
On Stability of Nonlinear Slowly Time-Varying and
Switched Systems

Xiaobin Gao, Daniel Liberzon, and Tamer Başar
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Literature: Stability of Slowly Time-varying Systems

A system with time-varying parameters is known to be stable when1

The system with parameters fixed at each frozen time is stable.

The system parameters vary slowly enough.

1Desoer 69; Ilchmann et al. 87; Lawrence and Rugh 90; Khalil and Kokotovic 91;

Ioannou and Sun 96; Khalil 02
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Literature: Stability of Switched Systems

A switched system is known to be stable when2

Each subsystem is stable.

The system switches slowly enough among its subsystems.

2Morse 96; Hespanha and Morse 99; Zhao et al. 12; Kundu and Chatterjee 15
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Motivation and Challenge

Motivation: obtaining unified stability criteria for slowly time-varying
and switched systems.

Gap: system parameters were assumed (in literature) to be

◮ Continuous / differentiable for slowly time-varying systems.

◮ Piecewise constant for switched systems
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Solution

Relax regularity assumption on system parameters as piecewise
differentiable (with discontinuities).

Apply the concept of total variation to characterize the variation of
system parameters.
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Solution

Prior work3: Obtained unified stability criteria for slowly time-varying
and switched linear systems.

In this talk, we consider the nonlinear case.

3X. Gao, D. Liberzon, J. Liu, and T. Başar. Unified stability criteria for slowly

time-varying and switched linear systems. Automatica, 96:110-120, 2018.
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Preliminaries: Total Variation

The total variation of a vector-valued function u(·) over [a, b] is
defined by

∫ b

a
‖du‖ := sup

P ∈P

k
∑

i=1

‖u(ti) − u(ti−1)‖

where

◮ P = {ti|i = 0, . . . , k} is a partition of [a, b].

◮ P is the set of all partitions of [a, b].
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Total Variation under Regularity Conditions

Lemma 1 (see, e.g., Gao et al., 2018)

Under suitable regularity conditions on u(·), the total variation is given by

∫ b

a
‖du‖ =

m
∑

i=0

∫ di+1

di

‖u̇(t)‖dt +
m+1
∑

i=1

∥

∥

∥u(di) − u(d−
i )

∥

∥

∥

where di are discontinuities of u(·)

Total variation is capable of capturing both differentiable functions
and piecewise constant functions.
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Nonlinear Time-varying / Switched Systems

ẋ = f(x, u(t))

x ∈ R
n is the state.

u(t) ∈ Γ ⊂ R
m is the time-varying parameter.

f(·, ·) is locally Lipschitz over Rn × Γ.

f(0, u) = 0 for all u ∈ Γ.

Γ is compact and convex.
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Main Result: Theorem 1

The nonlinear time-varying system is globally exponentially stable if
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Main Result: Theorem 1

The nonlinear time-varying system is globally exponentially stable if

There exist a candidate Lyapunov function V (x, u) and positive
constants c1, c2, c3, c4 such that for all x ∈ R

n and u ∈ Γ,

c1‖x‖2 ≤ V (x, u) ≤ c2‖x‖2

∂V

∂x
f(x, u) ≤ −c3‖x‖2

∥

∥

∥

∥

∂V

∂u

∥

∥

∥

∥

≤ c4‖x‖2
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Main Result: Theorem 1

The nonlinear time-varying system is globally exponentially stable if

There exist a candidate Lyapunov function V (x, u) and positive
constants c1, c2, c3, c4 such that for all x ∈ R

n and u ∈ Γ,

c1‖x‖2 ≤ V (x, u) ≤ c2‖x‖2

∂V

∂x
f(x, u) ≤ −c3‖x‖2

∥

∥

∥

∥

∂V

∂u

∥

∥

∥

∥

≤ c4‖x‖2

There exist positive constants µ and α with µ < c1c3/c2c4 such that
for any [t1, t2], u(·) satisfies

∫ t2

t1

‖du‖ ≤ µ(t2 − t1) + α
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Sketch of the Proof

Without loss of generality, we assume that u(·) has only one
discontinuity over [t1, t2] at td.
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Sketch of the Proof

Without loss of generality, we assume that u(·) has only one
discontinuity over [t1, t2] at td.

From

V̇ =
∂V

∂x
f(x, u) +

∂V

∂u
u̇ ≤ −c3‖x‖2 + c4‖x‖2‖u̇‖
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Sketch of the Proof

Without loss of generality, we assume that u(·) has only one
discontinuity over [t1, t2] at td.

From

V̇ =
∂V

∂x
f(x, u) +

∂V

∂u
u̇ ≤ −c3‖x‖2 + c4‖x‖2‖u̇‖

we show that

V (t−
d ) ≤ V (t1) exp

(

−
c3

c2
(td − t1) +

c4

c1

∫ td

t1

‖u̇‖dt

)

V (t2) ≤ V (td) exp

(

−
c3

c2
(t2 − td) +

c4

c1

∫ t2

td

‖u̇‖dt

)
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Sketch of the Proof

In addition, we show (using MVT and some additional calculations)

V (td) ≤ V (t−
d ) exp

(

c4

c1
‖u(td) − u(t−

d )‖

)
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Sketch of the Proof

In addition, we show (using MVT and some additional calculations)

V (td) ≤ V (t−
d ) exp

(

c4

c1
‖u(td) − u(t−

d )‖

)

Combining the three inequalities, we have

V (t2) ≤ V (t1) exp

(

−
c3

c2
(t2 − t1) +

c4

c1

∫ t2

t1

‖du‖

)
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Sketch of the Proof

In addition, we show (using MVT and some additional calculations)

V (td) ≤ V (t−
d ) exp

(

c4

c1
‖u(td) − u(t−

d )‖

)

Combining the three inequalities, we have

V (t2) ≤ V (t1) exp

(

−
c3

c2
(t2 − t1) +

c4

c1

∫ t2

t1

‖du‖

)

Since
∫ t2

t1

‖du‖ ≤ µ(t2 − t1) + α

and µ < c1c3/c2c4, V (·) decays exponentially fast over [t1, t2].

Gao, Liberzon, Başar (UIUC) CDC 2018 12 / 20



Applications: Nonlinear Time-varying Systems

If u(·) is continuously differentiable, the third condition in Theorem 1
becomes

∫ t2

t1

‖u̇(t)‖dt ≤ µ(t2 − t1) + α

Theorem 1 under this case reproduces the stability criteria for
nonlinear time-varying systems proposed in [Khalil 02].
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Applications: Nonlinear Switched Systems

Given a set of subsystems

ẋ = f(x, up), p ∈ P

up ∈ Γ.

P is the index set.

Consider a switched system

ẋ = f̄σ(t)(x)

f̄σ(t)(x) := f(x, uσ(t)).

σ(·) is the switching signal.
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Applications: Nonlinear Switched Systems

Corollary 1

The switched system is globally exponentially stable if

Γ is compact and convex.

There exists a condidate Lyapunov function V (x, u) with the same
properties as described in Theorem 1.

There exist positive constants µ and α, with µ < c1c3/c2c4, such that
for any [t, t + T ],

∑

p,q∈P,p 6=q

Npq
σ (t, t + T )‖up − uq‖ ≤ µT + α
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Applications: Nonlinear Switched Systems

∑

p,q∈P,p 6=q

Npq
σ (t, t + T )‖up − uq‖ ≤ µT + α

Npq
σ (t, t + T ) is the number of switches from subsystem p to

subsystem q over [t, t + T ].

∑

p,q∈P,p 6=q

Npq
σ (t, t + T )‖up − uq‖ =

∫ t+T

t
‖duσ‖

It can be shown that Corollary 1 matches the stability criteria for
nonlinear switched systems proposed in [Kundu and Chatterjee 15].
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Applications: Linear Systems

Consider a linear system

ẋ = f(x, u(t)) = A(t)x

where
u(t) = [a11(t), . . . , a1n(t), . . . , an1(t), . . . , ann(t)]T ∈ Γ ⊂ R

n2

A(t) =







a11(t) . . . a1n(t)
...

. . .
...

an1(t) . . . ann(t)






∈ A ⊂ R

n×n
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Applications: Linear Systems

Corollary 2

The linear system is globally exponentially stable if

A is compact and convex.

A′ is Hurwitz for all A′ ∈ A, and there exist positive constants c and
λ such that

‖eA′s‖ ≤ ce−λs ∀ A′ ∈ A, s ≥ 0

There exist positive constants µ (small enough) and α such that for
any [t, t + T ],

∫ t2

t1

‖dA‖F ≤ µ(t2 − t1) + α
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Applications: Linear Systems

∫ t2

t1

‖dA‖F is the total variation of A(·) over [t1, t2], defined via the

Frobenius norm.

Corollary 2 (qualitatively) matches the unified stability criteria for
slowly time-varying and switched linear systems proposed in [Gao et
al., 18]; see also [Pait and Kassab 01].
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Future Works

Bridging the stability results for slowly time-varying systems with
stable and unstable system dynamics at different frozen times, and
the switched systems with stable and unstable subsystems.

Extension to the case where the time-varying system admits a
time-varying equilibrium point on a manifold.
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