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Abstract— In this paper, we apply a total variation approach
to bridge the stability criteria for nonlinear time-varying
systems and nonlinear switched systems. In particular, we
derive a set of stability conditions applying to both nonlinear
time-varying systems and nonlinear switched systems. We show
that the derived stability conditions, when applied to nonlinear
time-varying systems and nonlinear switched systems, recover
the existing stability results in the literature. We also show that
the derived stability conditions can be applied to qualitatively
recover a unified stability criterion for slowly time-varying
linear systems and switched linear systems proposed in our
recent work.

I. INTRODUCTION

The stability criteria for slowly time-varying systems and
switched systems are fundamental, and they have drawn
extensive research interest over the past decades. For a slowly
time-varying (linear or nonlinear) system, a group of stability
results in [1]–[6] state that the system is globally asymptot-
ically stable if the system is stable at each frozen time1,
and the system parameters vary slowly enough. Similarly, a
group of stability results in [7]–[10] state that a switched
(linear or nonlinear) system is globally asymptotically stable
if each subsystem is stable, and the system switches slowly
enough among its subsystems. Although the two groups of
results are similar and a switched system can be viewed
as a time-varying system with piecewise constant system
parameters, the stability conditions for switched systems
cannot be directly recovered from the stability conditions
for time-varying systems. The gap blocking this transition is
caused by the common approach to characterize the variation
of system parameters in a time-varying system. To be more
specific, the common approach (for example, conditions
involving the integral of the norm of system parameters’
time derivatives) requires that the systems parameters are
differentiable (or Lipschitz continuous) in time, and thus it
cannot be directly applied to the piecewise constant case.

In our recent work [11], [12], a set of stability condi-
tions was derived for slowly time-varying linear systems.
Differently from the prior works, the variation of system
parameters is characterized by their total variation over the
time interval. The concept of total variation can be ap-
plied to both differentiable functions and piecewise constant
functions. Benefitting from this property, it was shown that
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1A time-varying system is stable at a frozen time means the system with
parameters fixed at that frozen time is stable.

the stability conditions derived in [11], [12] can be applied
to recover both the stability conditions derived in [1]–[3],
for slowly time-varying linear systems, and the stability
conditions derived in [8]–[10], for switched linear systems2.

The work in [11], [12] brings up awareness of the fact that
the studies of stability conditions for slowly time-varying
systems and switched systems should not be disjoint, and
it provides an approach to translate the results from one
field to the other. Thus, it motivates us to apply the total
variation approach to further bridge the gap between stability
conditions for nonlinear time-varying systems and switched
systems. For nonlinear time-varying systems, a group of
stability results have been derived in [4]–[6]. The stability
results in [4]–[6] impose slightly different conditions on
system dynamics, yet they all require that the variation of
system parameters, characterized by the time integral of the
norm of the time derivative of the parameters, should be
upper bounded by an affine function of the length of the time
interval. More results on this line of research can be found
in [13] and the references therein. For nonlinear switched
systems, the stability criteria proposed in [8]–[10] can also
be applied to the nonlinear case. We are interested in unifying
the above two groups of results.

In this paper, we first recall the concept of total variation
(Section II). Then, we derive a set of stability conditions for
nonlinear time-varying systems (main results, Section III),
which generalize the stability results in [4] to incorporate
piecewise differentiable system parameters. Next, we apply
the derived stability conditions to nonlinear switched systems
and show that they match the stability conditions in [10] for
the nonlinear case (Section IV). Then, we apply the main
results to linear time-varying systems. We show that with one
minor additional assumption, one can recover (qualitatively)
the unified stability criteria for slowly time-varying and
switched linear systems proposed in [11], [12] (Section V).
Finally, we draw concluding remarks and discuss future
directions for research (Section VI).

II. PRELIMINARIES: TOTAL VARIATION

The concept of total variation for real-valued and vector-
valued functions has been well documented in the literature
[14]. This concept has been generalized to the matrix case
in the recent work [12]. We recall the definition of total
variation here. We denote by P := {ti|i = 0, . . . , k} a
partition of interval [a, b], where a = t0 < t1 < · · · < tk = b.
Let P be the set of all partitions of [a, b]. Given a vector-
valued function u(·) : R→ Rn, its total variation over [a, b]

2The results derived in [8]–[10] are for general switched systems; they
were applied to the linear case in [11], [12].
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is defined as∫ b

a

‖du‖ := sup
P∈P

k∑
i=1

‖u(ti)− u(ti−1)‖.

The norm in the expression above is the Euclidean norm.
In particular, if u(·) satisfies some regularity conditions
(Condition 1), its total variation over an interval has an
explicit expression (Lemma 1). We use u(t−) to denote the
left limit of u(·) at t, and we introduce the following set of
conditions.

Condition 1 ([12], Assumption 2): A vector-valued func-
tion u(·) satisfies

(i) u(·) is continuous from the right everywhere on [a, b)
and has left limits everywhere on (a, b].

(ii) u(·) has a finite number of discontinuities over (a, b),
denoted by {d1, d2, . . . , dm}, and a := d0 < d1 <
· · · < dm < dm+1 =: b.

(iii) u(·) is continuously differentiable on (di, di+1), and
u̇(·) is Riemann integrable on [di, di+1], for all i ∈
{0, 1, . . . ,m}.

(iv) ‖u̇(·)‖ is Riemann integrable on [di, di+1], for all i ∈
{0, 1, . . . ,m}.

Lemma 1 ([12], Lemma 1): Given a vector-valued func-
tion u(·) satisfying Condition 1, its total variation over [a, b]
has the following expression:∫ b

a

‖du‖ =

m∑
i=0

∫ di+1

di

‖u̇(t)‖dt+

m+1∑
i=1

∥∥u(di)− u(d−i )
∥∥ .

In [12], Condition 1 and Lemma 1 were stated for a matrix-
valued function, yet a vector-valued function can be viewed
as a special case of a matrix-valued function.

III. STABILITY OF NONLINEAR SLOWLY
TIME-VARYING SYSTEMS

In this section, we derive a set of stability conditions
for nonlinear time-varying systems, which generalize the
existing stability results in [4, Section 9.6].

Consider a nonlinear time-varying system

ẋ = f(x, u(t)), (1)

where x ∈ Rn is the system state and u(t) ∈ Γ ⊂ Rm is
the time-dependent system parameter. Assume that f(x, u)
is locally Lipschitz over Rn × Γ. Furthermore, given any
u ∈ Γ, the equation

f(x, u) = 0

is assumed to have a solution x = 0. Then, system (1) has
an equilibrium point at x = 0, which is invariant over u ∈ Γ.

Remark 1: As a starting point, we consider in this paper
the time-varying system with a fixed equilibrium point. How-
ever, it is more general to assume that the system equation
with time-varying system parameters admits an equilibrium
point that varies in time on a manifold. This is not pursued
in this paper.

Theorem 1: The nonlinear time-varying system (1) is
globally exponentially stable3 if the following conditions are
satisfied.

(i) The set of all possible system parameters, Γ, is compact
and convex.

(ii) There exist a candidate Lyapunov function V (x, u),
continuously differentiable in x and u, and positive
constants c1, c2, c3, c4 such that for all x ∈ Rn and
u ∈ Γ,

c1‖x‖2 ≤ V (x, u) ≤ c2‖x‖2, (2)

∂V

∂x
f(x, u) ≤ −c3‖x‖2, (3)

∥∥∥∥∂V∂u
∥∥∥∥ ≤ c4‖x‖2. (4)

(iii) There exist positive constants µ and α, with µ <
c1c3/c2c4, such that for any bounded time interval
[t1, t2], u(·) satisfies Condition 1, and its total variation
satisfies ∫ t2

t1

‖du‖ ≤ µ(t2 − t1) + α. (5)

Remark 2: The inequality (3) implies that for all u ∈ Γ,
the equation f(x, u) = 0 has a unique solution, i.e., x = 0.

Remark 3: The exact choice of the system parameter
u(t), in particular its dimension, affects the total variation∫ t2
t1
‖du‖, and thus it affects condition (iii) in Theorem 1.

For example, one could add a virtual dimension to u(t),
such that the total variation becomes larger and condition
(iii) becomes more restrictive. Pursuing this issue further is
out of the scope of this paper.

Before proving Theorem 1, we would like to clarify
the novelty of this theorem. The set of stability conditions
proposed in [4, Section 9.6] requires item (ii) in Theorem
1, yet it replaces item (iii) in Theorem 1 by the stronger
condition that u(·) is continuously differentiable, and∫ t2

t1

‖u̇(t)‖dt ≤ µ(t2 − t1) + α,

where µ < c1c3/c2c4 and α > 0. By introducing the concept
of total variation, Theorem 1 generalizes the result in [4,
Section 9.6] to the case where u(·) is piecewise differentiable
with discontinuities at the non-differentiable points. This
generalization enables us to further derive a set of stability
conditions for switched systems, which will be discussed
later in Section IV.

One may find the assumption described by (4) not as
standard as those described by (2) and (3). The following
lemma (Lemma 2) from [4] justifies that if the system
satisfies some general regularity conditions, and if the system
with fixed parameters is globally exponentially stable, then
there exists a candidate Lyapunov function satisfying (2)-(4)

3The definition of global exponential stability can be found in [4,
Definition 4.5].
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in Theorem 1. The proof of Lemma 2 applies the converse
Lyapunov theorem, for exponential stability.

Lemma 2 ([4], Lemma 9.8): Consider the system (1) and
suppose that the Jacobian matrices ∂f(x, u)/∂x and
∂f(x, u)/∂u satisfy∥∥∥∥∂f(x, u)

∂x

∥∥∥∥ ≤ L1,

∥∥∥∥∂f(x, u)

∂u

∥∥∥∥ ≤ L2‖x‖, ∀ x ∈ Rn, u ∈ Γ

for some L1, L2 ≥ 0. Furthermore, assume there exist
positive constants k and γ such that the trajectories of the
system, with constant u(t) ≡ u ∈ Γ, satisfy

‖x(t)‖ ≤ k‖x(0)‖e−γt, ∀ ‖x(0)‖ ∈ Rn, t ≥ 0.

Then, there exists a function V (x, u) defined over Rn × Γ
satisfying (2)-(4).

We are now in a position to prove Theorem 1.
Proof: (Proof of Theorem 1) Let an arbitrary time inter-

val [t1, t2] be given. Without loss of generality, we assume
that u(·) has only one discontinuity over [t1, t2], denoted
by td. By Condition 1, u(·) is differentiable and ‖u̇(·)‖
is integrable over the sub-intervals (t1, td) and (td, t2).
Furthermore, u(·) is right continuous and has left limit at
td. Denote by V (t) the Lyapunov function evaluated along
x(t) and u(t), namely, V (t) = V (x(t), u(t)). Since u(·) has
a discontinuity at td, V (·) also has a discontinuity at td.

Consider the interval [t1, td). By (2)–(4) in Theorem 1,
we have

V̇ =
∂V

∂x
f(x, u) +

∂V

∂u
u̇

≤ −c3‖x‖2 + c4‖x‖2 ‖u̇‖

≤
(
− c3
c2

+
c4
c1
‖u̇‖
)
V.

By the Gronwall-Bellman inequality, we obtain

V (t−d ) ≤ V (t1) exp

(∫ td

t1

−c3
c2

+
c4
c1
‖u̇‖dt

)

= V (t1) exp

(
−c3
c2

(td − t1) +
c4
c1

∫ td

t1

‖u̇‖dt
)
.

(6)
We apply a similar argument on the interval [td, t2], and we
obtain

V (t2) ≤ V (td) exp

(
−c3
c2

(t2 − td) +
c4
c1

∫ t2

td

‖u̇‖dt
)
. (7)

Consider any x1, x2 ∈ Rn and u1, u2 ∈ Γ. Since Γ is a
convex set, and V (x, u) is differentiable in x and u, by the
Mean Value Theorem, there exists λ ∈ [0, 1] such that4

V (x2, u2)− V (x1, u1)

=
∂V

∂x
(λx1 + (1− λ)x2, λu1 + (1− λ)u2) · (x2 − x1)

+
∂V

∂u
(λx1 + (1− λ)x2, λu1 + (1− λ)u2) · (u2 − u1).

4Denote by z1 = [x1, u1] a vector whose elements are x1 and u1.
Similarly, let z2 = [x2, u2]. Then, the Mean Value Theorem states that
there exists λ ∈ [0, 1] such that V (z2) − V (z1) = ∇V (λz1 + (1 −
λ)z2) · (z2 − z1), where ∇V =

[
∂V
∂x
, ∂V
∂u

]T .

Taking x1 = x2 = x, we have

V (x, u2)− V (x, u1)

=
∂V

∂u
(x, λu1 + (1− λ)u2) · (u2 − u1).

By (4),

V (x, u2)− V (x, u1) ≤ c4‖x‖2‖u2 − u1‖. (8)

Taking g(y) = exp(y − 1)− y, y ∈ R, and then we have

g′(y) = exp(y − 1)− 1,

g′′(y) = exp(y − 1).

It can be checked that g′(y) = 0 if and only if y = 1. In
addition, g′′(y) > 0, ∀ y ∈ R. Hence, g(y) attains global
minimum at y = 1, and g(1) = 0. This implies that

y ≤ exp(y − 1), ∀ y ∈ R.

Hence,

V (x, u2)

V (x, u1)
≤ exp

(
V (x, u2)

V (x, u1)
− 1

)
= exp

(
V (x, u2)− V (x, u1)

V (x, u1)

)
.

Plugging (2) and (8) into the inequality above, we further
have

V (x, u2)

V (x, u1)
≤ exp

(
c4‖x‖2‖u2 − u1‖

c1‖x‖2

)
= exp

(
c4
c1
‖u2 − u1‖

) (9)

for all u1, u2 ∈ Γ, x ∈ Rn. In particular, taking x = x(td),
u1 = u(t−d ) and u2 = u(td), we obtain

V (td) ≤ V (t−d ) exp

(
c4
c1
‖u(td)− u(t−d )‖

)
. (10)

Note that u(t−d ) ∈ Γ since Γ is a compact (and thus closed)
set.

Combining (5)-(7) and (10) together, we obtain

V (t2) ≤ V (t1) exp

(
−c3
c2

(t2 − t1) +
c4
c1

∫ t2

t1

‖du‖
)

≤ V (t1) exp

(
−
(c3
c2
− c4
c1
µ
)
(t2 − t1) +

c4
c1
α

)
.

Since µ < c1c3/c2c4, V (·) decays exponentially fast with
rate c3/c2 − (c4/c1)µ. By (2), we conclude that x(·) also
decays exponentially fast.

IV. STABILITY OF SWITCHED NONLINEAR SYSTEMS

In this section, we apply the main result obtained in
Section III to derive a set of stability conditions for switched
systems, and we show that the derived results match the
existing stability conditions in [10].

Let a set of systems

ẋ = f(x, up), p ∈ P
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be given, where x ∈ Rn is the system state, up is the system
dependent parameter, and P is the index set, which is finite or
countably infinite. The system parameter up is picked from a
set Γ ⊂ Rm, which could be an uncountable set. Assume that
f(·, ·) is locally Lipchitz over Rn × Γ. In addition, assume
that for any u ∈ Γ, the equation f(x, u) = 0 has a solution
at x = 0.

Now consider a switched system

ẋ = f̄σ(t)(x), (11)

where σ(·) : [0,∞)→ P is the switching signal and

f̄σ(t)(x) := f(x, uσ(t)).

By convention, it is assumed that σ(·) is piecewise constant
and is continuous from right everywhere. We introduce
Npq
σ (t, t + T ), p, q ∈ P as the number of switches from

subsystem p and subsystem q over the time interval [t, t+T ].
By Theorem 1, we have the following corollary.

Corollary 1: The switched system (11) is globally expo-
nentially stable if the following conditions hold.

(i) Γ is a compact and convex set.

(ii) There exists a Lyapunov function V (x, u), continuously
differentiable over Rn × Γ, which satisfies (2)-(4) in
Theorem 1 with constants c1, c2, c3, c4.

(iii) There exist positive constants µ and α, with µ <
c1c3/c2c4, such that∑
p,q∈P,p6=q

Npq
σ (t, t+T )‖up−uq‖ ≤ µT+α, ∀ t, T ≥ 0.

(12)
Proof: By the piecewise constant property of σ(·), it

can be readily seen that uσ(·) is also piecewise constant.
Hence, the total variation of uσ(·) over [t, t + T ] can be
expressed by∫ t+T

t

‖duσ‖ =
∑

p,q∈P,p6=q

Npq
σ (t, t+ T )‖up − uq‖.

Then (12) is equivalent to (5), and thus global exponential
stability can be established by Theorem 1.

By [10, Theorem 5], the switched system (11) is globally
exponentially stable if the following conditions are satisfied5:
for each p ∈ P , there exists a Lyapunov function Vp(x),
continuously differentiable in x, satisfying

(I) There exist positive constants c1 and c2 such that

c1‖x‖ ≤ Vp(x) ≤ c2‖x‖, ∀ p ∈ P, x ∈ Rn.

(II) There exists a positive constant γ such that

∂Vp
∂x

f(x, up) ≤ −γVp(x), ∀ p ∈ P, x ∈ Rn.

(III) For each pair of p, q ∈ P , there exists a positive constant
νpq such that

Vp(x) ≤ νpqVq(x), ∀ x ∈ Rn.
5This result was recovered in [12, Theorem 5] for the purpose of

comparing it with stability conditions for switched linear system. Here, we
compare it with Corollary 1 which deals with nonlinear switched systems.

(IV) There exists a positive constant η such that∑
p,q∈P,p6=q

Npq
σ (t, t+ T ) ln νpq < γT + η, ∀ t, T ≥ 0.

We now compare the above stability result with Corollary
1. Assume that items (i) and (ii) in Corollary 1 hold. By
(2), condition (I) in [10, Theorem 5] is satisfied with the
Lyapunov functions

Vp(x) := V (x, up), p ∈ P.

By (2) and (3), we have

∂Vp
∂x

f(x, up) ≤ −c3‖x‖2 ≤ −
c3
c2
Vp(x), ∀ p ∈ P, x ∈ Rn.

Therefore, condition (II) is satisfied with γ = c3/c2. By (9)
in the proof of Theorem 1, we have

Vp(x)

Vq(x)
≤ exp

(
c4
c1
‖up − uq‖

)
, ∀ p, q ∈ P, x ∈ Rn.

Hence, condition (III) is satisfied with νpq = exp(c4/c1 ·
‖up−uq‖). By plugging in the above expressions for γ and
νpq , condition (IV) can be expressed by∑

p,q∈P,p6=q

Npq
σ (t, t+ T )

c4
c1
‖up − uq‖ <

c3
c2
T + η,

which is equivalent to∑
p,q∈P,p6=q

Npq
σ (t, t+ T )‖up − uq‖ <

c1c3
c2c4

T +
c1
c4
η.

The above inequality is further equivalent to∑
p,q∈P,p6=q

Npq
σ (t, t+ T )‖up − uq‖ ≤ µT + α,

with
µ <

c1c3
c2c4

, α =
c1
c4
η.

Hence, condition (IV) is exactly the same as item (iii) in
Corollary 1. In view of this, we conclude that Corollary
1 recovers the result [10, Theorem 5] under the same
assumptions on the Lyapunov function, i.e., items (i) and (ii).

V. STABILITY OF SLOWLY TIME-VARYING
LINEAR SYSTEMS

In this section, we apply Theorem 1 to slowly time-varying
linear systems. We show that Theorem 1, when applied to
the linear case, qualitatively recovers the stability criteria
proposed in our earlier works [11], [12]. To present and
prove this statement, we need to introduce some notations
and definitions. We use ‖·‖ and ‖·‖F to denote the standard
induced 2-norm and the Frobenius norm, respectively, for
matrices. Given a matrix-valued function A(·) : R→ Rn×n,
its total variation over [a, b] is defined as∫ b

a

‖dA‖ := sup
p∈P

k∑
i=1

‖A(ti)−A(ti−1)‖,
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where p is a partition of [a, b], and P is the set of all partitions
of [a, b]. Similarly, the total variation of A(·) over [a, b],
under the Frobenius norm, is defined as∫ b

a

‖dA‖F := sup
p∈P

k∑
i=1

‖A(ti)−A(ti−1)‖F .

A well-known property of matrix norms (see [15, eqn. 2.3.7])
states that given any matrix A′ ∈ Rn×n,

‖A′‖ ≤ ‖A′‖F . (13)

Then, we have ∫ b

a

‖dA‖ ≤
∫ b

a

‖dA‖F . (14)

We define a mapping U(·) : Rn×n → Rn2

such that for
any A′ ∈ Rn×n,

U(A′) := [a′11, . . . , a
′
1n, a

′
21, . . . , a

′
2n, . . . , a

′
n1, . . . , a

′
nn]

T
,

where

A′ =

a
′
11 . . . a′1n
...

. . .
...

a′n1 . . . a′nn

 .
It is clear that U(·) is a bijection, and we denote by U−1(·)
the inverse mapping of U(·). Furthermore, by the definitions
of the Euclidean norm for vectors and the Frobenius norm
for matrices, we have

‖U(A′)‖ =

√√√√ n∑
i=1

n∑
j=1

a′ij
2

= ‖A′‖F . (15)

Given a matrix-valued function A(·), we denote by

uA(·) := U(A(·)) (16)

the composition between U(·) and A(·). By (15), we have∫ b

a

‖duA‖ =

∫ b

a

‖dA‖F .

To apply Theorem 1 to slowly time-varying linear systems,
we need to rely on the following lemma. The lemma states
that when system (1) is linear in x, a Lyapunov function
satisfying (2)–(4) in Theorem 1 exists, and the constants
c1, c2, c3, c4 admit explicit expressions.

Lemma 3 ([4], Lemma 9.9): Consider system (1) with
system equation linear in x, that is,

ẋ = f(x, u(t)) = Ā(u(t))x, (17)

where x ∈ Rn, u(t) = [u1(t), . . . , um(t)]T ∈ Γ ⊂ Rm, and
Ā(·) : Rm → Rn×n. Assume that the following conditions
hold.

(i) Ā(u) is continuously differentiable in u. Furthermore,
there exist positive constants bi, i = 1, . . . ,m, such that∥∥∥∂Ā(u)

∂ui

∥∥∥ ≤ bi, ∀ u ∈ Γ, i = 1, . . . ,m.

(ii) There exists a positive constant L such that

‖Ā(u)‖ ≤ L, ∀ u ∈ Γ.

(iii) Ā(u) is Hurwitz for all u ∈ Γ, and there exist positive
constants c and λ such that

‖eĀ(u)s‖ ≤ ce−λs, ∀ s ≥ 0, u ∈ Γ.

Let V (x, u) = xTP (u)x be the candidate Lyapunov func-
tion, where P (u) is the solution to the Lyapunov equation

P (u)Ā(u) + ĀT (u)P (u) = −I.

Then, V (x, u) satisfies (2)–(4) in Theorem 1 for all x ∈ R
and u ∈ Γ, with

c1 =
1

2L
, c2 =

c2

2λ
, c3 = 1, c4 =

c4

2λ2

√√√√ m∑
i=1

b2i .

Combining Lemma 3 and Theorem 1, we have the follow-
ing corollary.

Corollary 2: Consider a linear time-varying system

ẋ = A(t)x, (18)

where x ∈ Rn and A(t) ∈ A ⊂ Rn×n. The system is
globally exponentially stable if the following conditions are
satisfied.

(i) A is a compact and convex set.
(ii) A′ is Hurwitz for all A′ ∈ A, and there exist positive

constants c and λ such that

‖eA
′s‖ ≤ ce−λs ∀ A′ ∈ A, s ≥ 0.

(iii) For any time interval [t1, t2], uA(·) satisfies Condition
1, and its total variation satisfies∫ t2

t1

‖duA‖ ≤ µ(t2 − t1) + α,

where uA(·) is defined in (16),

α > 0, µ <
β1

2nβ3
2

, β1 =
1

2L
, β2 =

c2

2λ
, (19)

and L := max
A′∈A

‖A′‖.
Proof: The system equation (18) of the linear time-

varying system can be written as

ẋ = A(t)x = U−1
(
U
(
A(t)

))
x = U−1(uA(t))x,

which matches (17) by letting Ā(·) = U−1(·), u(t) =
uA(t), and Γ = U(A) ⊂ Rn2

. It can be readily seen that
∂Ā/∂ui, i = 1, . . . , n2, is a sparse matrix with one element
being one and all other elements being zero. Hence, we have∥∥∥∂Ā(u)

∂ui

∥∥∥ ≤ ∥∥∥∂Ā(u)

∂ui

∥∥∥
F

= 1 ∀ u ∈ Rn
2

, i = 1, . . . , n2,

where the inequality holds due to (13). Then, condition (i)
in Lemma 3 is satisfied. By the compactness of A, it can be
checked that condition (ii) in Lemma 3 is satisfied. Further-
more, condition (iii) in Lemma 3 is satisfied due to condition
(ii) in Corollary 2. Therefore, we can apply Lemma 3 and
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obtain a candidate Lyapunov function satisfying (2)–(4), with
constants

c1 =
1

2L
, c2 =

c2

2λ
, c3 = 1, c4 =

c4

2λ2

√√√√ n2∑
i=1

1 =
nc4

2λ2
.

(20)
To apply Theorem 1, we need to further justify that the

conditions (i) and (iii) in its statement hold. Since Γ = U(A),
the compactness and convexity of A implies6 those of Γ, and
thus condition (i) in Theorem 1 is satisfied. Furthermore, it
can be computed that

β1

2nβ3
2

=
2λ3

nLc6
=

1

2L
· 4λ3

nc6
=
c1c3
c2c4

,

where β1 and β2 are as in (19) and c1–c4 are characterized
by (20). Hence, condition (iii) in Corollary 2 is equivalent
to condition (iii) in Theorem 1.

Combining the arguments above, we conclude that the
stability conditions in Theorem 1 are satisfied, and thus the
linear time-varying system is globally exponentially stable.

The result in [12, Theorem 3] states that the linear
time-varying system is globally exponentially stable if the
following conditions are satisfied.

(i) A is a compact set.
(ii) A′ is Hurwitz for all A′ ∈ A, and there exist positive

constants c and λ such that

‖eA
′s‖ ≤ ce−λs ∀ A′ ∈ A, s ≥ 0.

(iii) For any time interval [t1, t2], the total variation of A(·)
satisfies ∫ t2

t1

‖dA‖ ≤ µ(t2 − t1) + α,

where

α > 0, µ <
β1

2β3
2

, β1 =
1

2L
, β2 =

c2

2λ
.

Comparing this result with Corollary 2, we observe that the
convexity assumption on A was not made in [12, Theorem
3]. Furthermore,∫ t2

t1

‖duA‖ =

∫ t2

t1

‖dA‖F ≥
∫ t2

t1

‖dA‖,

where the inequality holds due to (14), and

β1

2nβ3
2

≤ β1

2β3
2

.

Hence, with a minor additional assumption on the convexity
of A, Corollary 2 recovers [11, Theorem 3] qualitatively but
not quantitatively.

6The convexity of Γ is easy to check, yet the proof of compactness
requires an application of the equivalence of norms, between the induced
2-norm and the Frobenius norm.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have derived a set of stability condi-
tions unifying the stability results for nonlinear time-varying
systems and nonlinear switched systems. By applying the de-
rived stability conditions to linear time-varying systems, we
have also recovered qualitatively the unified stability criteria
for slowly time-varying linear systems and switched linear
systems, which were derived in an earlier work initiating this
line of research.

Based on the results of this paper, there are two interesting
directions for future study: first, it is assumed in this paper
that the time-varying system is stable at each frozen time,
and the switched system contains only stable subsystems.
However, stability of slowly time-varying systems with stable
and unstable system dynamics at different frozen times, and
stability of switched systems with both stable and unstable
subsystems, have been well studied in the literature. It is
worth trying to bridge the two groups of results via the
total variation approach. Second, in this work, it is assumed
that the systems with different parameters admit the same
equilibrium point. It is worth generalizing the stability results
derived in this paper to the case where the time-varying
system with time-varying parameters admits a time-varying
equilibrium point on a manifold.
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