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Abstract— This paper establishes an explicit relationship be-
tween stability conditions for slowly time-varying linear systems
and switched linear systems. The concept of total variation
of a matrix-valued function is introduced to characterize the
variation of the system matrix. Using this concept, a result
generalizing existing stability conditions for slowly time-varying
linear systems is derived. As a special case of this result, it is
shown that a switched linear system is globally exponentially
stable if the average dwell time of the switching signal is
large enough, which qualitatively matches known results in the
literature.

I. INTRODUCTION

Stability of slowly time-varying linear systems and
switched linear systems have been extensively studied during
the past decades. Earlier results on stability of slowly time-
varying linear systems were derived by the frozen-time
approach [1]–[5]. That is, if the system is stable for any
frozen time and varies slowly enough, then the system is
globally exponentially stable. There are in fact a couple of
ways to characterize the rate of system variation. In the
work of [1]–[3], it is shown that the system is globally
exponentially stable if the time derivative of the system
matrix is sufficiently small. In the work of [4], [5], global
exponential stability can be established if either of the
following conditions holds: (i) the system matrix is globally
Lipschitz in time and the Lipschitz’s constant is sufficiently
small; (ii) the time integral of the norm of the time derivative
of the system matrix is bounded by some affine function of
the length of the time interval and the slope of the affine
function is sufficiently small.

The above earlier results in the literature [1]–[5] all impose
assumptions on the stability of system matrix at each instant
of time and the continuity of the system matrix, which are
somewhat conservative. Recent works on stability of slowly
time-varying linear systems have relaxed these assumptions
[6]–[8]. In [6], Solo showed that the system is exponentially
stable even if the eigenvalues of the system matrix do not
always have negative real parts, as long as their time averages
have negative real parts. The work by Zhang [7] showed
that the system is globally exponentially stable if the system
matrix is stable at a sequence of times and varies sufficiently
slowly during the time interval between successive stable
times. In [8], Jetto and Orsini considered a similar case
where they replace the slowly time-varying assumption with
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the assumption that in each time interval between succes-
sive stable times, the weighted cumulative time of unstable
system matrix is smaller than the weighted cumulative time
of the stable system matrix. Under this assumption, it was
shown that the system is uniformly asymptotically stable.
The results in [6]–[8] did not assume time continuity of the
system matrix.

For a switched linear system, the results by Morse [9],
as well as by Hespanha and Morse [10], stated that if each
subsystem is stable and if the system switches sufficiently
slowly, then the switched system is stable. The rate of
switching is characterized by the dwell-time, or the aver-
age dwell-time, which describes the time, or average time,
respectively, between two successive switches. The follow-
up work by Zhai et al. [11] relaxed the assumption on
the stability of all subsystems, by allowing switched linear
systems with unstable subsystems. It was shown that the
system is exponentially stable if the average dwell-time is
sufficiently large and the ratio between the activation time
of unstable subsystems and the activation time of stable
subsystems is sufficiently small.

It is natural to view switched linear systems as a special
class of slowly time-varying linear systems. Although there
are some similarities, to the best of our knowledge there is
no explicit relationship bridging the two sets of results. To
be more specific, the stability conditions available in one set
cannot be applied directly to the other. With this in mind,
we study in this paper the gap between the two sets of
results. Our aim is to build connections between stability
results for slowly time-varying linear systems derived by
the frozen-time approach and stability results for switched
linear systems consisting of stable subsystems. Inspired by
the concept of total variation of a real-valued function, we
introduce the total variation of a matrix-valued function to
characterize the variation of the system matrix. We apply
the concept of total variation to derive a more general result
for slowly time-varying linear systems where the system
matrix could be piecewise differentiable with discontinuities
at the non-differentiable points. We then apply the derived
result to switched linear systems and show that a switched
linear system is globally exponentially stable if the average
dwell time of the switching signal is large enough, which
qualitatively matches the results by Hespanha and Morse
[10].

A. Preliminaries

We denote by ‖ · ‖ the Euclidean norm for a vector and
induced norm for a matrix. We write AT for the transpose of
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a matrix A. We use I to denote the n×n identity matrix. For
any complex number x, Re{a} denotes the real part of a. For
an n×n matrix A, λ1(A), . . . , λn(A) denote the eigenvalues
of A. A is Hurwitz if

Re{λi(A)} < 0, ∀ i = 1, 2, . . . , n

B. Organization

The remainder of this paper is organized as follows. In
Section II, we first review some existing results for the
stability of slowly time-varying linear systems, and then
we introduce the concept of total variation, and extend the
existing results to the case where the system matrix A(t) is
piecewise differentiable, using the concept of total variation.
In Section III, we apply the extended result to derive stability
conditions for switched linear systems and compare them
with the results in the literature. Finally, in Section IV, we
draw conclusions and discuss several future directions.

II. STABILITY OF SLOWLY TIME-VARYING LINEAR
SYSTEMS

Consider a real n-dimensional linear time-varying system
described by

ẋ(t) = A(t)x(t) (1)

where x(t) ∈ Rn is the state vector, and A(t) is an n×n real
matrix for each time t, which is called the system matrix.
The system described by (1) is globally exponentially stable
if there exist finite positive constants m and γ such that for
any initial condition x(0) ∈ Rn, the corresponding solution
satisfies

‖x(t)‖ ≤ m‖x(0)‖e−γt, ∀ t ≥ 0

In the special case when A(t) = A is independent of time,
it is well known that the system (1) is global exponentially
stable if and only if A is Hurwitz. The conditions for global
exponential stability of (1) have been widely studied [1]–
[5]. Here we introduce two previous results for slowly time-
varying cases.

Theorem 1: [1] The system (1) is globally exponentially
stable if the following conditions are satisfied:

1) There exists a positive constant L such that for all t,

‖A(t)‖ ≤ L

2) There exists a positive constant σs such that for all t,

Re
{
λi

(
A(t)

)}
≤ −σs ∀ i = 1, 2, . . . , n

By the first two conditions, there exist positive con-
stants c and λ0 (which depend only on L and σs) such
that for all t,∥∥∥eA(t)s

∥∥∥ ≤ ce−λ0s for all s ≥ 0

3) For all t, A(t) is differentiable and∥∥∥Ȧ(t)∥∥∥ ≤ 4λ20
3c4

Here ‖Ȧ(t)‖ can be regarded as the rate at which the system
changes over time. Hence, the result of Theorem 1 implies
that a linear time-varying system (1) is globally exponentially
stable if the system matrix is Hurwitz for each fixed time,
uniformly bounded, and changes at a sufficiently small rate.

An improvement on the sufficient condition just described
is obtained by replacing ‖Ȧ(t)‖ with the integral of ‖Ȧ(t)‖,
as follows.

Theorem 2: [5] The system (1) is globally exponentially
stable if the following conditions are satisfied:

1) Condition 1 in Theorem 1.
2) Condition 2 in Theorem 1.
3) A(t) is differentiable and there exist scalars α > 0 and

0 < µ < β1

2β3
2

such that for all t, T ≥ 0,∫ t+T

t

∥∥∥Ȧ(s)∥∥∥ ds ≤ µT + α

where β1 = 1
2L and β2 = c2

2λ0
.

The first two conditions are the same as those in Theorem 1
while the third one is in terms of the integral of ‖Ȧ(t)‖ on
each interval [t, t+ T ], which is required to be bounded by
some affine function of the length of the time interval and
the slope of the affine function is sufficiently small.

All the sufficient conditions above assume that A(t) is
differentiable for all t. In the sequel, we will relax this as-
sumption and consider a more general case in which A(t) is
piecewise differentiable. Our approach will entail appealing
to total variation of piecewise differentiable functions.

A. Total Variation

The total variation of a real valued function f(t) on a
closed interval [a, b] is defined as follows [12]:

A partition P of a closed interval [a, b] is a finite set of
n > 1 points ti, i ∈ {1, 2, . . . , n}, such that a = t1 < t2 <
· · · < tn = b. Let P denote the set of all partitions of [a, b].
The total variation of a real-valued function f on the closed
interval [a, b], denoted by V ba (f), is defined as

V ba (f) = sup
P∈P

n∑
i=1

|f(ti)− f(ti−1)|

In the special case where f is piecewise differentiable on
[a, b] with discontinuities at the non-differentiable points,
define

f(t+) = limx→t+ f(x), for all t ∈ [a, b)

f(t−) = limx→t− f(x), for all t ∈ (a, b]

and then we have the following lemma.
Lemma 1: Suppose that a real-value function f satisfies

the following conditions:
1) f(a+) and f(b−) exist and are bounded, and f(a) =

f(a+).
2) f has a finite number of discontinuities on (a, b),

denoted by {d1, d2, . . . , dm}, such that a < d1 < d2 <
· · · < dm < b.

3) f(d−i ) and f(d+i ) exist, and f(di) = f(d+i ) for all
i ∈ {1, 2, . . . ,m}.
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4) f is differentiable and ḟ is integrable on (a, d1),
(dm, b), and (di, di+1) for all i ∈ {1, 2, . . . ,m− 1}.

Then, the total variation of f on [a, b] is

V ba (f) =

∫ d1

a

|ḟ(t)|dt+
∫ b

dm

|ḟ(t)|dt

+

m−1∑
i=1

∫ di+1

di

|ḟ(t)|dt+
∣∣f(b)− f(b−)∣∣

+

m∑
i=1

∣∣f(d+i )− f(d−i )∣∣
(2)

The proof of this lemma is omitted due to space limitations
and will appear in an expanded version of this paper.

Inspired by the expression of total variation of a real-
valued piecewise differentiable function, described by (2),
we define the total variation of a piecewise differentiable
matrix-valued function. First define

A(t+) = limx→t+ A(x), for all t ∈ [a, b)

A(t−) = limx→t− A(x), for all t ∈ (a, b]

We then introduce a number of assumptions.
Assumption 1:
1) A(a+) and A(b−) exist, and A(a) = A(a+).
2) A has a finite number of discontinuities on (a, b),

denoted by {d1, d2, . . . , dm}, such that a < d1 < d2 <
· · · < dm < b.

3) A(d−i ) and A(d+i ) exist, and A(di) = A(d+i ) for all
i ∈ {1, 2, . . . ,m}.

4) A is differentiable and ‖Ȧ‖ is integrable on (a, d1),
(dm, b), and (di, di+1) for all i ∈ {1, 2, . . . ,m− 1}.

Definition 1: Suppose that a matrix-valued function A(t)
satisfies the regularity conditions of Assumption 1. Then, the
total variation of A on [a, b], denoted by

∫ b
a
‖dA‖, is defined

as follows,∫ b

a

‖dA‖ :=

∫ d1

a

‖Ȧ(t)‖dt+
∫ b

dm

‖Ȧ(t)‖dt

+

m−1∑
i=1

∫ di+1

di

‖Ȧ(t)‖dt+
∥∥A(b)−A(b−)∥∥

+

m∑
i=1

∥∥A(di)−A(d−i )∥∥
Remark 1: We write

∫ b
a
‖dA‖ for the total variation of

a matrix-valued function, instead of V ba (A), to make our
main result more comparable with the previous results, i.e.,
Theorems 1 and 2.

B. Main Result

With the concept of total variation introduced in the
previous subsection, we are able to extend the existing results
in the literature (i.e., Theorem 1 and Theorem 2) to a more
general case, as stated in the following theorem.

Theorem 3: The system (1) is globally exponentially sta-
ble if the following conditions are satisfied:

1) Condition 1 in Theorem 1.
2) Condition 2 in Theorem 1.
3) For any closed interval [a, b], A(t) satisfies Assumption

1 in Section II-A.
4) There exist scalars α > 0 and 0 < µ < β1

2β3
2

such that
for all t, T ≥ 0,∫ t+T

t

‖dA‖ ≤ µT + α

where β1 = 1
2L , β2 = c2

2λ0
, and

∫ t+T
t
‖dA‖ was

defined in Definition 1.
Remark 2: When A(t) is differentiable on [a, b], Theorem

3 collapses to Theorem 2.
To prove the theorem, we need the following lemmas.
Lemma 2: [13] Suppose that A(t) satisfies the first two

conditions in Theorem 3. For each fixed t, let P (t) be
the symmetric positive definite solution of the Lyapunov
equation P (t)A(t) + AT (t)P (t) = −I and consider the
candidate Lyapunov function V (t, x) = xTP (t)x. Then,

β1 ≤ ‖P (t)‖ ≤ β2 ∀ t ≥ 0

β1‖x‖2 ≤ V (t, x) ≤ β2‖x‖2 ∀ x ∈ Rn ∀ t ≥ 0

where β1 = 1
2L , and β2 = c2

2λ0

Lemma 3: Consider two matrices A1, A2 satisfying the
first two conditions in Theorem 3, namely

‖A1‖ , ‖A2‖ ≤ L

Re
{
λi

(
A1

)
, λi

(
A2

)}
≤ −σs ∀ i = 1, 2, . . . , n∥∥eA1s

∥∥ ,∥∥eA2s
∥∥ ≤ ce−λ0s for all s ≥ 0

Let P1, P2 be respectively the solutions of the Lyapunov
equations P1A1 + AT1 P1 = −I and P2A2 + AT2 P2 = −I .
Then,

‖P1 − P2‖ ≤ 2β2
2‖A1 −A2‖

with β2 = c2

2λ0
as defined above in Theorem 3.

Proof: The proof of this lemma is a discrete-time
version of the proof of Theorem 3.4.11 in [5], where an
upper bound of ‖Ṗ (t)‖ is derived in terms of ‖Ȧ(t)‖. Since
P1 and P2 are solutions of the Lyapunov equations, we have

(P1 − P2)A2 +AT2 (P1 − P2)

= P1(A2 −A1) + (AT2 −AT1 )P1 := −Q
(3)

where Q is a symmetric matrix. Since A2 is Hurwitz, by [14],
the Lyapunov equation (3) has a unique solution, which is

P1 − P2 =

∫ ∞
0

eA
T
2 sQeA2sds

Hence,

‖P1 − P2‖ ≤ ‖Q‖
∫ ∞
0

‖eA
T
2 s‖ · ‖eA2s‖ds

≤ ‖Q‖
∫ ∞
0

c2e−2λ0sds

= c2

2λ0
· ‖Q‖ = β2‖Q‖

(4)
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By Lemma 2 and the definition of Q in (3),

‖Q‖ = ‖ − P1(A2 −A1)− (AT2 −AT1 )P1‖

≤ ‖P1(A1 −A2)‖+ ‖(AT1 −AT2 )P1‖

= 2‖P1‖ · ‖A1 −A2‖ ≤ 2β2‖A1 −A2‖

(5)

Combining inequalities (4) and (5), we conclude the proof
of Lemma 3.

Lemma 4: Suppose that A(t) satisfies the first three con-
ditions in Theorem 3. Let P (t) be the symmetric positive
definite solution of the Lyapunov equation P (t)A(t) +
AT (t)P (t) = −I , V (t, x) = xTP (t)x be the candidate
Lyapunov function, and V (t) = V (t, x(t)) be the candidate
Lyapunov function evaluated along system solution x(t). For
any tb > 0, introduce

V (t+b ) := lim
t→t+b

V (t), V (t−b ) := lim
t→t−b

V (t)

Then, V (t+b ) and V (t−b ) exist and satisfy

V (t+b ) = V (tb) ≤ e2β
2
2β
−1
1 ‖A(tb)−A(t−b )‖V (t−b ) (6)

where β1 = 1
2L and β2 = c2

2λ0
.

Proof: By condition 3 in Theorem 3 (Assumption 1),
A(t+b ) and A(t−b ) exist, and A(t+b ) = A(tb). Moreover,
‖A‖, Re{λi(A)} and eAs are continuous functions of A,
therefore A(t+b ) and A(t−b ) satisfy the first two conditions
in Theorem 3. Let P (t+b ) and P (t−b ) be the solutions of
Lyapunov equations P (t+b )A(t

+
b ) + AT (t+b )P (t

+
b ) = −I ,

and P (t−b )A(t
−
b ) + AT (t−b )P (t

−
b ) = −I . By the definitions

of A(t+b ) and A(t−b ), given any ε > 0, there exist δ1, δ2 > 0
such that

‖A(t+b )−A(t)‖ ≤
ε

2β2
2
, ∀ t ∈ (tb, tb + δ1)

‖A(t−b )−A(t)‖ ≤
ε

2β2
2
, ∀ t ∈ (tb − δ2, tb)

Since A(t) satisfies the first two conditions in Theorem 3 for
all t ≥ 0, by Lemma 3,

‖P (t+b )− P (t)‖ ≤ ε , ∀ t ∈ (tb, tb + δ1)

‖P (t−b )− P (t)‖ ≤ ε , ∀ t ∈ (tb − δ2, tb)

which implies P (t+b ) = limt→t+b
P (t) and P (t−b ) =

limt→t−b
P (t). Furthermore, since A(tb) = A(t+b ) is Hur-

witz, the Lyapunov equations P (tb)A(tb) + AT (tb)P (tb) =
−I and P (t+b )A(t

+
b ) + AT (t+b )P (t

+
b ) = −I have unique

solutions and P (t+b ) = P (tb).
A(t) is piecewise continuous, hence x(t) is always con-

tinuous regardless of the initial condition. Then,

x(t+b ) := lim
t→t+b

x(t) = x(tb) = lim
t→t−b

x(t) =: x(t−b )

Consider V (t+b ) and V (t−b ),

V (t+b ) = limt→t+b
V (t) = limt→t+b

xT (t)P (t)x(t)

V (t−b ) = limt→t−b
V (t) = limt→t−b

xT (t)P (t)x(t)

We have shown that x(t+b ), x(t
−
b ), P (t

+
b ), and P (t−b ) exist.

Hence, V (t+b ) and V (t−b ) exist, and

V (t+b ) = xT (t+b )P (t
+
b )x(t

+
b ) = xT (tb)P (t

+
b )x(tb)

V (t−b ) = xT (t−b )P (t
−
b )x(t

−
b ) = xT (tb)P (t

−
b )x(tb)

Furthermore,

V (t+b ) = xT (tb)P (t
+
b )x

T (tb) = xT (tb)P (tb)x(tb) = V (tb)

Now we can prove the inequality (6). Consider the function

g(x) = ex−1 − x

where x ∈ R. It is straightforward to check that g(x) ≥ 0,
∀ x ∈ R. Then, x ≤ ex−1, ∀ x ∈ R. Therefore,

V (tb)

V (t−b )
≤ e

V (tb)

V (t
−
b

)
−1

= e

V (tb)−V (t
−
b

)

V (t
−
b

) (7)

Recall that A(t−b ) satisfies the first two conditions in Theo-
rem 3; therefore, by Lemma 2,

0 <
1

V (t−b )
≤ 1

β1‖x(tb)‖2
(8)

Moreover,

V (tb)− V (t−b ) = xT (tb)
(
P (tb)− P (t−b )

)
x(tb)

≤ ‖P (tb)− P (t−b )‖ · ‖x(tb)‖2

≤ 2β2
2‖A(tb)−A(t−b )‖ · ‖x(tb)‖2

(9)
where the last inequality is due to Lemma 3. Combining
equations (7), (8), (9), we have

V (tb)

V (t−b )
≤ e

2β22‖A(tb)−A(t
−
b

)‖‖x(tb)‖
2

β1‖x(tb)‖2

= e2β
2
2β
−1
1 ‖A(tb)−A(t−b )‖

which implies the inequality (6).
We are now in a position to prove Theorem 3.

Proof: (Proof of Theorem 3) Let P (t) be the sym-
metric positive definite solution of the Lyapunov equation
P (t)A(t) + AT (t)P (t) = −I , V (t, x) = xTP (t)x be the
candidate Lyapunov function, and V (t) = V (t, x(t)) be
the candidate Lyapunov function evaluated along system
solution x(t). By condition 3 in Theorem 3 (Assumption
1), within any time interval [a, b], there are finitely many
discontinuities of A(t), denoted by {d1, d2, . . . , dm}, where
a < d1 < d2 < · · · < dm < b. Consider any sub-interval of
[a, b] among [a, d1], [d1, d2], . . ., and [dm, b], call it [t1, t2],
then A(t) has no discontinuity on (t1, t2). By the proof of
Theorem 3.4.11 in [5], we have

V (t−2 ) ≤ e
−

∫ t2
t1
β−1
2 dt+2β2

2β
−1
1 (

∫ t2
t1
‖Ȧ(t)‖dt)V (t+1 )

Then by Lemma 4,

V (t2) ≤ e−β
−1
2 (t2−t1)

· e2β
2
2β
−1
1

( ∫ t2
t1
‖Ȧ(t)‖dt+‖A(t2)−A(t−2 )‖

)
V (t1)

(10)
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Apply inequality (10) to sub-intervals [a, d1], [d1, d2], . . .,
and [dm, b],

V (d1) ≤ e−β
−1
2 (d1−a)

· e2β
2
2β
−1
1

( ∫ d1
a
‖Ȧ(t)‖dt+‖A(d1)−A(d−1 )‖

)
V (a)

V (d2) ≤ e−β
−1
2 (d2−d1)

· e2β
2
2β
−1
1

( ∫ d2
d1
‖Ȧ(t)‖dt+‖A(d2)−A(d−2 )‖

)
V (d1)

...
V (b) ≤ e−β

−1
2 (b−dm)

· e2β
2
2β
−1
1

( ∫ b
dm
‖Ȧ(t)‖dt+‖A(b)−A(b−)‖

)
V (dm)

Combining all the inequalities above and recall Definition 1
of the total variation of A(t) on [a, b], we have

V (b) ≤ e−β
−1
2 (b−a)+2β2

2β
−1
1

( ∫ b
a
‖dA‖

)
V (a)

By condition 4 in Theorem 3,

V (b) ≤ e−β
−1
2 (b−a)+2β2

2β
−1
1

(
µ(b−a)+α

)
V (a)

= e2β
2
2β
−1
1 α · e−(β

−1
2 −2β

2
2β
−1
1 µ)(b−a)V (a)

where e2β
2
2β
−1
1 α > 0, and β−12 − 2β2

2β
−1
1 µ > 0. Hence,

the Lyapunov function decays exponentially along system
solutions, which implies the global exponential stability of
the system.

III. STABILITY OF SWITCHED LINEAR SYSTEMS

In this section, we will apply the generalized stability
conditions for slowly time-varying linear systems and de-
rive stability conditions for switched linear systems, which
bridges the gap between the two sets of results.

A. Application of Generalized Stability Condition for Slowly
Time-Varying Linear Systems

We first apply the generalized stability conditions for
slowly time-varying linear systems (Theorem 3) to switched
linear systems. Suppose we are given a family of linear
systems

ẋ = Apx p ∈ P

where x ∈ Rn is the system state, p is the index of the linear
system Ap in the family, and P is the index set. Consider a
switched linear system

ẋ = Aσ(t)x(t) (11)

For each fixed t, Aσ(t) is an n × n real matrix, and
Aσ(t) ∈ {Ap, p ∈ P}, which is the set of subsystems. The
function σ : [0,∞) → P is called the switching signal.
We assume that σ is a piecewise constant function, which
has a finite number of discontinuities on every bounded time
interval. It is also assumed that σ is continuous from the right
everywhere. Denote by Nσ(t, t+T ) the number of switches
(number of discontinuities of σ) on the time interval (t, t+T ].
If there exist two positive constants τa and N0 such that

Nσ(t, t+ T ) ≤ N0 +
T

τa
∀ t, T ≥ 0, (12)

then the switching signal σ(t) is said to have the average
dwell time τa. We have the following set of stability condi-
tions for switched linear systems.

Corollary 1: The system (11) is globally exponentially
stable if:

1) Conditions 1 and 2 in Theorem 1 hold for all subsys-
tems Ap, p ∈ P .

2) The switching signal σ(t) has average dwell time τa
and

τa >
2β3

2

β2
1

(13)

where β1 = 1
2L and β2 = c2

2λ0
.

The proof of this corollary is omitted due to space limitations
and will appear in an expanded version of this paper.
However, one should see that due to the piecewise constant
property of switching signal, the total variation of system
matrix is only induced by switching from Ap to Aq . By
triangle inequality, ‖Ap − Aq‖ is uniformly bounded over
all p, q ∈ P . Therefore, the total variation of the system
matrix over a long time interval can be made small enough
by restricting the system to switch slowly enough (or the
average dwell time to be large enough), resulting in stability
by Theorem 3.

B. Comparison with the Existing Stability Condition for
Switched Systems

Given a family of systems

ẋ = fp(x), p ∈ P

consider a general switched system

ẋ = fσ(t)(x) (14)

where x ∈ Rn is the system state. For each fixed t, fσ(t)(x) :
Rn → Rn, and fσ(t) ∈ {fp, p ∈ P}, which is the set of
subsystems. Similarly, P is the index set, and σ : [0,∞)→
P is the switching signal. The definition of average dwell
time is the same as above. By [10], we have the following
theorem.

Theorem 4: [10] The general switched system (14) is
globally exponentially stable if:

1) There exist continuously differentiable ( C1) functions
Vp(x) : Rn → R, p ∈ P and two class K∞ functions
α1 and α2 such that

α1(‖x‖) ≤ Vp(x) ≤ α2(‖x‖) ∀ x ∈ Rn, ∀ p ∈ P

2) There exists a positive constant λ0 such that,

∂Vp
∂x

fp(x) ≤ −2λ0Vp(x) ∀ x ∈ Rn, ∀ p ∈ P

3) There exists a positive constant µ such that,

Vp(x) ≤ µVq(x) ∀ x ∈ Rn, ∀ p, q ∈ P

4) The switching signal σ(t) has average dwell time τa
and

τa >
logµ

2λ0
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We now apply Theorem 4 to the switched linear system (11)
to derive stability conditions for switched linear systems.
Consider the switched linear system (11) satisfying the first
condition in Theorem 1. For each subsystem Ap, define
Vp(x) := xTPpx (which is C1), where Pp is the solution
to the Lyapunov equation PpAp + ATp Pp = −I . Then, by
Lemma 2,

β1‖x‖2 ≤ Vp(x) ≤ β2‖x‖2, ∀ x ∈ Rn, ∀ p ∈ P

Therefore, we have α1(‖x‖) = β1‖x‖2, α2(‖x‖) = β2‖x‖2.
Furthermore,

∂Vp
∂x

fp(x) = −‖x‖2 ≤ −
1

β2
Vp(x), ∀ x ∈ Rn ∀ p ∈ P

which implies 2λ0 = 1
β2

. Moreover,

Vp(x) ≤ β2‖x‖2 ≤
β2
β1
Vq(x), ∀ x ∈ Rn ∀ p, q ∈ P

Hence, µ = β2

β1
. Applying Theorem 4, we conclude that the

switched linear system is stable if

τa >
logµ

2λ0
= β2 log

β2
β1

(15)

Comparing (13) and (15),

2β3
2

β2
1

= 2 · β2 ·
β2
β1
· β2
β1

> 1 · β2 · log
β2
β1
· 1

Therefore, the stability condition in terms of average dwell
time for switched linear systems, which is derived from
generalized stability condition for slowly time-varying linear
systems, matches the existing result qualitatively but not
quantitatively.

Remark 3: The comparison above does not imply the con-
servativeness of generalized stability conditions for slowly
time-varying linear systems. By Theorem 3, a switched linear
system is stable if the total variation of system matrix over a
long time interval is small enough. Small variation of system
matrix can be achieved in two ways: 1) The variation caused
by each switch is large while the system switches slowly
enough. 2) The system switches fast while the variation
caused by each switch is small enough. The comparison
above is under the first scenario. However, under the second
scenario, the switching signal might not even have an average
dwell time. Then we cannot apply Theorem 4, but can apply
Theorem 3 to establish the stability result, as illustrated in
the following example.

Example: Let L > 0 and σs > 0 defined in Theorem
1 be given. Then β1, β2, and µ in Theorem 3 are well
defined. Suppose there exists a family of linear systems with
system matrices {Ai|i ∈ N} satisfying conditions 1 and 2 in
Theorem 1. Furthermore,

‖Ai −A0‖ <
µ

2i
∀ i ∈ N+ (16)

The assumptions above can be satisfied by (1) choose A0

satisfying conditions 1 and 2 in Theorem 1 with strict
inequality. (2) Let Ai = A0 + εi · I and choose εi small

enough. Then Ai satisfies conditions 1 and 2 in Theorem 1
and (16).

Consider the switching signal σ(t) such that during time
interval [i−1, i], i ∈ N+, Aσ(t) switches 2 · i times, between
A0 and Ai , uniformly over [i−1, i]. Then the time between
two successive switches is 1

2i . By assumption (16), condition
4 in Theorem 3 is satisfied with α = 2L. Hence by Theorem
3, the switched linear system is stable. On the other hand,
since the number of switches during time interval [i−1, i] is
2i, there exists no τa and N0 satisfying (12), which means
the switching signal does not have average dwell time and
thus, we cannot apply Theorem 4 to draw any conclusions
on the stability of the switched linear system.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have derived a set of generalized stability
conditions for slowly time-varying linear systems and applied
it to derive a set of stability conditions for switched linear
systems. By doing this we have unified stability conditions
for slowly time-varying linear systems and stability condi-
tions for switched linear systems.

Several issues remain open for future research. First, there
is the need to build relationships between stability conditions
for slowly time-varying linear systems and switched linear
systems in the cases when A(t) may be unstable for some
time t [6], [11]. Second, there is the need to establish
relationships between stability conditions for nonlinear time-
varying systems and switched nonlinear systems. Third, one
has to quantitatively improve the result in Theorem 1 so as
to better match the result in Theorem 4.
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