the function f defined in (6).

Lemma 2: For any N P Ną0, S P Ně0 and γ P r0, 1s, the
function L defined in (9) and the function f defined in (6)
satisfy

log2 LpN,Nγ, Sq

N
ď log2pS ` 1qfpγ, Sq, (10)

with equality holding only when γ “ 0 or γ “ 1. Moreover,
we have asymptotic equality in the sense that

lim
NÑ8

log2 LpN,Nγ, Sq

N
“ log2pS ` 1qfpγ, Sq. (11)

l

Proof of Lemma 2. Let N P Ną0 and S P Ně0 be arbitrary.
First we prove (10) for γ P

´

0, S
S`1

ı

. Applying the Binomial
Theorem to the identity 1 “ pγ ` p1´ γqqN , we obtain

1 “
N
ÿ

i“0

ˆ

N

i

˙

γip1´ γqN´i

Since each term in the summation is positive, keeping only
the first tNγu terms yields the inequality

1 ą

tNγu
ÿ

i“0

ˆ

N

i

˙

γip1´ γqN´i (12)
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Next, a calculation presented as Lemma 5 in the appendix
reveals that

γip1´ γqN´i ě 2´N Hpγq Si

SNγ
(13)

for all N,S P Ną0, γ P
´

0, S
S`1

ı

, and i P r0, Nγs. Using
this in (12) and taking log2 of both sides yields

log2 LpN,Nγ, Sq

N
ă Hpγq ` γ log2 S. (14)

By the definition of f , we have log2pS ` 1qfpγ, Sq “

Hpγq ` γ log2 S when γ P
”

0, S
S`1

ı

. Thus, (14) proves the

strict inequality in (10) for γ P
´

0, S
S`1

ı

. Next, suppose

γ P

´

S
S`1 , 1

¯

and observe from (9) that LpN,M,Sq is
a sum of positive terms whose index reaches tM u, hence
LpN,Nγ, Sq is strictly less than LpN,N, Sq for any γ ă 1.
We conclude that

log2 LpN,Nγ, Sq

N
ă

log2 LpN,N, Sq

N
“ log2pS ` 1q (15)
“ log2pS ` 1qfpγ, Sq, (16)

where the equality in (15) follows simply from the fact that
LpN,N, Sq is the number of all possible codewords of length
N and hence equals pS ` 1qN , and (16) follows from the
definition of f when γ P p S

S`1 , 1q. This concludes the proof
of the strict inequality in (10) for γ P p0, 1q. The proof of
(10) for γ “ 0 follows merely from inspection of (10), and
the γ “ 1 case follows from the equality in (15). The proof
of the asymptotic result (11) appears in [8]. This concludes
the proof of Lemma 2.

The following lemma provides a necessary condition for
an M -of-N encoder to bound the process (1).

Lemma 3: Consider an M -of-N encoder/decoder pair us-
ing a channel with symbols t0, . . . , Su (with 0 the free
symbol) and sampling period T . If the pair keeps the state
of the process (1) bounded for every initial condition, then
we must have

lnLpN,M,Sq

NT
ą

ÿ

i:<λirAsě0

λirAs. (17)

l

Proof of Lemma 3. Consider an encoder/decoder/controller
triple that bounds the state of the process (1) and whose
encoder is an M -of-N encoder using symbols t0, . . . , Su
and sampling period T . Since the encoder sends one of
LpM,N,Sq codewords every NT time units, the bit-rate
of the encoder is log2 LpM,N,Sq{NT . Theorem 1 of [2]
proves that if the state of the process (1) is bounded by an
encoder/decoder/controller triple under the communication
constraints described in our problem setup, then the pair’s
bit-rate must not be less than 1

ln 2

ř

i:<λirAsě0 λirAs. Hence,
we have

log2 LpM,N,Sq

NT
ě

1

ln 2

ÿ

i:<λirAsě0

λirAs,

from which (17) follows. This proves the lemma.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. By Lemma 1, for any ε ą 0 there exist
M P Rě0 and N P Ną0 with M ă Nγmaxp1` εq for which
the encoder/decoder is an M -of-N encoder. Since the state
of the process is kept bounded, by Lemma 3 we have

ÿ

i:<λirAsě0

λirAs ă
log2 LpN,M,Sq

NT
ln 2. (18)

Since L is monotonically nondecreasing in its second argu-
ment and M ă Nγmaxp1` εq, we have

log2 LpN,M,Sq

NT
ď

log2 LpN,Nγmaxp1` εq, Sq

NT
. (19)

Lemma 2, together with (2), implies that

log2 LpN,Nγmaxp1` εq, Sq

NT
ď rfpγmaxp1` εq, Sq. (20)

Combining these and letting ε Ñ 0, we obtain (5). This
completes the proof of Theorem 1.

IV. SUFFICIENT CONDITION FOR BOUNDEDNESS WITH
LIMITED-COMMUNICATION ENCODERS

The previous section established a necessary condition (5)
on the channel bit-rate and the average cost per symbol of
an encoder/decoder pair in order to bound the state of the
process (1). In this section, we show that this condition is
also sufficient for a bounding encoder/decoder to exist. The
proof is constructive in that we provide the encoder/decoder.

Theorem 2: Assume that A is diagonalizable. For every
S P Ně0, T ą 0, and γmax P r0, 1s satisfying

rfpγmax, Sq ln 2 ą
ÿ

i:<λirAsě0

λirAs, (21)

where r is defined in (2) and the function f is defined in (6),
there exists a channel using S nonfree symbols, sampling
period T , and an encoder/decoder pair with average cost per
symbol not exceeding γmax, which keeps the state of the
process (1) bounded for every initial condition x0 P X0.

l

The proof of Theorem 2 relies on the following lemma,
which provides a sufficient condition for the existence of an
M -of-N encoder to bound the state of the process (1).

Lemma 4: Assume that A is diagonalizable. For every T P
Rą0, N P Ną0, S P Ně0, and M P Rě0 with N ě M
satisfying

lnLpN,M,Sq

NT
ą

ÿ

i:<λirAsě0

λirAs, (22)

there exists an M -of-N encoder using alphabet t0, . . . , Su
with sampling period T that keeps the state of the process
(1) bounded for every initial condition. l

Proof of Lemma 4. This proof builds on Theorem 2 from
[2], which provides sufficient conditions on an encoder’s bit-
rate to ensure the existence of a stabilizing controller and

6053



encoder/decoder pair. The result states that if an encoder’s
bit-rate r satisfies

r ě
1

ln 2

ÿ

i:<λirAsě0

λirAs, (23)

where A is the continuous-time process matrix, then there
exists a controller and encoder/decoder pair that bound the
state of the process. An outline of the proof of this result
from [2] follows. The encoder works by placing a bounding
rectangle around the volume where the state is known to lie,
and partitions it into two pieces along its largest axis. Then
the encoder transmits a 0 or 1, depending on which sub-
rectangle the state lies in. Since the decoder can calculate
the bounding rectangles with its knowledge of X0 and the
process dynamics in (1), it estimates the state to be the
centroid of whichever sub-rectangle the received symbol
corresponds to. The decoder transmits this state estimate
to the controller, which can be any stabilizing linear state-
feedback controller.

We now provide a summary of the proof of Lemma 4,
and refer the reader to [8] for the detailed proof. Suppose
T,N,M, S satisfy the constraints in the statement of the
lemma as well as (22). Theorem 2 from [2] guarantees the ex-
istence of a stabilizing encoder/decoder/controller triple with
bit-rate log2 LpN,M,Sq{NT . All that remains is to adapt
this encoder/decoder pair into our framework, i.e., an M -of-
N encoder that uses S`1 symbols with sampling period T .
We do this by building an encoder which runs a copy of the
encoder from [2] internally. The outer encoder feeds samples
of the state to the inner encoder, from which the inner
encoder generates a string of 1’s and 0’s. Due to the bit-rate
being log2 LpN,M,Sq{NT , after NT time units the inner
encoder has generated a string of length log2 LpN,M,Sq.
There are LpN,M,Sq possible such strings, and so the
outer encoder can map this string uniquely to one of the
LpN,M,Sq possible N -length codewords with M or fewer
non-free symbols from the alphabet t0, . . . , Su. The outer
encoder transmits this codeword across the channel to the
decoder, which performs the inverse mapping to recover the
string of log2 LpN,M,Sq 1’s and 0’s, which it delivers to
its inner decoder. From this bit-string and knowledge of the
process dynamics, the inner decoder computes a state esti-
mate, which it delivers to the stabilizing linear state-feedback
controller. This process repeats each NT time units. Since
the inner encoder/decboder pair bound the process, the outer
M -of-N encoder described here does as well. This proves
the lemma.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Assume that S, T , and γmax satisfy
(21), so that

ε– rfpγmax, Sq ln 2´
ÿ

i:<λirAsě0

λirAs ą 0. (24)

Equation (11) establishes that lnLpN,Nγmax,Sq
NT gets arbitrarily

close to rfpγmax, Sq ln 2 as we increase N , so we pick N

sufficiently large to satisfy

rfpγmax, Sq ln 2´
lnLpN,Nγmax, Sq

NT
ă ε. (25)

By (9), we have LpN, tNγmaxu, Sq “ LpN,Nγmax, Sq for
every N , γmax, and S. Setting M – Nγmax, by (24) and
(25) we have found N and M satisfying lnLpN,M,Sq

NT ą
ř

i:<λirAsě0 λirAs. Hence by Lemma 4, there exists an M -
of-N encoder/decoder which bounds the state of the process
(1). Since all M -of-N encoder/decoders have average cost
per symbol not exceeding M{N and for this encoder/decoder
we have M{N “ γmax, we conclude that this encoder has an
average cost per symbol not exceeding γmax. This concludes
the proof, since we have found the desired encoder.

An unexpected consequence of Theorems 1 and 2 is that
when it is possible to keep the state of the process bounded
with a given bit-rate r – log2pS ` 1q{T , one can always
find M -of-N encoders that bound it for (essentially) the
same bit-rate and average cost per symbol not exceeding
S{pS ` 1q, i.e., approximately a fraction 1{pS ` 1q of
the symbols will not consume communication resources. In
the most advantageous case, the encoder/decoder use the
alphabet t0, 1u and the encoder’s symbol stream consumes
no more than 50% of the communication resources. The
price paid for using an encoder/decoder with average cost
per symbol closer to S{pS` 1q than 1 is that it may require
prohibitively long codewords (large N ) as compared to an
encoder with higher average cost per symbol. To see this,
note that fpγ, Sq “ 1 when γ P rS{pS ` 1q, 1s and recall
that lnLpN,Nγ, Sq{NT is monotonically nondecreasing in
γ and N . Hence, with r given (so S and T are fixed), one
can decrease γ from 1 toward S{pS`1q and still satisfy (25)
by increasing N .

Corollary 1: If the process (1) can be bounded with an
encoder/decoder pair using a channel with symbol alphabet
t0, 1, . . . , Su and sampling period T , then for arbitrary ε P
p0, T q there exists an M -of-N encoder that uses that channel
with average cost per symbol not exceeding S{pS ` 1q that
bounds its state. l

Proof of Corollary 1. Recalling r – log2pS` 1q{T and the
definition of f , we have

log2pS ` 1q

T ´ ε
f

ˆ

S

S ` 1
, S

˙

ą r f

ˆ

S

S ` 1
, S

˙

“ rfp1, Sq ln 2 ě
ÿ

i:<λirAsě0

λirAs, (26)

where the last inequality follows from Theorem 1. Ap-
plying Theorem 2 to (26), we conclude that there exists
an encoder/decoder pair using symbol alphabet t0, . . . , Su,
sampling period T ´ε, and with average cost per symbol not
exceeding S{pS ` 1q which bounds the state of the process
(1). By Lemma 1, this encoder is an M -of-N encoder for
appropriately chosen M and N .
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V. CONCLUSION AND FUTURE WORK

In this paper we considered the problem of bounding the
state of a continuous-time linear process under communi-
cation constraints. We considered constraints on both the
channel bit-rate and the encoding scheme’s average cost
per symbol. Our main contribution was a necessary and
sufficient condition on the process and constraints for which
a bounding encoder/decoder/controller exists. In the absence
of a limit on the average cost per symbol, the conditions
recovered previous work. A surprising corollary to our main
result was the observation that one may impose a constraint
on the average cost per symbol without necessarily needing
to loosen the bit-rate constraint. Specifically, we proved that
if a process may be bounded with a particular bit-rate, then
there exists a (possibly very complex) encoder/decoder that
can bound it with that same bit-rate, while using no more
than 50% non-free symbols on average. One would expect
that the prohibition of some codewords would require that the
encoder necessarily compensate by transmitting at a higher
bit-rate, but this not the case.

We observed in Remark 1 that smaller alphabets incur
a smaller penalty on the conditions for boundedness in
Theorems 1 and 2. This suggests that encoding schemes with
small alphabets may be able to bound the state of the process
with bit-rates and average costs not far above the minimum
theoretical bounds as established in Theorems 1 and 2. Event-
based control strategies comprise one such class of encoders;
they use a small number of non-free symbols to notify the
decoder/controller about certain state-dependent events. We
have preliminary results showing that event-based encoders
can indeed be used to produce encoder/decoder pairs that
almost achieve the minimum achievable average cost per
symbol that appears in Theorems 1 and 2.

Finally, our problem setup considered merely whether
there exists a bounding encoder/decoder/controller triple. It
seems natural to extend this setup to finding stabilizing
triples.

APPENDIX

Proof of Lemma 1. By the definition of average cost per
symbol not exceeding γmax in (3) there exists an integer
N0 P Ną0 such that for any symbol sequence tsku that the
encoder generates, we have

N
ÿ

i“1

Isi‰0 ď N0 `Nγmax, @N P Ną0. (27)

Pick N P Ną0 large enough to satisfy N0 ` 2 ă εNγmax

and pick M – tN0 ` 2 ` Nγmaxu. Combining these with
(27), we obtain

N
ÿ

i“1

Isi‰0 ăN0 `Nγmax ăM

ď N0 ` 2`Nγmax ă Nγmaxp1` εq,

which establishes that M ă Nγmaxp1 ` εq. This completes
the proof.

Lemma 5: The following inequality holds for all N,S P
Ną0, q P p0, S{pS ` 1qs, and i P r0, Nqs:

qip1´ qqN´i ě 2´N Hpqq Si

SNq
(28)

where Hpqq– ´q log2 q´p1´qq log2p1´qq is the the base-
2 entropy of a Bernoulli random variable with parameter q.

Proof of Lemma 5. Let N,S, q, and i take arbitrary values
from the sets described in the lemma’s statement. Since log2
is a monotone increasing function, log2pq{p1´qqq for q ą 0
is maximized at the right endpoint value, q “ S{pS ` 1q,
where it equals log2 S. This leads to

log2 q ´ log2p1´ qq ď log2 S (29)

for all S P Ną0 and q P p0, S{pS ` 1qs. Next, i P r0, Nqs
by assumption, therefore i ´ Nq ď 0. Multiplying (29) by
i´Nq and straightforward algebraic manipulation yields

i log2 q ` pN ´ iq log2p1´ qq

ď Nq log2 q `Np1´ qq log2p1´ qq ` pi´Nqq log2 S

“ ´NHpqq ` pi´Nqq log2 S,

where the equality follows from the definition of Hpqq.
Raising 2 to the power of both sides, (28) follows.
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