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Abstract—We consider the problem of synchronizing two
electric power generators, one of which (the leader) is serving
a time-varying load, so that they can ultimately be connected
to form a single power system. Both generators are described
by second-order reduced state-space models, and we assume
that the generator not serving any load initially (the follower)
has access to measurements of the leader generator phase angle
corrupted by some additive disturbances. By using these mea-
surements, and leveraging results on reduced-order observers
with ISS-type robustness, we propose a procedure that drives
(i) the angular velocity of the follower close enough to that of
the leader, and (ii) the phase angle of the follower close enough
to that of the point at which both systems will be electrically
connected. An explicit bound on the synchronization error in
terms of the measurement disturbance and the variations in the
electrical load served by the leader is computed. We illustrate
the procedure via numerical simulations.

I. INTRODUCTION

Research into synchronization of dynamical systems orig-
inates in the 17th century study of pendulum clocks by
Huygens and continues vigorously to this day, driven by the-
oretical interest and applications in mechanical and electrical
systems, multi-agent coordination, teleoperation, haptics, and
other fields. In the physics literature, the famous Pecora-
Carroll synchronization scheme from [1] has generated a
lot of activity, some of which was recently surveyed in [2].
In modern control-theoretic literature, tools that have been
prominent in addressing synchronization problems are dissi-
pativity theory [3]–[5] and observer design [6]–[8]. In the
context of electric power systems, Kuramoto-type models
of coupled phase oscillators, which have been utilized in
numerous areas since first proposed in [9], are also starting to
be adopted to describe the behavior of inertia-less microgrids
(see, e.g., [10]–[13] and the references therein).

In this paper, we consider two power systems that are not
electrically connected, with the ultimate goal of intercon-
necting them to form a single system with all its generators
being synchronized, i.e., rotating at the same angular velocity.
Here, we focus on the case when the first system, referred
to as the leader, is comprised of one generator and one load,
both of which are connected to a bus with voltage support;
and the second system, referred to as the follower system,
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is comprised of a single generator. The objective then is to
synchronize both systems, i.e., make the generators rotate
at the same angular velocity, and make the phase angle of
the point at which they will be interconnected match. Once
these two objectives are achieved, it is possible to electrically
connect the follower system to the leader system without
causing large currents to flow across both systems, or causing
mechanical components to break (see, e.g., [14]).

By assuming the load in the leader system is not varying
too rapidly, we first show that a standard integral control
stabilizes the angular velocity of the generator in the leader
system. Then, by assuming the follower system has access
to measurements of the phase of the generator in the leader
system, we can show that even if these measurements are
corrupted, due to, e.g., noise or a malicious cyber attack, the
generator in the follower system will be able to bring its
angular velocity close enough to the angular velocity of the
generator in the leader system. As for phase synchronization,
our procedure cannot guarantee that the phase difference will
converge to within some small value around zero; in fact, the
opposite is generally true—the phase difference will grow
unbounded over time. In turns out, however, that this is not
a problem in practice, since one just needs to wait until the
phase difference is a multiple of 2π to physically interconnect
both systems.

While the setting considered here might seem at first too
simplistic, we believe it is of interest in some emerging
applications, namely microgrids. In such applications, one
can think of the generator in the leader system model
considered in this paper as an aggregate model describing,
e.g., the average dynamics of a collection of generators in
the microgrid that are already synchronized and serving a
collection of loads (one can think of the sum of these loads as
the load in the leader system). In this setting, the problem is
to synchronize one additional generator (the follower system
in the context of this work) to those in the microgrid that are
already synchronized.

II. SYSTEM DESCRIPTION

We focus on the task of synchronizing two generators, with
the first one serving a load via a node referred to as the “bus,”
as depicted in Fig. 1, and the second one trying to connect
to the bus.

Let ω1 denote the angular speed of the first generator (in
electrical radians per second), let θ1 denote the absolute phase
angle of generator 1, and let δ1 denote its relative phase angle,
both in radians. This means that

δ1 := θ1 − ω0t, (1)
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Fig. 1. Synchronization of two generators: a leader and a follower.

where ω0 denotes some nominal frequency; thus, we have
θ̇1 = ω1, so that

δ̇1 = ω1 − ω0. (2)

The corresponding variables ω2, θ2, δ2 for the second gen-
erator are defined in the same way. The bus state variables
are the voltage magnitude and the voltage angle for the bus.
We denote by θ3 the absolute phase angle of the bus voltage.
We also define the relative phase angle of the bus voltage as

δ3 := θ3 − ω0t, (3)

and we have θ̇3 = ω3, so that δ̇3 = ω3−ω0, where ω3 is the
frequency of the bus (in electrical radians per second).

We consider the following second-order reduced model for
the first generator (see [15] for the details of its derivation):

θ̇1 = ω1, (4)

ω̇1 = u1 − `(t)−D(0)
1 ω1, (5)

where u1 is the control input (which corresponds to the
mechanical power applied to the generator shaft);

`(t) = B1(θ13(t)) +D1(θ13(t)) · θ̇13(t) (6)

is the power consumed by the electrical load connected to
the bus,

θ13(t) := θ1(t)− θ3(t) (7)

is the difference between the absolute phase angles of the
first generator and the bus; B1 is a globally bounded and
globally Lipschitz function taking values

B1(s) := K1 sin(s) +X1 sin(2s), (8)

where K1 is a positive constant, and X1 is a nonnegative
constant [15]; the damping function D1 is a globally bounded
and globally Lipschitz function taking values

D1(s) = C1 cos2(s) + C2 sin2(s) (9)

where C1 and C2 are nonnegative constants [15]; and D
(0)
1

is a positive constant.
From the generator dynamic model in (4), (5), and the

definition (7) and the resulting relation

θ̇13(t) : = θ̇1(t)− θ̇3(t)

= ω1 − ω3,
(10)

it is easy to see that the dynamical model for the bus takes
the form

θ̇3 = ω3, (11)

ω̇3 = u1 − `(t)−D(0)
1 ω1 − θ̈13(t). (12)

The second-order reduced model for the second generator
(before it is connected) is analogous to (4), (5) but with no
electrical load term, i.e.,

θ̇2 = ω2, (13)

ω̇2 = u2 −D(0)
2 ω2, (14)

where u2 is the control input and D(0)
2 is a positive constant.

The synchronization task consists in ensuring that the
phase and angular speed of the second generator match those
of the bus. Accordingly, from now on we refer to the bus
modeled by (11), (12) as the leader, and the second generator
modeled by (13), (14) as the follower.

We assume that at the initial time t0 (the time when
our control strategy will be initialized), the first generator
operates in steady state corresponding to some constant
load ¯̀. In view of the power balance equation (6), this
means that θ13(t0) equals the solution θ̄13 of the equation
¯̀ = B1(θ̄13), and that θ̇13(t0) = ω1(t0) − ω3(t0) = 0.
[Indeed, θ13(t) ≡ θ̄13 is the unique solution of the ODE
¯̀= B1(θ13(t)) +D1(θ13(t)) · θ̇13(t) starting at θ̄13.]

For t ≥ t0, we allow the load `(t) to change, but assume
that this change is constrained both in size and in speed, i.e.,
we assume that for some positive constants ∆` and ∆ ˙̀ we
have

|`(t)− ¯̀| ≤ ∆`, | ˙̀(t)| ≤ ∆ ˙̀. (15)

By small-signal analysis, one can show that if ∆` and ∆ ˙̀ are
sufficiently small then, at least on some finite time horizon,
there exist positive constants ∆θ and ∆θ̇ such that

|θ13(t)− θ̄13| ≤ ∆θ, |θ̇13(t)| = |ω1(t)− ω3(t)| ≤ ∆θ̇.
(16)

We henceforth assume the existence of such constants ∆θ

and ∆θ̇.
Signal measurements: We assume that a phasor-

measurement unit (PMU) is used to measure the absolute
angle θ3(t) of the “bus” node, but that these measurements
are corrupted by a measurement disturbance, d(t). One major
potential source of such a disturbance is spoofing [16], but it
can also be due to a combination of several sources. Thus,
phase measurements available to the follower take the form

θ3(t) + d(t), (17)

where d(t) is an unknown disturbance, with θ3(t) + d(t) ∈
[0, 2π).1 We also assume that the steady-state value θ̄13 is

1Note that if the unknown disturbance is caused by a spoofing attack on
the GPS receiving of the PMU, it might be possible to refine the upper
bound on d(t). For example, in [16], it was shown that a spoofing attack
can be engineered so as to perturb the phase measurement provided by the
PMU by as much as 0.25π rad without being detected; thus, in such a case,
one could assume d(t) ∈ (−0.25π, 0.25π).
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known to the follower (through the knowledge of ¯̀.) On the
other hand, angular speed measurements are not available to
the follower.

Our goal is to achieve robust synchronization in the face of
the unknown disturbance d, and to quantitatively characterize
how the synchronization error is affected by the size of this
disturbance.

III. CONTROLLED SYNCHRONIZATION

In this section, a feedback control law is designed for the
leader and a synchronization method is developed for the
follower system.

A. Control design and analysis

First generator and bus (leader): Note that the first
generator and the bus share the same control input. The
purpose of this control is to drive the bus frequency ω3(t)
to the nominal frequency value ω0. In view of the second
bound in (16), if ∆θ̇ is small then this goal can also be
approximately achieved by driving the angular speed ω1(t) of
the first generator to ω0. This suggests the following control
input:

u1(t) = − kδ1(t) = −k(θ1(t)− ω0t), k > 0. (18)

Since the dynamics of δ1(t) are given by (2), it is easy to
recognize in (18) a standard integral control law for making
ω1(t) asymptotically track the constant reference ω0. Under
the action of this control, the first generator reduced-order
model (4), (5) becomes:

θ̇1 = ω1, (19)

ω̇1 =− kθ1 + kω0t− `(t)−D(0)
1 ω1. (20)

To validate the control law (18), we want to show that
the solutions of the closed-loop system given by (2), (19)
and (20) are bounded and that ω1(t) is regulated to ω0 in an
appropriate sense. To this end, it is convenient to rewrite the
(ω1, δ1)-dynamics as follows:(

ω̇1

δ̇1

)
=

(
−D(0)

1 −k
1 0

)(
ω1

δ1

)
−
(
`(t)
ω0

)
,

which we can view as a linear time-invariant system driven
by a time-varying perturbation that creates a time-varying
equilibrium at

ω1 = ω0, δ1 = −`(t) +D
(0)
1 ω0

k
=: δ0(t) (21)

(meaning that for each frozen time t, this is the equilibrium of
the corresponding fixed affine system). Let us shift the center
of coordinates to this time-varying equilibrium by defining

ω̄1(t) := ω1(t)− ω0, δ̄1(t) := δ1(t)− δ0(t).

In these new coordinates, the closed-loop dynamics becomes:(
˙̄ω1

˙̄δ1

)
=

(
ω̇1

δ̇1

)
−

(
0

δ̇0(t)

)

=

(
−D(0)

1 −k
1 0

)(
ω̄1

δ̄1

)
+

(
0
ν(t)

)
, (22)

where

ν(t) :=
˙̀(t)

k
. (23)

Since the matrix

A :=

(
−D(0)

1 −k
1 0

)
(24)

is Hurwitz for every k > 0, it is clear that closed-loop
solutions are bounded and converge to a neighborhood of the
time-varying equilibrium (21); the size of this neighborhood
is determined by the size of the perturbation ν(t). To make
this more precise, note that since A is Hurwitz, there exist
constants c, λ > 0 such that for all t we have2∥∥eAt∥∥ ≤ ce−λt. (25)

Our system (22) is the LTI system ẋ = Ax driven by the
perturbation (23) which, in view of the second bound in (15),
satisfies

|ν(t)| ≤
∆ ˙̀

k
∀ t ≥ 0.

It is well known and straightforward to derive that c/λ is
the system’s L∞-induced gain, and that the following bound
holds for all solutions:∣∣∣∣∣

(
ω̄1(t)

δ̄1(t)

)∣∣∣∣∣ ≤ ce−λt
∣∣∣∣∣
(
ω̄1(0)

δ̄1(0)

)∣∣∣∣∣+
c

λ

∆ ˙̀

k
∀ t ≥ 0.

In particular, c∆ ˙̀/(λk) is the ultimate bound on the norm
of the solution in steady state:

lim sup
t→∞

∣∣∣∣∣
(
ω̄1(t)

δ̄1(t)

)∣∣∣∣∣ ≤ c∆ ˙̀

λk
. (26)

Note that small values of ω̄1(t) correspond to ω1(t) being
regulated close to the nominal frequency ω0.

Second generator (follower): For the follower (second
generator) described by (13), (14), we would like to define
the control input u2(t) so as to make the angular speed ω2(t)
synchronize with the bus frequency ω3(t). Since in view of
the second bound in (16) the frequencies ω3(t) and ω1(t) are
close to each other, it is reasonable to base the design of u2
on the (somewhat simpler) dynamics of the first generator
instead of those of the bus. Let us use (6) to rewrite the
equation (20) as

ω̇1 = −kθ1 +kω0t−B1(θ13(t))−D1(θ13(t)) · θ̇13−D(0)
1 ω1.

(27)
We can make the dynamics (14) of ω2 approximately match
these dynamics of ω1 by doing the following: (i) approx-
imating θ1(t), which is not available to the follower, by
θ3(t)+d(t)+ θ̄13. This is reasonable since θ3(t)+d(t) is the
approximate measurement of θ3(t), available to the follower,

2Here ‖ · ‖ stands for the induced matrix norm corresponding to the
Euclidean norm.
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and θ̄13 approximates the difference θ13(t) = θ1(t) − θ3(t)
in the sense of the first bound in (16), and is also available
to the follower; (ii) approximating B1(θ13(t)) by B1(θ̄13);
(iii) correcting the difference between the damping constants
D

(0)
1 and D

(0)
2 ; and (iv) ignoring the term D1(θ13(t)) · θ̇13

which is bounded by virtue of (9) and (16). This suggests
the following control input:

u2(t) = − k
(
θ3(t) + d(t) + θ̄13

)
+ kω0t

−B1(θ̄13) +
(
D

(0)
2 −D

(0)
1

)
ω2(t).

We can then write the closed-loop dynamics of the follower
as

θ̇2 = ω2, (28)

ω̇2 =− k
(
θ3(t) + d(t) + θ̄13

)
+ kω0t−B1(θ̄13)

−D(0)
1 ω2. (29)

This choice of control for the follower will be validated by
the synchronization analysis given next.

Remark 1 The above control design for the follower is not
dependent on the particular form of the control u1 for the
leader, but only on the fact that this control depends just on
the angle θ1 and not on the angular velocity ω1. We also
see that the exact nature of the damping term in the follower
model is not important because it is canceled by control.

B. Synchronization analysis

Since we are interested in synchronizing the angular ve-
locity ω2 of the follower to the frequency ω3 of the leader,
we consider the synchronization error

e(t) := ω2(t)− ω3(t). (30)

We find it convenient to split it as

e = (ω2 − ω1) + (ω1 − ω3) =: e21 + e13 (31)

and analyze the two components separately. For e13, we
already have the second bound from (16) which says that

|e13(t)| ≤ ∆θ̇. (32)

For e21, using (29), (27), and (7) we have (suppressing all
time arguments for simplicity)

ė21 = ω̇2 − ω̇1 = B1(θ13)−B1(θ̄13) +D1(θ13) · θ̇13
−D(0)

1 e21 + k(θ13 − θ̄13)− kd.
(33)

Let us define the candidate Lyapunov function

V (e21) :=
1

2
e221.

Its derivative along solutions of (33) satisfies the inequality

V̇ ≤−D(0)
1 e221 +

(
k|θ13 − θ̄13|+ k|d|+ |B1(θ13)

−B1(θ̄13)|+ |D1(θ13)| · |θ̇13|
)
|e21|.

(34)

Recall that D(0)
1 > 0, and by the first bound in (16) we

have |θ13− θ̄13| ≤ ∆θ. Furthermore, since B1 defined in (8)

is globally Lipschitz with Lipschitz constant K1 + 2X1, we
also have |B1(θ13) − B1(θ̄13)| ≤ (K1 + 2X1)∆θ. Finally,
D1 defined in (9) is globally bounded by C1 + C2 which,
combined with the second bound in (16), gives |D1(θ13)| ·
|θ̇13| ≤ (C1 + C2)∆θ̇. Plugging all these bounds into (34),
we obtain

V̇ ≤−D(0)
1 e221 +

(
k|d|+ (k +K1 + 2X1)∆θ

+ (C1 + C2)∆θ̇

)
|e21|

=−D(0)
1 |e21|

(
|e21|

−
k|d|+ (k +K1 + 2X1)∆θ + (C1 + C2)∆θ̇

D
(0)
1

)
,

which yields

|e21| >
k|d|+ (k +K1 + 2X1)∆θ + (C1 + C2)∆θ̇

D
(0)
1

⇒ V̇ < 0.

The standard ISS analysis (see, e.g., [17]) now implies that
e21(t) stays bounded and satisfies the ultimate bound

lim sup
t→∞

|e21(t)| ≤ 1

D
(0)
1

(
k lim sup

t→∞
|d(t)|+ (C1 + C2)∆θ̇

+ (k +K1 + 2X1)∆θ

)
.

Combining this with (31) and (32), we conclude that

lim sup
t→∞

|e(t)| ≤ 1

D
(0)
1

(
k lim sup

t→∞
|d(t)|+ (C1 + C2

+D
(0)
1 )∆θ̇ + (k +K1 + 2X1)∆θ

)
.

(35)

This characterizes the quality of synchronization in terms of
the size of the disturbance d(t), the control gain k, and the
various constants appearing on the right-hand side of (35).
The above reasoning and conclusion can be viewed as a
special case of the results in [18] on reduced-order observers
with ISS-type robustness.

We see, in particular, that the gain from the measurement
disturbance d to the synchronization error e is proportional
to the control gain k, thus decreasing k reduces the effect
of this disturbance on synchronization. On the other hand,
decreasing k has a negative effect on closed-loop stability of
the first generator, as can be seen from the eigenvalues of
the matrix A defined in (24) and from the bound (26). This
suggests that, to mitigate the effect of this disturbance, we
may want to (temporarily) reduce the control gain k during
the synchronization stage.

Synchronization procedure: In addition to angular velocity
synchronization, phase synchronization is also important. The
phase θ2 will evolve according to (28), which comes from
the physics of the system but was not explicitly taken into
account in the above procedure. Due to the “drift” in the
frequency caused by the disturbances, there will be a time
when θ2 will become close to θ3. The idea is that we will
detect when this happens by looking at the measurements
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θ3 + d, and at that moment, we will connect the second
generator.

It is important to note that for |d| > 0.055π, the phase
synchronization error will exceed standard error bounds listed
in [14], and given that d(t) ∈ (−0.25π, 0.25π), it is clear that
disturbances could lead to poor synchronization. Although we
are aware of this issue, it is beyond the scope of this paper
but will be addressed in a future work.

IV. NUMERICAL RESULTS

In this section, parameters for the proposed control law
and synchronization method are evaluated, and numerical
validations of both techniques are presented. The numerical
results are developed as follows: with initial conditions of
the leader system set to an equilibrium state and that of the
follower system set to zero, the simulations starts at time
t = 0 s with the electrical load `(t) at a nominal value
of 0.5 pu, where “pu” denotes per-unit.3 At time t = 5
s, the load is perturbed about the nominal value, with the
change in size and speed constrained to |`(t) − 0.5| ≤ ∆`

and | ˙̀(t)| = ∆ ˙̀, respectively, where ∆` and ∆ ˙̀ are positive
constants. Using a base power of 835 MW for the system,
a base voltage amplitude of 26 kV for the generators,
and a base voltage amplitude of 230 kV for the bus, the
parameter values used are: k = 0.0008, ω0 = 120π rad/s,
D

(0)
1 = D

(0)
2 = 0.0265 s/rad, ¯̀ = 0.5 pu, K1 = 0.7475 pu,

X1 = 0 pu, C1 = 1.4643 pu, and C2 = 0.0738 pu.

A. Parameter evaluation
The values of λ and c in (25) can be easily estimated as

follows. The eigenvalues of A are

λ1,2(A) =
−D(0)

1 ±
√(

D
(0)
1

)2 − 4k

2
.

To simplify calculations, let us assume that the control gain
is chosen to satisfy k ≥

(
D

(0)
1

)2
/4 so that the eigenvalues of

A are complex with real parts − 1
2D

(0)
1 . Then, we can take

the stability margin (i.e., exponential decay rate) λ appearing
in (25) to be

λ :=
1

2
D

(0)
1 .

(Note that for values of k closer to 0 the stability mar-
gin would decrease.) To calculate the overshoot constant c
in (25), we can look for a matrix P = PT > 0 which satisfies
the Lyapunov inequality

PA+ATP ≤ −2λP. (36)

Then, A has its overshoot constant c upper-bounded by√
λmax(P )/λmin(P ). It can be verified that one choice of

P satisfying (36) is

P =

(
1 1

2D
(0)
1

1
2D

(0)
1 k

)
3System quantities expressed in per-unit have been normalized as fractions

of a defined base quantity, and the system rated value is usually chosen as
the base quantity. In other words, for a system whose rated power capacity
is 10 W, a power measurement of 0.5 pu is equivalent to 5 W [19].

(this actually gives PA+ATP = −D(0)
1 P ). Its eigenvalues

are

λ1,2(P ) =
k + 1±

√
(k − 1)2 +

(
D

(0)
1

)2
2

.

If we fix some value of control gain k >
(
D

(0)
1

)2
/4 (strict

inequality is needed to have P > 0), we obtain the following
estimate for c:

c =

√√√√√k + 1 +

√
(k − 1)2 +

(
D

(0)
1

)2
k + 1−

√
(k − 1)2 +

(
D

(0)
1

)2 .
(To refine this result, one could search for a matrix P that
gives the smallest value of c.) In the results presented, c =
40.0361 and λ = 0.0133 is used.

B. Control performance analysis
For the leader to be in compliance with the IEEE 1547

standard [20], we must have that
∣∣ω3(t)− ω0

∣∣ ≤ π rad/s
enforced throughout system operation. Accordingly, effects
of various model parameters on control performance were
analyzed numerically.

As depicted in Fig. 2, the system frequency deviation from
nominal value is investigated and compared to the bound∣∣ω3(t)− ω0

∣∣ ≤ π rad/s required by the IEEE 1547 standard.
The control performance results show that increasing values
of ∆` negatively impact the control performance under the
integral control. Also, numerical results are presented, in
Figs. 3 and 4, to validate the analytical result in (26).
For all values of k and ∆ ˙̀ considered, it follows that∣∣∣∣∣
(
ω̄1(t)
δ̄1(t)

)∣∣∣∣∣ < c∆ ˙̀

λk
. Although this theoretical bound appears

to be very conservative, the norm of the states is observed to
be within these bounds, as expected.

C. Synchronization performance analysis
Due to the ISS properties established above, the fre-

quencies ω3 and ω2 will synchronize up to an error, as
shown in (35). In line with IEEE standards listed in [14],
the largest admissible synchronization error magnitude, i.e.∣∣e(t)∣∣ = |ω2 − ω3|, is 0.134π rad/s, and this must be en-
forced before the leader and follower can be interconnected.
Accordingly, the effects of disturbance d(t) and control gain
k on the synchronization error are investigated via numerical
simulations. By utilizing results in [16] for the maximum
phase angle error resulting from spoofing attacks, i.e. d(t) ∈
(−0.25π, 0.25π) rad, and simulating the effects of increasing
k on the synchronization error, we were able to observe and
estimate upper bounds for k below which e(t) ≤ 0.134π
rad/s, and acceptable synchronization is achieved.

The numerical results depicted in Fig. 5 show that the pro-
posed synchronization method is robust to large disturbances
in phase measurements, even if the disturbance is twice as
large as the maximum resulting from spoofing attacks, as
reported in [16]. Also, increasing the control gain k improves
controller performance (see Fig. 3), but at the cost of reducing
robustness of the synchronization method (see Fig. 6).
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Fig. 2. Frequency deviation (∆ ˙̀ = 0.1).

 

Fig. 3. Norm of states (∆` = 0.01, ∆ ˙̀ = 0.1).

 

Fig. 4. Norm of states (k = 8e−4, ∆` = 0.01).
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Fig. 5. Synchronization error e(t), for k = 0.0008, 0.01 ≤ d(t) ≤ 0.5π.
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Fig. 6. Synchronization error e(t), for d(t) = 0.25π, 0.0002 ≤ k ≤
0.04π.

V. CONCLUDING REMARKS

In this paper, we proposed a method for synchronizing
two electric power generators, which is robust against dis-
turbances in the measurements on which the method relies.
Analytical and numerical results were used to validate the
proposed robust synchronization method.
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