
Distributed Linear Supervisory Control

Ali Khanafer, Tamer Başar, and Daniel Liberzon

Abstract— In this work, we propose a distributed version of
the logic-based supervisory adaptive control scheme. Given a
network of agents whose dynamics contain unknown parame-
ters, the distributed supervisory control scheme is used to assist
the agents to converge to a certain set-point without requiring
them to have explicit knowledge of that set-point. Unlike
the classical supervisory control scheme where a centralized
supervisor makes switching decisions among the candidate
controllers, in our scheme, each agent is equipped with a local
supervisor that switches among the available controllers. The
switching decisions made at a certain agent depend only on
the information from its neighboring agents. We apply our
framework to the distributed averaging problem in the presence
of large modeling uncertainty and support our findings by
simulations.

I. INTRODUCTION

Logic-based switching supervisory control has been pro-
posed as a method to overcome limitations of adaptive con-
trol schemes [1]. A fundamental difference between the two
approaches is that while adaptive control requires continuous
tuning of parameters, supervisory control relies on logic-
based switching among a collection of candidate controllers.
Continuous tuning suffers from well-known issues such as
loss of stabilizability. In the classical supervisory control
scheme, a centralized supervisor estimates the state of the
plant, and based on the history of estimation errors, it
activates a certain candidate controller. For a more detailed
study of supervisory control, see Chapter 6 of [2].

Supervisory control has been used in various problems
and applications [3]–[11]. In [3], [4], the set-point control
problem has been studied using a supervisory control frame-
work. It has also been utilized in path-following problems for
underactuated systems with large modeling uncertainties [6].
Recently, supervisory control has been extended to addresses
the problem of stabilizing uncertain systems with quantized
outputs [11].

In this work, and motivated by its attractive properties, we
extend the supervisory control framework to a distributed
setting. A distributed version of supervisory control can
have wide applications in stabilization and tracking problems
over networked systems in the presence of large modelling
uncertainties.

Statement of Contributions
The main contribution of this paper is extending the

centralized supervisory control framework to a distributed

Research supported in part by an AFOSR MURI Grant FA9550-10-1-
0573 and in part by a grant through the Information Trust Institute of the
University of Illinois.

The authors are with the Coordinated Science Laboratory, ECE
Department, University of Illinois at Urbana-Champaign, USA
{khanafe2,basar1,liberzon}@illinois.edu

setting. We first provide a detailed description of the main
components in this scheme. We prove that when the set
in which the unknown parameters take values is finite, the
switching stops in finite time at each node. Further, we
provide sufficient conditions for achieving set-point tracking
using this framework without requiring the individual agents
to have explicit knowledge of the desired set-point. Finally,
we apply this scheme to the distributed averaging problem
in the presence of unknown parameters, and we support our
findings with simulations.

Notation and Terminology

We denote the i-th row of a matrix X ∈ Rn×m by [X]i ∈
Rm, and the (i, j)-th entry of that matrix by [X]ij ∈ R.
Similarly, we denote the i-th entry of a vector x ∈ Rn by
[x]i ∈ R. We adopt the game-theoretic notation x−i to mean
the collection of vectors xj for all j 6= i. The identity matrix
is denoted by I , and the all-ones vector is denoted by 1.

A directed graph is a pair G = (V, E), where V is the
set of nodes and E ⊆ V × V is the set of edges. Given G,
we denote an edge from node i ∈ V to node j ∈ V by
(i, j). When (i, j) ∈ E if and only if (j, i) ∈ E , we call the
graph undirected. We call an undirected graph connected if
it contains a path between any two nodes in V . We use the
words “nodes” and “agents” interchangeably.

Organization

In Section II, we introduce the system model and present
the problem formulation. The main components of the dis-
tributed supervisory control scheme are provided in Section
III. Section IV contains the stability analysis of the proposed
scheme. An application to the distributed averaging problem
is presented in Section V. We conclude the paper in Sec-
tion VI and provide ideas for future work.

II. SYSTEM MODEL

Consider a network with n nodes, and let x ∈ Rn be the
state of the network, where [x]i ∈ R is the state of node i. It
is possible to extend this setting to the case where the state
of the i-th agent is ki-dimensional, where k1 + . . .+kn = n;
however, in this paper, we restrict our attention to the case
where the state of each node is scalar for simplicity. Let u ∈
Rn be a vector consisting of the inputs to all the nodes with
[u]i ∈ R being a scalar input to node i. Further, let y ∈ Rn
be a vector consisting of the outputs of all the nodes with
[y]i ∈ R being a scalar output of node i. Similar to the state
variables, it is possible to allow the nodes to take multiple
inputs and produce multiple outputs, and the restriction to

53rd IEEE Conference on Decision and Control
December 15-17, 2014. Los Angeles, California, USA

978-1-4673-6088-3/14/$31.00 ©2014 IEEE 1458

321
Ap =

 0 ∗ 0
∗ 0 ∗
0 ∗ 0


Fig. 1: A path graph with 3 nodes and its corresponding Ap.

the single-input single-output set-up is for purpose of clarity
in presentation.

The network is described by a graph whose topology is
unknown, i.e., the interconnections among the n nodes are
not known. Let P = {1, . . . , r} be a finite index set. To
each p ∈ P , we associate a graph Gp = (Vp, Ep), where
Vp is the set of vertices, and Ep ⊆ Vp × Vp is the set of
edges. The index p? ∈ P is unknown to the nodes, and its
corresponding graph, Gp? , describes the actual network under
study. The graphs Gp, p 6= p?, are different possibilities of
what Gp? might be. To each graph Gp, there corresponds a
linear dynamical system represented by a triple (Ap, Bp, Cp),
where Ap, Bp, Cp ∈ Rn×n. Each triple represents a different
possibility of the actual system (Ap? , Bp? , Cp?) that governs
the dynamics of the network. In particular, we assume that
the nodes operate according to the following linear dynamics:

ẋ = Ap?x+Bp?u, x(0) = x0, (1)
y = Cp?x.

We define the neighborhood of node i in the graph Gp as

Np(i) = {j ∈ Vp : (j, i) ∈ Ep}.

Note that we have not explicitly included i in Np(i) to allow
for applications where node i is not able to measure its own
state, for example.

In order to capture the underlying network topology, we
must have that the state xi, control ui, and measurement
yi of node i can only depend on the states, control inputs,
and measurements of the nodes in Np(i). To this end, we
impose the following sparsity constraint on the matrices
{Ap, Bp, Cp : p ∈ P}:

j /∈ Np(i) =⇒ [Ap]ij = [Bp]ij = [Cp]ij = 0, p ∈ P.
(2)

Under this constraint, the matrices Ap, Bp, Cp can be seen as
an encoding of the topology of the graph Gp. To demonstrate
the sparsity constraint, consider the 3-node path graph shown
in Fig. 1. For this graph, the matrix Ap must have the shown
structure, where “ ∗ ” can be any nonzero real number.

Further, in order to be able to design decentralized con-
trollers, we must restrict the knowledge of node i about the
graph Gp. In particular, we assume that the knowledge of
node i about the topology of Gp is only local; this can
be captured by restricting the knowledge of node i to the
set {[Ap]i, [Bp]i, [Cp]i}. Formally, we make the following
assumption.

Assumption 1: The set P is finite, and the set
{[Ap]i, [Bp]i, [Cp]i : p ∈ P} is known to node i.

Our goal is to design decentralized control inputs [u]i, via
an extension of the classical supervisory control scheme, in

order to track the following stable linear reference model:

ẋm = Amxm, xm(0) = x0
m, (3)

ym = Cmxm,

where xm ∈ Rn and Am, Cm ∈ Rn×n. Define the tracking
error, eT , as follows:

eT = ym − y.
The problem we are solving here is not the general

tracking problem, because there is no external reference
signal. The reason behind introducing the reference model
is motivated by applications where the agents attempt to
converge to a certain set-point without the explicit knowledge
of that point. An example of such a scenario is the distributed
averaging problem where nodes attempt to compute the
average of their initial values, x0, without knowing the value
of the average a priori. We will apply our framework to the
distributed averaging problem in Section V. Moreover, the
standard stabilization problem, i.e., regulating the state x to
the origin, is a special case of the problem we are solving
and can be achieved by removing the reference model, i.e.,
setting xm ≡ 0.

In the following section, we will introduce the distributed
supervisory control scheme, and explain the functions of its
main components in detail.

III. DISTRIBUTED SUPERVISORY CONTROL
ARCHITECTURE

Fig. 2 illustrates the general architecture of the distributed
supervisory control scheme. In this scheme, each node has
access to a bank of candidate controllers that take as input the
outputs of the nodes in its neighborhood as well as the track-
ing error. The “Sparse Filters” block in the figure emphasizes
that the local dynamics and controllers of node i can only
use information from neighboring nodes. It should be noted
that there is no centralized sparse filter implemented, and this
block is introduced for the sake of demonstration only. In this
section, we will precisely explain how the information from
the neighboring nodes affect the dynamics and control inputs
of node i. Each node has a local supervisor: a dynamical
system that takes as input the outputs and control inputs of
the neighboring nodes and produces a switching signal. The
switching signal provided by the supervisor activates one of
the available controllers. The choice of a given control input
is intended to minimize the tracking error. We will study the
supervisor in more details next.

A. The Distributed Supervisor

We will refer to the collection of the local supervisors by
the distributed supervisor. As illustrated in Fig. 3, the dis-
tributed supervisor has three main blocks: a multi-estimator,
a monitoring signal generator, and a switching logic compo-
nent. As in the centralized supervisory control case, there are
certain properties we require from the individual blocks of
the local supervisors which are crucial for achieving tracking.
In particular, the multi-estimators must guarantee that at least
one estimation error ep is small. This will guarantee that

1459

Model

Local Supervisor

Local
Controllers

...

ym

[up]i

Sparse
Filters

y�i

u�i

Node i

�i

[y]i[u]i

Fig. 2: Distributed supervisory control architecture.

switching halts in finite time. As for the candidate controllers,
they must ensure that the closed loop system is detectable
with respect to the estimation error. The switching logic must
ensure that the estimation error is bounded, while avoiding
fast switching. Here, we will work with a specific choice of
these three blocks.

Distributed
Multi-Estimator u p 2 P +

�

e1
p

en
p µn

p

µ1
p �1

�n

...
...

Monitoring Signal
Generator

Monitoring Signal
Generator Switching Logic

Switching Logic

y
yp

Fig. 3: The distributed supervisor.

Distributed Multi-Estimator and Candidate Controllers

For now, we assume that the control input u is given. We
will explain how to select the control below. The distributed
multi-estimator is a collection of local multi-estimators that
are implemented at the nodes. At node i, the local multi-
estimator is a dynamical system that takes as input the
outputs and control inputs of the neighboring nodes, and
it produces an estimate [yp]i, p ∈ P . At each node, we
adopt the standard Luenberger observer to design the multi-
estimator. Let the matrix Lp be sparse:

j /∈ Np(i) =⇒ [Lp]ij = 0. (4)

The estimator equations at node i can then be written as

[ẋp]i =
∑

j∈N(i)

[Ap]ij [xp]j + [Bp]ij [u]j + [Lp]ij [yp − y]j ,

[yp]i =
∑

j∈N(i)

[Cp]ij [xp]j ,

with arbitrary initial values [xp(0)]i. To write the estimator
equations more compactly, let xp = [[xp]1, . . . , [xp]n]T and
yp = [[yp]1, . . . , [yp]n]T , for all p ∈ P . Recalling that the
matrices Ap, Bp, Lp, Cp are sparse, we can now write

ẋp = Apxp +Bpu+ Lp(yp − y), xp(0) = x0
p,

yp = Cpxp,

where x0
p = [[xp(0)]1, . . . , [xp(0)]n]T . It is important to note

that xp, yp are not stored at any node in the network, since

they are centralized quantities, and are introduced merely for
notational simplicity.

We define the estimation error as ep = yp− y, p ∈ P . We
denote the estimation error at the i-th node by

eip = [yp − y]i, p ∈ P.
As for the candidate control inputs at node i, we assume
they are linear and given by

[up]i =
∑

j∈N(i)

[Kp]ij [xp]j + [Fp]ij [eT]j , p ∈ P,

where the gain matrices Kp and Fp must be sparse to
guarantee that the controllers are decentralized. Formally, we
have the following constraint on the gain matrices:

j /∈ N i
p =⇒ [Kp]ij = [Fp]ij = 0, p ∈ P. (5)

Similar to the estimators, for each p ∈ P , we collect
the control inputs of the nodes into the vector up =
[[up]1, . . . , [up]n]T . We can then write

up = Kpxp + FpeT , p ∈ P.
In general, the number of candidate control inputs need not
be equal to |P| = r. However, we will assume in this paper,
for simplicity, that each node has access to r controllers.

Monitoring Signal Generators

Each node implements a monitoring signal generator
which keeps track of the history of the estimation errors.
This allows the switching decisions (to be explained next) to
be based on the history of errors instead of the instantaneous
estimation error values. The monitoring signals can be de-
fined as any norm of the estimation error. Here, we define
the monitoring signal at the i-th node as the square of the
L2 norm of eip. Formally, we write

µip(t) =

∫ t

0

|eip(s)|2ds. (6)

It is more convenient for implementation purposes to express
the monitoring signal as an ordinary differential equation
(ODE):

µ̇ip = |eip|2, µip(0) = 0, p ∈ P.
Switching Logic

The switching logic at each node takes the monitoring
signals µip, p ∈ P , as inputs and produces a switching
signal σi : [0,+∞) → P which determines the controller
to be applied at each time instant. In particular, we have
[u]i = [uσi

]i, i ∈ {1, . . . , n}. The chosen controller should
correspond to the monitoring signal that has the lowest value.
However, if we set σi = minp∈P µip, we run into the risk of
fast switching, which could be detrimental for the stability
of the system [2]. To this end, we will employ hysteresis
switching logic at each node with hysteresis constant hi > 0.
The hysteresis constant is introduced in order to prevent σi
from switching its value too quickly. At each node, we first
initialize the switching signal as follows:

σi(0) = min
p∈P

µip(0).

1460

Let p̂i(t) := arg minp∈P µ
i
p(t). The signal σi switches its

value at time t if µip̂i + hi ≤ µiσi
. Fig. 4 illustrates the

hysteresis based logic at node i.

�i(0) = min
p2P

µi
p(0)

p̂i = arg min
p2P

µi
p �i = p̂i

µi
p̂i

+ hi  µi
�i

yes no

Fig. 4: Hysteresis based switching logic.

IV. STABILITY ANALYSIS

In this section, we will obtain sufficient conditions for
driving the tracking error to zero. Our approach will consist
of two main steps. First, we will show that switching at all
the nodes will halt in finite time. Then, assuming that the
switching has stopped at all the nodes, we will study the
detectability properties of the closed-loop system.

In order to prove that switching terminates in finite time,
it is instrumental to show that ep? converges to zero expo-
nentially fast. When p = p?, we have

ẋp? − ẋ = (Ap? + Lp?Cp?)(xp? − x).

To guarantee that xp? converges exponentially fast to x, we
need to impose the following condition.

Condition 1: The matrix Ap? + Lp?Cp? is Hurwitz with
Lp? , Cp? satisfying (2) and (4), respectively.

Remark 1: This condition can be viewed as a distributed
version of detectability for the plant. In the case when
Cp = I , for all p ∈ P , this condition can be satisfied via
diagonal dominance. Diagonal dominance can be achieved
by choosing

[Lp]ii < −[Ap]ii −max
p∈P

∑
6=i
|[Ap]ij |.

Note that the maximization can be carried out locally at
each node because of Assumption 1. To guarantee that Lp
is sparse, we can select it to be a diagonal matrix. With
such choice of L, the matrix Ap? +Lp? becomes diagonally
dominant with negative diagonal entries, and by Gershgorin’s
circle theorem, it follows that the matrix is Hurwitz. •

Under Condition 1, xp? converges exponentially fast to
x, and consequently e?p = Cp?(xp? − x) converges to zero
exponentially fast regardless of the applied control u. We
now have the following proposition, which is an immediate
extension of its counterpart in the centralized architecture
[2], [12].

Proposition 1: For all i ∈ {1, . . . , n}, there exists a time
T ?i and an index q?i ∈ P such that σi(t) = q?i , for all t ≥ T ?i .
Moreover, eiq?i ∈ L2, for all i ∈ {1, . . . , n}.

Proof: Because e?p converges to zero exponentially fast,
it follows from (6) that µip? is bounded. Let Ki ∈ N be such
that µip? ≤ Ki. By definition, µip is a nondecreasing function,
for all p ∈ P . Hence, each µip must have a limit. Because P
is finite, there exists a time Ti such that either µip ≥ Ki or
µip(t2)−µip(t1) < hi for all t2 > t1 ≥ Ti; therefore, at most
one more switch can occur for t ≥ Ti. This in turn implies
that there exists a time T ?i such that σi(t) = q?i , q?i ∈ P , for
t ≥ T ?i . Because µip? is bounded, µiq?i must also be bounded.
By (6), it then follows that eiq?i ∈ L2.

Note that after the switching stops, the estimate of node
i, q?i , might not match that of another node j, q?j . In other
words, the perception of node i about the underlying graph
will in general be different than that of node j. This leads
to new analysis challenges that were not present in the
centralized structure.

In order to study the stability of the system following
termination of switching, we first define

x̂q? := [[xq?1]1, . . . , [xq?n]n]T ,

q? := [q?1 , . . . , q
?
n]T .

Further, we need to construct the following matrices:

Âq? :=

[Aq?1]1
...

[Aq?n]n

 , B̂q? :=

[Bq?1]1
...

[Bq?n]n

 , Ĉq? :=

[Cq?1]1
...

[Cq?n]n

 ,
K̂q? :=

[Kq?1
]1

...
[Kq?n

]n

 , F̂q? :=

[Fq?1]1
...

[Fq?n]n

 , L̂q? :=

[Lq?1]1
...

[Lq?n]n

 .
With these definitions, we can write the control law u after
the switching stops as

u = K̂q? x̂q? + F̂q?eT .

Define x := [xT , x̂Tq?]T . After the switching stops, the
closed-loop system becomes:

ẋ = Ax+Dxm

êq? = Cx,

where

A =

[
Ap? −Bp? F̂q?Cp? Bp?K̂q?

−(B̂q? F̂q? + L̂q?)Cp? Âq? + B̂q?K̂q? + L̂q?Ĉq?

]
,

D =

[
Bp? F̂q?Cm
B̂q? F̂q?Cm

]
,

C =
[
−Cp? Ĉq?

]
.

Consider now the matrix

Γ =

[
Bp? F̂q? + Lp?

B̂q? F̂q? + L̂q?

]
,

and note that

A−Γ C=

[
Ap? + Lp?Cp? Bp?(K̂q? − F̂q?Ĉq?)− Lp?Ĉq?

0 Âq? + B̂q?(K̂q? − F̂q?Ĉq?)

]
.

1461

Using output injection, we can write

ẋ = (A− Γ C)x+ Γ êq? +Dxm. (7)

To achieve tracking, the matrix A−Γ C must be Hurwitz.
Hence, in addition to Condition 1, we need to impose the
following condition.

Condition 2: The matrix Âq? + B̂q?(K̂q? − F̂q?Ĉq?) is
Hurwitz for all q? = [q?1 , . . . , q

?
n]T with {q?1 , . . . , q?n} ⊂ P ,

while satisfying (2) and (5).
Remark 2: Assume that Bp = Cp = I , for all p ∈ P ,

and let us select [Kp]i = −[Ap]i, for all i and p. Note that
such selection for [Kp]i is made possible by Assumption
1. In this case, Condition 2 simplifies to requiring −F̂q? to
be sparse and Hurwitz. This can be achieved by selecting
Fp = kI , where k ∈ R>0. •

We are now ready to state the main result of this section.
Denote the state to which the reference model converges by
x?m.

Proposition 2: Under Conditions 1 and 2, and assuming
that xm converges asymptotically to x?m, the state of the plant
x remains bounded, and it asymptotically converges to

x? = −(Ap? +Bp?(K̂q? − F̂q?Ĉq?))−1Bp? F̂q?Cmx
?
m.

Proof: Under Conditions 1 and 2, the matrix A− Γ C
is Hurwitz. We know from Proposition 1 that eiq?i ∈ L2

for all i ∈ {1, . . . , n}. Noting that êq? = [e1
q?1
, . . . , enq?n],

we conclude that êq? converges to zero as t → ∞. Then,
because xm is bounded, we deduce from (7) that x must
remain bounded. Using the fact that êq? converges to zero,
the steady-state expression follows immediately from (7).

Remark 3: Because the objective of the controller is to
enable the plant to track the reference model, we are inter-
ested in cases where x? = x?m. Assuming that Bp, Cp, Cm
are all equal to the identity matrix, for all p ∈ P , the steady-
state expression simplifies to

x? = −(Ap? + K̂q? − F̂q?)−1F̂q?x
?
m.

Hence, by setting Kp = −Ap for all p ∈ P , we will have
x? = x?m if and only if p? = q?, i.e., when all the nodes
correctly identify the unknown topology. Otherwise, there
will be a discrepancy between x and the reference trajectory
xm. Nonetheless, in certain scenarios, this discrepancy may
be negligible as we will demonstrate in Section V. •

Finally, we note that the multi-estimators and controllers
we used here are only a specific possibility which we adopted
to demonstrate the idea behind distributed supervisory con-
trol. One possible variation is to select the control inputs
as

up = Kpyp + FpeT , p ∈ P.
By following similar steps to the above, one can show that,
with this choice of controllers, the matrix that is required to
be Hurwitz in Condition 2 becomes

Âq? + B̂q?(K̂q? − F̂q?)Ĉq? .

Hence, different choices of the controllers will provide differ-
ent conditions on the system parameters to ensure stability.
We are currently investigating different design choices that
would place less restrictions on the system parameters.

V. APPLICATION: TRACKING CONSENSUS DYNAMICS

In this section, we apply the distributed supervisory control
scheme to the distributed averaging problem [13], [14] in
the case where the dynamics of the nodes contain unknown
parameters. In distributed averaging networks, the nodes
attempt to converge to the average of their initial values,
x(0), by performing local averaging. When the dynamics
of the nodes contain unknown parameters, adaptive control
techniques have been applied to solve this problem in [15].
By performing logic-based switching, our scheme enables
convergence to the average without requiring continuous
tuning of parameters as in the adaptive control approach.
In [13], [16], the problem of achieving consensus when the
underlying topologies are switching has been studied. Note
that the topology in our case is unknown, but fixed, and the
switching is performed at each node to choose the controller
that minimizes the tracking error.

To specialize the reference model (3) to the distributed
averaging dynamics, we assume that Am is the negative of
the weighted Laplacian matrix of a connected undirected
graph. In particular, we have

Am = ATm , Am1 = 0,

[Am]ij ≥ 0 , [Am]ij = 0 ⇐⇒ (i, j) /∈ E , i 6= j,

where the weights [Am]ij , j 6= i are randomly generated. The
connectivity of the graph corresponding to Am is necessary
for the convergence to the average [13]. We assume that there
is full state observation across the network; we therefore set
Cm = I and Cp = I , for all p ∈ P . We also set Bp = I ,
for all p ∈ P . Because the agents attempt to compute the
average of their initial values, we set x0

m = x0 and x0
p = x0,

for all p ∈ P .
We consider a network of n = 5 agents and set x0 =

[1, . . . , 5]T . The agents will therefore attempt to converge to
1
51

Tx0 = 3. We let |P| = 10, that is, there are 10 possible
topologies, and we set p? = 10. The matrices {Ap}p∈P are
generated at random, without any connectivity requirements.

In order to satisfy Condition 1, we pick Lp = −kI , for
all p ∈ P , where k ∈ R is selected as explained in Remark
1. In view of Remark 2, we set Kp = −Ap and Fp = 5I ,
for all p ∈ P , in order to satisfy Condition 2.

We will run two experiments, where we generate different
{Ap}p∈P , Am matrices, each time while respecting the
connectivity constraint on Am. Fig. 5 demonstrates the
trajectories of the state of the network x, the state of
the reference model xm, the switching signals σi, and the
tracking error eT for the first experiment. In this case, all
the agents correctly converge to the correct topology Gp? ,
and, hence, converge to the average value 3. The tracking
error therefore converges to zero.

Fig. 6 illustrates the same signals for the second ex-
periment. In this case, agent 3 does not select the correct
topology, i.e., q?3 6= 10. Nonetheless, it converges to 3.09,
and the tracking error is very small. The remaining nodes
all converge to 3. A potential future research direction is
quantifying the tracking error in the event where q?i 6= p?.

1462

0 5 10−5

0

5

10
x

t

0 0.5 1 1.5 20

2

4

6

8

10

12

σ

t

0 5 101

2

3

4

5

t

x
m

0 5 10−5

0

5

10

t

e
T

Fig. 5: All the agents correctly identify the unknown topol-
ogy.

0 5 10−2

0

2

4

6

t

x

0 0.5 1 1.5 20

2

4

6

8

10

12

t

σ

0 5 101

2

3

4

5

t

x
m

0 5 10−5

0

5

t

e
T

Fig. 6: One of the agents does not identify the correct
topology.

VI. CONCLUSION

We proposed a distributed version of the classical central-
ized supervisory control scheme. Our scheme is based on
logic-based switching among candidate controllers at each
node. The switching decisions performed at each node de-
pend only on information from neighboring nodes. The goal
of the controllers is to track a set-point, without requiring
the agents to have explicit knowledge of this point. The
classical stabilization or regularization problem is a special
case of this set-point tracking problem. We showed that
switching stops in finite time at each node, and we provided
sufficient conditions for stability. We applied our scheme
to the distributed averaging problem when the dynamics of
the agents contain unknown parameters. Simulation results
demonstrated the efficacy of our scheme.

Future work will focus on making Condition 2 less strict,
generalizing the problem to tracking of a reference model

with a reference input signal, extending the scheme to handle
time-varying unknown parameters, and designing incentive
schemes to ensure that the majority of the agents identify
the underlying network.

REFERENCES

[1] J. P. Hespanha, D. Liberzon, and A. S. Morse, “Overcoming the
limitations of adaptive control by means of logic-based switching,”
Systems & Control Letters, vol. 49, no. 1, pp. 49–65, 2003.

[2] D. Liberzon, Switching in systems and control. Springer, 2003.
[3] A. S. Morse, “Supervisory control of families of linear set-point con-

trollers part i. exact matching,” Automatic Control, IEEE Transactions
on, vol. 41, no. 10, pp. 1413–1431, 1996.

[4] ——, “Supervisory control of families of linear set-point controllers. 2.
robustness,” Automatic Control, IEEE Transactions on, vol. 42, no. 11,
pp. 1500–1515, 1997.

[5] J. P. Hespanha, D. Liberzon, and A. S. Morse, “Logic-based switching
control of a nonholonomic system with parametric modeling uncer-
tainty,” Systems & Control Letters, vol. 38, no. 3, pp. 167–177, 1999.

[6] A. P. Aguiar and J. P. Hespanha, “Trajectory-tracking and path-
following of underactuated autonomous vehicles with parametric mod-
eling uncertainty,” IEEE Transactions on Automatic Control, vol. 52,
no. 8, pp. 1362–1379, 2007.

[7] L. Vu, D. Chatterjee, and D. Liberzon, “Input-to-state stability of
switched systems and switching adaptive control,” Automatica, vol. 43,
no. 4, pp. 639–646, 2007.

[8] I. Al-Shyoukh and J. S. Shamma, “Switching supervisory control
using calibrated forecasts,” IEEE Transactions on Automatic Control,
vol. 54, no. 4, pp. 705–716, 2009.

[9] S. Baldi, G. Battistelli, E. Mosca, and P. Tesi, “Multi-model unfalsified
adaptive switching supervisory control,” Automatica, vol. 46, no. 2, pp.
249–259, 2010.

[10] L. Vu and D. Liberzon, “Supervisory control of uncertain linear time-
varying systems,” IEEE Transactions on Automatic Control, vol. 56,
no. 1, pp. 27–42, 2011.

[11] ——, “Supervisory control of uncertain systems with quantized in-
formation,” International Journal of Adaptive Control and Signal
Processing, vol. 26, no. 8, pp. 739–756, 2012.

[12] J. P. Hespanha, “Logic-based switching algorithms in control,” Ph.D.
dissertation, Yale University, 1998.

[13] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Trans.
Automat. Contr., vol. 49, no. 9, pp. 1520–1533, 2004.

[14] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis,
“Convergence in multiagent coordination, consensus, and flocking,”
in Proc. Joint 44th IEEE Conf. Decision and Control and European
Control Conf., December 2005.

[15] J. Yao, D. J. Hill, Z.-H. Guan, and H. O. Wang, “Synchronization
of complex dynamical networks with switching topology via adaptive
control,” in Decision and Control, 2006 45th IEEE Conference on.
IEEE, 2006, pp. 2819–2824.

[16] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems
under dynamically changing interaction topologies,” IEEE Transac-
tions on Automatic Control, vol. 50, no. 5, pp. 655–661, 2005.

1463

