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Abstract— We study asymptotic stability properties of non-
linear systems in the presence of “almost Lyapunov” functions
which decrease along solutions in a given region not everywhere
but rather on the complement of a set of small volume. Nothing
specific about the structure of this set is assumed besides an
upper bound on its volume. We show that solutions starting
inside the region approach a small set around the origin whose
volume depends on the volume of the set where the Lyapunov
function does not decrease, as well as on other system parame-
ters. The result is established by a perturbation argument which
compares a given system trajectory with nearby trajectories
that lie entirely in the set where the Lyapunov function is
known to decrease, and trades off convergence speed of these
trajectories against the expansion rate of the distance to them
from the given trajectory.

I. INTRODUCTION

Consider a general dynamical system

ẋ = f(x), x ∈ R
n. (1)

Suppose that we are working on a compact region D ⊂ R
n

which contains an equilibrium of interest for the system (1),
say the origin. What we want to know is whether all solutions
of (1) that lie in D converge to the origin or at least to a
small neighborhood of the origin.

A well-known method for showing convergence of all
solutions of (1) to the origin consists in finding a Lyapunov
function (see, e.g., [1]). This is a positive definite smooth
function V : Rn → [0,∞) which decays along all non-zero
solutions, i.e., its derivative along solutions satisfies

V̇ (x) :=
∂V

∂x
(x) · f(x) < 0 ∀x 6= 0. (2)

Given a candidate Lyapunov function V , it is usually not
difficult to analytically compute the expression for V̇ on the
left-hand side of the inequality in (2). However, verifying the
inequality itself—i.e., checking that V̇ is negative definite—
may be quite challenging. For example, in case both V and
f are polynomial functions, V̇ is also a polynomial and we
need to check that this polynomial is negative definite. This
problem is related to Hilbert’s 17th problem [2] and is an
important subject of current research (see, e.g., [3], [4]).

As a workaround to trying to establish the inequality in (2)
by deterministic methods, one can consider techniques based
on random sampling, in the context of so-called randomized
algorithms [5]. The basic idea is to generate at random a
sequence of points xi in D and check whether the inequality
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in (2) holds for all of them. If it does, then one can use
the Chernoff bound (see, e.g., [5], [6]) to characterize the
number of such sample points needed to obtain a reliable
upper bound on the measure of points in D for which the
inequality can possibly fail. In this way, instead of (2) we
would verify, with some level of confidence, the property

V̇ (x) :=
∂V

∂x
(x) · f(x) < 0 ∀x ∈ D \ Ω (3)

where Ω is an unknown subset of D (containing the origin)
whose relative measure in D does not exceed some known
small number ε > 0.

Going back to our original objective of studying the
asymptotic behavior of solutions of the system (1), we
are now faced with the following question: under what
circumstances does an inequality of the form (3) allow us
to still prove that all solutions of (1) converge to some small
neighborhood of 0? Standard Lyapunov stability methods are
no longer applicable, since inside Ω the “almost Lyapunov”
function V can in general increase along solutions. However,
if the measure of Ω is small, we expect that this increase can
be dominated by the decrease of V in the complement of Ω.

In this paper we present what we believe to be the first
known result along these lines. Namely, we show that if the
measure of the set Ω where V is not known to decrease is less
than a sufficiently small number ε, then all solutions starting
inside D (at some ε-dependent minimal distance from its
boundary) approach a sublevel set of V whose volume
depends on ε and continuously approaches 0 as ε tends to
0. We accomplish this by a perturbation argument which
compares a given system trajectory with a nearby trajectory
that lies, at least for some time, entirely in the set D\Ω where
the Lyapunov function is known to decrease. This nearby
trajectory, which converges towards 0 (at least on some
interval of time), is shown to eventually “pull” the given
trajectory towards 0 as well, even though V initially might
not decrease along the given trajectory. Suitable relations
between system constants and the volume of Ω must hold in
order for the comparison trajectory to converge faster than
the given trajectory can deviate from it. The argument is
completed by iterating over time.

Section II contains the necessary definitions. Our main
result (Theorem 1) is stated in Section III. Its proof is given
in Section IV. Section V contains a numerical example, and
Section VII concludes the paper.

II. PRELIMINARIES

The system is given by (1), where we assume that the
function f : R

n → R
n is locally Lipschitz. We consider
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a candidate Lyapunov function V : Rn → [0,∞) which is
positive definite and C1 with locally Lipschitz gradient Vx.
For a given c > 0, consider the region

D := V −1([0, c]) (4)

We need D to be compact and connected. Compactness of
D is automatic if V is radially unbounded.1 In case D is
not connected, redefine it to be the connected component of
V −1([0, c]) containing 0; we can then modify V outside D
so that (4) becomes true again.

Denoting by | · | the standard Euclidean norm in R
n, we

define the following constants:

L0 := max
x∈D

|f(x)|, (5)

L1 is a Lipschitz constant of f over D:

|f(x1)− f(x2)| ≤ L1|x1 − x2| ∀x1, x2 ∈ D, (6)

M1 := max
x∈D

|Vx(x)|, (7)

M2 is a Lipschitz constant of Vx over D:

|Vx(x1)− Vx(x2)| ≤ M2|x1 − x2| ∀x1, x2 ∈ D (8)

Define V̇ (x) = Vx(x) · f(x). We assume that there exist a
constant a > 0 and a subset Ω ⊂ D such that

V̇ (x) ≤ −aV (x) ∀x ∈ D \ Ω (9)

Here a is known, while Ω is not known but later we’ll impose
an upper bound on its volume vol(Ω). For every q ∈ [0, a],
we define the set

Gq := {x ∈ D : V̇ (x) ≤ −qV (x)} (10)

III. MAIN RESULT

Let Br(z) denote the closed ball in R
n with radius r and

center z (when only the volume of the ball is important,
we will sometimes omit the center). Define the function ρ :
(0,∞) → (0,∞) by the relation

vol(Bρ(ε)) = ε ∀ ε > 0 (11)

where “vol” is the standard volume in R
n. The following

is our main result.

Theorem 1 Consider the system (1) with a locally Lipschitz
right-hand side f , and a function V which is positive definite
and C1 with locally Lipschitz gradient. Let the region D be
defined via (4) and assume that it is compact and connected.
Assume that (9) holds. Then there exist a constant ε̄ > 0 and
a function R̄ : [0, ε̄] → [0,∞) which is 0 at 0, continuous,
and increasing,2 such that for every ε ∈ (0, ε̄], if vol(Ω) < ε
then for every initial condition x0 ∈ D with

V (x0) < c− 2M1ρ(ε) (12)

where M1 is defined by (7), the corresponding solution x(·)
of (1) (with x(0) = x0) has the following properties:

1V is radially unbounded if V (x) → ∞ whenever |x| → ∞ or,
equivalently, all sublevel sets of V are compact.

2Such functions are known as class K functions.

• V (x(t)) ≤ V (x0) + 2M1ρ(ε) for all t ≥ 0 (and hence
x(t) ∈ D for all t ≥ 0).

• V (x(T )) ≤ R̄(ε) for some T ≥ 0.
• V (x(t)) ≤ R̄(ε) + 2M1ρ(ε) for all t ≥ T .

Obviously, for the result to be meaningful, ε̄ must be small
enough so that 2M1ρ(ε̄) < c and R̄(ε) < c− 2M1ρ(ε).

Remark 1 A consequence of the conditions (11) and
vol(Ω) < ε is that Ω cannot contain a ball of radius ρ(ε). It
will be clear from the proof of Theorem 1 that this latter
property (which is less restrictive than the condition that
the total volume of Ω be smaller than ε) is enough for the
theorem to hold. In other words, if every point x ∈ D is
known to be within a distance less than ρ(ε) from the set
Ga, then the conclusions of the theorem are valid. To verify
this condition in practice, we can in principle just sample
sufficiently many points from D (for example, points on a
uniform lattice) and check if (9) holds for all of them.

Remark 2 In the special case when V̇ (x) ≤ −aV (x) for
all x ∈ D, Theorem 1 reduces to Lyapunov’s classical
asymptotic stability theorem. Indeed, Ω = ∅ means that the
condition vol(Ω) < ε holds for arbitrarily small ε > 0. Since
R̄(·) is 0 at 0 and continuous, the conclusions of Theorem 1
then imply that V (x(t)) → 0 as t → ∞ and the system is
asymptotically stable. (Note, though, that V is not necessarily
strictly decreasing along the trajectories.)

IV. PROOF OF THEOREM 1

We suppose that an ε > vol(Ω) is given, and we write
simply ρ for ρ(ε) defined via (11). We start by noting the
following simple property of V .

Lemma 1 For all x1, x2 ∈ D, we have

V (x1)−M1|x2 − x1| ≤ V (x2) ≤ V (x1) +M1|x2 − x1|

PROOF. Applying the mean-value theorem, we have
V (x2) = V (x1) + Vx(x3) · (x2 − x1), where x3 is a point
on the segment connecting x1 and x2. If this segment is
contained in D (which is guaranteed when D is convex),
then using (7) we have |Vx(x3) · (x2 − x1)| ≤ M1|x2 − x1|
and the claim follows. On the other hand, if the segment
connecting x1 and x2 gets outside of D, then by (4) each
subsegment lying outside of D connects two points of the
level set {x : V (x) = c}. “Collapsing” such subsegments
and applying the mean-value theorem on those subsegments
that lie in D, it is easy to see that the claim still holds.

Remark 3 If V were a norm (not necessarily the Euclidean
norm) then the above analysis via the mean-value theorem
could be replaced with one based on the triangle inequality.
We would then have to work with this norm throughout.
However, norms on R

n are not differentiable at 0 (because
they are equivalent to the Euclidean norm which is not
differentiable at 0). Although we could allow V to not be
differentiable around 0, we do not pursue this option here.

3084



A. An approximating trajectory x̄

Lemma 2 For every x0 satisfying (12), the ball Bρ(x0) is
contained in D and is not contained in Ω.

PROOF. We already know from the definition (11) of ρ and
the bound vol(Ω) < ε that Bρ(x0) is not contained in Ω (see
Remark 1). To show that Bρ(x0) ⊆ D, note that for each
x with |x − x0| ≤ ρ we have from Lemma 1 that V (x) ≤
V (x0)+M1ρ, which in view of (12) implies V (x) < c hence
x ∈ D by the definition (4) of D.

It follows from Lemma 2 that there exists a point x̄0 ∈
Bρ(x0) which is in D\Ω and hence is in Ga by (9) and (10).

Lemma 3 Two solutions x(·) and x̄(·) of (1) with initial
conditions x0 and x̄0 satisfy, as long as they are both in D,

|x(t)− x̄(t)| ≤ |x0 − x̄0|eL1t

PROOF. This is a standard consequence of (6) and the
Bellman-Gronwall lemma (see, e.g., [1]).

Lemma 4 For every initial condition x̄0 ∈ Ga and every
constant ξ ∈ (0, 1), the corresponding solution x̄(·) of (1)
satisfies x̄(t) ∈ Gξa for all t ∈ [0, T+

x̄0
], where

T+
x̄0

:=
(1− ξ)aV (x̄0)

(M1L1 + L0M2 + ξaM1)L0
(13)

PROOF. Define the function h(x) := V̇ (x) + ξaV (x) =
Vx(x)·f(x)+ξaV (x). Let us calculate its Lipschitz constant
over D. For arbitrary x1, x2 ∈ D, we have

|h(x1)− h(x2)|
= |Vx(x1) · f(x1) + ξaV (x1)− Vx(x2) · f(x2)− ξaV (x2)|
≤ |Vx(x1) · f(x1)− Vx(x1) · f(x2)|
+ |Vx(x1) · f(x2)− Vx(x2) · f(x2)|+ ξa|V (x1)− V (x2)|
≤ max

x∈D
|Vx(x)| · |f(x1)− f(x2)|

+max
x∈D

|f(x)| · |Vx(x1)− Vx(x2)|+ ξa|V (x1)− V (x2)|

≤ (M1L1 + L0M2 + ξaM1)|x1 − x2|

Now, let x1 := x̄(t) for some t, and let x2 := x̄0. As
long as x̄(·) remains in D, we have |x̄(t) − x̄0| ≤ L0t,
and so the above calculation implies |h(x̄(t)) − h(x̄0)| ≤
(M1L1+L0M2+ ξaM1)L0t. Since x̄0 ∈ Ga, we know that
h(x̄0) ≤ −(1 − ξ)aV (x̄0). Noting that (M1L1 + L0M2 +
ξaM1)L0T

+
x̄0

= (1 − ξ)aV (x̄0), we see that h(x̄(t)) ≤
|h(x̄(t)) − h(x̄0)| + h(x̄0) ≤ 0, which is equivalent to
x̄(t) ∈ Gξa, for t ≤ T+

x̄0
. This proves the lemma because,

as long as V is not increasing, x̄(·) remains in D and the
above estimates are valid.

Remark 4 The calculations in the proof of Lemma 4 also
tell us the following: if x̄ ∈ Ga and if another point x
satisfies

|x− x̄| ≤ (1− ξ)aV (x̄)

M1L1 + L0M2 + ξaM1

then x ∈ Gξa. In particular, letting ξ → 0, we obtain
the “robustness radius” for stability, i.e., the radius of a
ball around a point x̄ ∈ Ga which consists only of points
x such that V̇ (x) < 0. In case D is completely covered
by such balls, V is actually decreasing everywhere along
solutions; otherwise, Theorem 1 allows the possibility that
V temporarily increases.

B. The bounding function Wρ,γ,R

Let us pick a number γ ∈ (0, 1). We want to look for a
time T at which V (x(t)) becomes smaller than its original
value V (x0) by the factor of γ:

V (x(T )) ≤ γV (x0) (14)

To this end, we employ an auxiliary trajectory x̄(·) which
starts in Ga and use its properties established in Lemmas 3
and 4 to try to show that x̄(·) at least temporarily “pulls”
x(·) towards the origin.3 For R > 0 and ξ ∈ (0, 1), define
the function

Wρ,γ,R(t) := M1ρ
(

eL1t + e−ξat
)

+R
(

e−ξat − γ
)

(15)

where M1 ≥ 0, ρ > 0, L1 ≥ 0, and a > 0 come from (7),
(11), (6), and (9), respectively. We treat ρ, R, and γ as
parameters which we will eventually allow to vary, while
ξ is also a design parameter but, once chosen, we keep it
fixed. For R ≥ M1ρ, define also

T+
ρ (R) :=

(1− ξ)a(R−M1ρ)

(M1L1 + L0M2 + ξaM1)L0
(16)

Lemma 5 Suppose that V (x0) satisfies (12) and V (x0) ≥ R
for some R > M1ρ such that the interval [ 1

ξa
ln 1

γ
, T+

ρ (R)]
is nonempty, and that for some T in this interval we have
Wρ,γ,R(T ) ≤ 0. Then x(t) ∈ D for t ∈ [0, T ] and (14) holds
for the same T .

PROOF. Use Lemma 2 to pick a point x̄0 ∈ Bρ(x0)∩Ga, and
let x̄(·) be the solution of (1) with x̄(0) = x̄0. Since V (x0) ≥
R and |x̄0 − x0| ≤ ρ, by Lemma 1 we have V (x̄0) ≥ R −
M1ρ. Comparing (13) with (16) we see that T+

ρ (R) ≤ T+
x̄0

and hence by Lemma 4 we have x̄(t) ∈ Gξa for all t ∈
[0, T+

ρ (R)]. As long as t ≤ T+
ρ (R) and x(t) ∈ D, this

implies

V (x(t)) ≤ V (x̄(t)) +M1|x(t)− x̄(t)|
≤ e−ξatV (x̄0) +M1|x0 − x̄0|eL1t

≤ e−ξat
(

V (x0) +M1ρ
)

+M1ρe
L1t

where the first inequality follows from Lemma 1, the second
inequality relies on Lemmas 3 and 4, and to arrive at the
last inequality we used Lemma 1 again and the fact that
|x0 − x̄0| ≤ ρ. Now, let T be as in the statement of the

3We note that the reasoning employed here has some resemblance to
arguments showing finiteness of entropy for Lipschitz systems, such as the
proof of [7, Theorem 3.3].
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lemma, and note that e−ξaT − γ ≤ 0 because T ≥ 1
ξa

ln 1
γ

.
Thus we have

V (x(T ))− γV (x0) ≤ M1ρ(e
L1T + e−ξaT )

+ V (x0)(e
−ξaT − γ) ≤ Wρ,γ,R(T ) ≤ 0

as claimed. The proof will be complete when we show that
x(t) ∈ D for t ∈ [0, T ]. For this, consider the function
t 7→ e−ξat

(

V (x0) + M1ρ
)

+ M1ρe
L1t which as we know

provides an upper bound for V (x(t)) as long as x(t) ∈ D.
This function takes the value V (x0) + 2M1ρ at t = 0,
which is strictly smaller than c by (12), and its value at
T does not exceed γV (x0) which is also smaller than c.
Moreover, it is easy to check that this function is convex (its
second derivative is positive). It follows that this function
stays strictly below c on the interval [0, T ], hence x(t) cannot
escape D during this time interval.

Let Tρ,γ(R) be the time (if one exists) when the function
Wρ,γ,R changes sign from positive to negative, i.e., the time
instant with the properties

Wρ,γ,R(Tρ,γ(R))) = 0, W ′
ρ,γ,R(Tρ,γ(R))) ≤ 0

By convexity of Wρ,γ,R (which is easily seen from the fact
that its second derivative is positive), if Tρ,γ(R) exists then
it is unique. It also must satisfy Tρ,γ(R) ≥ 1

ξa
ln 1

γ
because

for t < 1
ξa

ln 1
γ

we have e−ξat−γ > 0 hence Wρ,γ,R(t) > 0
by (15).

Remark 5 In view of the properties of Wρ,γ,R just noted
above, a necessary condition for the existence of Tρ,γ(R) is
that W ′

ρ,γ,R(t) be negative at t = 1
ξa

ln 1
γ

. We can calculate

that this derivative is M1ρL1e
L1

ξa
ln 1

γ − (R+M1ρ)ξaγ, and
after simplification we get a more conservative but simpler
necessary condition

R > M1

(

1 + L1

a

)

ρ =
M1L1 + aM1

a
ρ (17)

Lemma 6 For R large enough, Tρ,γ(R) exists and satisfies
Tρ,γ(R) ≤ T+

ρ (R).

PROOF. Fix some t̄ > 1
ξa

ln 1
γ

. For this t̄ we have e−ξat̄−γ <
0, hence Wρ,γ,R(t̄) < 0 for R large enough. This means
that for large R the time Tρ,γ(R) exists and is smaller
than t̄. Next, consider a pair of values R′ > R for which
the corresponding times Tρ,γ(R

′) and Tρ,γ(R) exist. Since
e−ξat − γ is negative at both of these times, it is clear that
Wρ,γ,R′(Tρ,γ(R)) < 0, hence Tρ,γ(R

′) < Tρ,γ(R). In other
words, Tρ,γ is monotonically decreasing in R. On the other
hand, T+

ρ (R) is monotonically increasing to ∞ as R → ∞
in view of (16), and the lemma follows.

We let Sρ,γ denote the set of values of R with the
properties stated in Lemma 6:

Sρ,γ := {R > 0 : Tρ,γ(R) exists and Tρ,γ(R) ≤ T+
ρ (R)}

This set is closed (as its complement is open due to continu-
ous dependence of Wρ,γ,R and T+

ρ on their arguments) and
thus admits a minimum

R̄ρ,γ := minSρ,γ

It actually follows from the proof of Lemma 6 that the set
Sρ,γ has very simple structure: Sρ,γ = [R̄ρ,γ ,∞). The mini-
mum, R̄ρ,γ , corresponds to either W ′

ρ,γ,R(Tρ,γ(R̄ρ,γ))) = 0
or Tρ,γ(R̄ρ,γ) = T+

ρ (R̄ρ,γ). We must have R̄ρ,γ > M1ρ
because T+

ρ (M1ρ) = 0 and T+
ρ (R) is not defined for

R < M1ρ. Note that this bound is already subsumed by (17).
Lemma 5 guarantees that when V (x0) satisfies (12)

and V (x0) ≥ R̄ρ,γ , the solution x(·) remains in D on
[0, Tρ,γ(R̄ρ,γ)] and satisfies

V (x(Tρ,γ(R̄ρ,γ)) ≤ γV (x0)

At t = Tρ,γ(R̄ρ,γ), we can reset the time to 0 and repeat
the above analysis. This means that V (x(t)) decreases at
least by the factor of γ at the end of each time interval of
length Tρ,γ(R̄ρ,γ), as long as V (x(t)) ≥ R̄ρ,γ . Therefore,
V (x(t)) will reach the value R̄ρ,γ in finite time. From that
time onwards, we know from the proof of Lemma 5 that
V (x(t)) will remain bounded from above by R̄ρ,γ + 2M1ρ.

Remark 6 Note that the choice of ξ affects both T+
ρ (ex-

plicitly) and Tρ,γ (implicity through Wρ,γ,R). An interesting
question is which value of ξ is optimal in the sense of giving
the smallest R̄ρ,γ .

C. The limit γ → 1 and behavior for small ε

In the above analysis, γ ∈ (0, 1) was a design parameter,
and we will now let it approach 1 from below. We extend
the definitions of the function Wρ,γ,R, its first zero-crossing
time Tρ,γ , the set Sρ,γ , and its minimum R̄ρ,γ in the obvious
way to include the value γ = 1.

Lemma 7 R̄ρ,γ is continuously decreasing in γ, and R̄ρ,1 =
limγր1 R̄ρ,γ .

PROOF. From (15) it is clear that Wρ,γ,R decreases when
γ increases. Thus if R ∈ Sρ,γ and γ′ > γ, then
Wρ,γ′,R(Tρ,γ(R)) < 0. This means that R is in the interior
of Sρ,γ′ , which gives the decreasing property. Due to the
continuous dependence of Wρ,γ,R on R and γ, it is not hard
to see that R̄ρ,γ is continuous in γ and that for every δ > 0
we have R̄ρ,1 + δ ∈ Sρ,γ for some γ < 1. Together with the
decreasing property this gives the last claim.

We can now examine the conclusions of Section IV-B in
the limit as γ → 1. Suppose that V (x0) satisfies (12) and
V (x0) > R̄ρ,1. Then by Lemma 7, we have V (x0) ≥ R̄ρ,γ

for all γ sufficiently close to 1. For each such γ, we know
that V (x(t)) will reach the value R̄ρ,γ in finite time, and
from that time onwards V (x(t)) will remain bounded from
above by R̄ρ,γ+2M1ρ. This corresponds to the claims of the
theorem if we let ε 7→ R̄(ε) be any function strictly larger
than R̄ρ(ε),1 for ε > 0.

It remains to show that the conditions (12) and V (x0) >
R̄ρ,1 can be simultaneously satisfied if ε is small enough, and
that we can choose R̄(·) to be 0 at 0. Since ρ was defined
by (11), ε → 0 if and only if ρ → 0.
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Lemma 8 R̄ρ,γ is continuously increasing in ρ, and
limρց0 R̄ρ,1 = 0.

PROOF. The first claim is proved similarly to the first claim
of Lemma 7. To prove the second claim, we note from (15)
with γ = 1 that as ρ → 0, with R > 0 arbitrary and fixed,
Tρ,1(R) becomes well defined and approaches 0. Indeed, if
we fix an arbitrary t̄ > 0 and define two positive numbers
δ1 := M1(e

L1 t̄ + e−ξat̄) and δ2 := −e−ξat̄ + 1, then
Wρ,γ,R(t̄) = δ1ρ − δ2R hence Tρ,1(R) exits and is smaller
than t̄ for R > (δ1/δ2)ρ → 0 as ρ → 0. At the same time,
T+
ρ (R) approaches (1−ξ)aR

(M1L1+L0M2+ξaM1)L0

in view of (16).
Thus, every R > 0 belongs to Sρ,1 for ρ small enough, which
gives the result.

Lemma 8 confirms that the constraints (12) and V (x0) >
R̄ρ,1 are indeed consistent for ρ small enough, hence for
ε small enough, and that it is possible to have R̄(ε) → 0
as ε → 0. For ε̄ in the theorem statement, we can take
any positive number satisfying R̄(ε̄) < c − 2M1ρ(ε̄). This
completes the proof of the theorem.

V. NUMERICAL EXAMPLE

The purpose of this section is to illustrate how Theorem 1
can be applied in practice on a specific example. Consider
the system

(

ẋ1

ẋ2

)

=

(

−λ µ
−µ −λ

)(

x1

x2

)

(18)

We can take D to be a ball Bd(0), and for V we can
take α(|x|) for some function α (here α(d) = c). We
easily calculate that L0 = d

√

λ2 + µ2, L1 =
√

λ2 + µ2.
For concreteness, here we choose the candidate Lyapunov
function V (x) = |x|2, i.e., α(r) = r2. Then we have
M1 = 2d, M2 = 2, and a = −2λ.

Next, we must select the following parameters: ρ > 0
such that the right-hand side of (12) is positive; ξ ∈ (0, 1)
whose selection is in principle arbitrary but can be tuned to
give the best results (in the sense of Remark 6); γ which
for practical purposes we can take equal to 1; and R which
initially can be any number satisfying (17) and no larger than
c − 2M1ρ. (We should decrease ρ if necessary so that this
range of values for R is nonempty).

We can now calculate T+
ρ (R) from the formula (16). The

next step is to plot the bounding function Wρ,γ,R given
by (15) for t ∈ [0, T+

ρ (R)] and check for a zero crossing
on this interval. If a zero crossing does not occur, we have
to increase R until a zero crossing is observed. We let R̄
denote the smallest value of R for which this happens (this
value can be computed to a desired accuracy by a simple
bisection procedure). Finally, we check that

R̄+ 2M1ρ ≤ c. (19)

If this inequality does not hold, then ρ must be decreased.
Lemma 8 guarantees that if we keep decreasing ρ to 0,
eventually (19) will be verified. Once we find the value ρ̄ for
which (19) holds with equality (again, this can be approxi-
mately computed by a bisection procedure), the constant ε̄
in Theorem 1 can be any positive number smaller than πρ̄2,

and ρ should be taken smaller than ρ̄. We then conclude that
every system whose right-hand side differs from that of (18)
on some set of volume less than πρ2 (or on some set not
containing a ball of radius ρ, according to Remark 1)—and
whose constants L0 and L1 are not larger than those for the
original system—has the properties listed in Theorem 1 with
the corresponding value R̄ found by the above procedure.
(Here R̄ depends on our choice of ρ, which in turn is related
to ε via (11).)

For our numerical study, we took λ = µ = d = c = 1 and
ξ = 0.5. For ρ = 0.01, we have c − 2M1ρ = 0.96 and the
above procedure terminates with R̄ ≈ 0.7 and R̄+ 2M1ρ ≈
0.74, which gives a meaningful ultimate bound on solutions.
For ρ = 0.015, we obtain R̄ ≈ 0.86 and R̄+ 2M1ρ ≈ 0.92.
The upper bound on feasible values of ρ in this case is ρ̄ ≈
0.018. Regarding the choice of ξ, values between 0.4 and
0.5 seem to give the best results for this example.

VI. CHALLENGE AND DISCUSSION

Theorem 1 allows us to establish convergence even if
the decrease condition V̇ ≤ −aV is not known to hold
everywhere in the region of interest. A question that remains
open is whether this result actually permits the existence
of points outside the region of convergence at which V̇
is positive, i.e., points x ∈ D such that x /∈ G0 and
V (x) > R̄ (we omit the ε argument, treating ε as fixed).
Suppose that such an x exists. By Remark 1, the ball of
radius ρ around x cannot be completely contained in Ω,
and thus contains a point z ∈ Ga. Then by Remark 4 with
ξ = 0, the ball of radius ∆x := aV (z)

M1L1+L0M2

around z is
completely contained in G0. To avoid contradiction, we must
have ρ > ∆x. Remembering that V (x) > R̄ and |z−x| ≤ ρ
and using Lemma 1, we arrive at the necessary condition ρ >
a(R̄−M1ρ)

M1L1+L0M2

which is equivalent to R̄ < M1L1+L0M2+aM1

a
ρ.

Earlier, we derived the necessary condition (17), and the
good news is that the two conditions are consistent. In other
words, so far there is no obvious reason why we cannot
in principle have points of instability within the context of
Theorem 1. The challenge is to construct an example where
such points of instability are actually present.

Let us start again with the system (18) from Section V.
Pick a number R̂ > α−1(R̄) so that V (x) > R̄ when |x| =
R̂, i.e., R̂ is (slightly) larger than the convergence radius R̄
provided by Theorem 1. Suppose we want to modify the
right-hand side of (18) as follows: inside the ball of radius

ρ around the point
(

R̂
0

)

, perturb the vector field so that at

the point
(

R̂
0

)

itself it becomes vertical (and thus critically
stable with respect to our Lyapunov function). Outside this
ball, the vector field should remain as is.

Consider the pair of points xrad,± :=
(

R̂± ρ
0

)

on the
boundary of this ball. At these points the velocity vector is
(and will remain)

ẋ =

(

−λ µ
−µ −λ

)(

R̂± ρ
0

)

= −
(

λ
µ

)

(R̂± ρ)
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At the point x =
(

R̂
0

)

the velocity vector originally is ẋ =
(−λR̂
−µR̂

)

but we want to change it to ẋ =
(

0
−µR̂

)

. For

the modified vector field, the new value of L1 will have to
satisfy

L1 ≥ 1

ρ

∣

∣

∣

∣

(

−λ(R̂± ρ)

−µ(R̂± ρ)

)

−
(

0

−µR̂

)∣

∣

∣

∣

=
√

λ2
(

R̂
ρ
± 1

)2
+ µ2

Choosing the “+” sign gives a larger lower bound on L1.
Now consider another pair of points, xang,± :=

R̂
(

cosα
± sinα

)

, where α is a (small) positive angle. For a

value of α close to ρ/R̂, these two points also lie on the

boundary of the ball of radius ρ centered at
(

R̂
0

)

. At these
points the velocity vector is then unchanged and equals

R̂
(−λ cosα± µ sinα
−µ cosα∓ λ sinα

)

. This gives us another lower bound

L1 ≥ R̂

ρ

∣

∣

∣

∣

(

−λ cosα± µ sinα
−µ cosα∓ λ sinα

)

−
(

0
−µ

)∣

∣

∣

∣

=
R̂

ρ

√

λ2 + 2µ
(

µ(1− cosα)∓ λ sinα
)

Here choosing the point xang,− gives the “+” sign in the
formula and hence a larger lower bound. This bound is mono-
tonically increasing in µ, while the bound corresponding to
xang,+ has a minimum for a positive µ. (This can also be
seen from geometric considerations.)

We see that L1 does get larger as a result of the modifica-
tion. (On the other hand, L0 does not change because we are
not increasing the velocity.) Thinking naively, we may hope
that we can calculate R̄ for a given ρ and a slightly enlarged
L1, and then show that the above modification increases L1

by a small enough factor so that the same R̄ is still valid
after the modification. Unfortunately, this approach does not
appear to be feasible, for the following reason. Suppose that
our result applies to the vector field modified as explained
above and indicates convergence to the ball Bα−1(R̄)(0). Let
us now treat µ as a parameter and make it approach 0.

In the limit as µ → 0, the point x =
(

R̂
0

)

becomes an
equilibrium of the modified vector field. Neither a (which
depends only on λ) nor L0 change as we take this limit, and
the above calculations show that L1 does not increase. Thus
the convergence claim must remain valid for µ = 0, but of
course it cannot be valid in the presence of an equilibrium
outside the convergence ball.

We note that the above example is characterized by the
following aspects (revealed by taking the limit µ → 0):
starting with the assumption that the (modified) vector field
is tangent to a level set of V at some point, by canceling
the “angular” component of the vector field (the component
tangential to the level sets of V ) while preserving the radial
component, we were able to create another vector field
which has the same (or at least not larger) constants a,
L0, L1 and has an equilibrium at that point. This led us
to a contradiction. Therefore, to construct an example where
our theorem allows points of instability, we need to find an

example where this procedure cannot be carried out because
canceling the angular component would increase L1.

In view of our analysis of the points xang,± in the above
example, it appears promising to consider a candidate Lya-
punov function whose c-level set has an “inflection point”
and to make the vector field f tangent to this level set at
that point; see Figure 1. The following values appear to be

Fig. 1. A possible level set of V and a vector field f on it.

consistent with this situation: c = a = L0 = L1 = M1 = 1,
M2 =

√
2/ρ. However, due to the fact that M2 is large when

ρ is small, these values are not feasible for Theorem 1. More
effort is needed to realize this idea.

VII. CONCLUSIONS

We presented a result (Theorem 1) which establishes
convergence of system trajectories from a given set to a
smaller set, based on an “almost Lyapunov” function which
is known to decrease along solutions on the complement
of a set of small enough volume. The proof was based on
trading off convergence speed of trajectories along which
the Lyapunov function decreases against the expansion rate
of the distance between nearby trajectories of the system.

One limitation of Theorem 1 is that it is designed to
apply to every system with given values of the constants
c, a, L0, L1,M1,M2. Taking into account specific structure
of the system dynamics (e.g., rotation rate in the plane) may
pave the way to a less conservative result.
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