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Abstract— In this paper, we consider the concept of state-
norm estimators for switched nonlinear systems under average
dwell-time switching signals. State-norm estimators are closely
related to the concept of input/output-to-state stability (IOSS).
We show that if the average dwell-time is large enough, a non-
switched state-norm estimator for a switched system exists in
the case where each of its constituent subsystems is IOSS.
Furthermore, we show that a switched state-norm estimator,
consisting of two subsystems, exists for a switched system in
the case where only some of its constituent subsystems are IOSS
and others are not, provided that the average dwell-time is large
enough and the activation time of the non-IOSS subsystems is
not too large. In both cases, the stated sufficient conditions are
also sufficient for the switched system to be IOSS. For the case
where some subsystems are not IOSS, we also show that the
switched state-norm estimator can be constructed in such a way
that its switching times are independent of the switching times
of the switched system it is designed for.

I. INTRODUCTION

Switched systems consist of a family of dynamical sub-
systems, out of which one at a time is active as specified
by a switching signal. In recent years, various properties
of switched systems, especially stability issues, were exten-
sively studied in literature (see e.g. [1] and the references
therein). A well-known fact concerning switched systems is
that in general, properties of the single subsystems are not
necessarily inherited by the switched system. For example,
a switched system consisting of linear exponentially stable
subsystems might become unstable [1] if certain switching
laws are applied. For proving stability properties in the setup
of constrained switching, the concept of average dwell-time
switching signals, introduced in [2], has proved very useful;
this concept will also be used in this paper.

It is well known that state estimation is a very important
issue in control theory. In many applications, the full system
state is not available, but only certain outputs can be mea-
sured. Yet, for control purposes, often the full system state x
is needed, a problem which is tackled through the design of
observers which yield an estimate x̂ of the system state x
out of the observations of past inputs and outputs. However,
for continuous-time nonlinear systems, and even more for
switched nonlinear systems, the design of such observers
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is a challenging task far from being solved completely. On
the other hand, for some control purposes, it may suffice to
gain an estimate of the magnitude, i.e., the norm |x|, of the
system state x (see [3], [4] and the references therein). The
notion of such a state-norm estimator was introduced in [3]
for continuous-time nonlinear systems; furthermore, the close
relation of state-norm estimators to the input/output-to-state
stability (IOSS) property was pointed out. Namely, in [3]
and [4] it was shown that for continuous-time nonlinear
systems, the existence of an appropriately defined state-norm
estimator is equivalent to the system being IOSS (and also to
the existence of an IOSS-Lyapunov function for the system).
In [5], it was also shown how an estimate of the norm |x|
can be exploited in constructing an observer, which in turn
can be used for output feedback design to globally stabilize
the system [6]. The concept of state-norm estimators was
extended to switched systems in [7] for the case of arbitrary
switching and a common IOSS-Lyapunov function for the
switched system.

In this paper, we derive sufficient conditions for the ex-
istence of state-norm estimators for switched systems in the
setting of multiple IOSS-Lyapunov functions and constrained
switching. We consider both the cases where all of the
constituent subsystems are IOSS as well as where some of
the subsystems lack this property. In both cases, we show
how a state-norm estimator for the switched system can be
constructed. If all subsystems are IOSS, we can obtain a non-
switched state-norm estimator, whereas in the case where
also some non-IOSS subsystems are present, a switched
state-norm estimator can be constructed, consisting of one
stable and one unstable mode. It turns out that in the latter
case, the switched state-norm estimator can be constructed in
such a way that it exhibits the nice property that its switching
times are independent of the switching times of the switched
system it is designed for. As in the non-switched case, results
on state-norm estimators in the described setup for switched
systems are closely related to the IOSS concept. Of course,
due to our setup, here we cannot establish an equivalence
relationship between the existence of a state-norm estimator
and the existence of a (common) IOSS-Lyapunov function as
in [4] and [7]; but it turns out that under the same sufficient
conditions as stated in [8] in order to ensure that a switched
system is IOSS, also a state-norm estimator for this switched
system exists.

The remainder of this paper is structured as follows. In
Section II, we introduce notations and definitions needed
later on. Sections III and IV contain the main results of the
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paper illustrating how state-norm estimators can be obtained,
both for the cases where all of the subsystems are IOSS
(Section III) as well as where some of the subsystems lack
this property (Section IV). In Section V, some conclusions
are given.

II. PRELIMINARIES

Consider a family of systems

ẋ = fp(x, u)
y = hp(x)

p ∈ P (1)

where the state x ∈ Rn, the input u ∈ Rm, the output y ∈ Rl
and P is an index set. For every p ∈ P , fp(·, ·) is locally
Lipschitz, hp(·) is continuous and fp(0, 0) = hp(0) = 0. A
switched system

ẋ = fσ(x, u)
y = hσ(x)

(2)

is generated by the family of systems (1) and a switching
signal σ(·), where σ : [0,∞) → P is a piecewise constant,
right continuous function which specifies at each time t the
index of the active system.

According to [2] we say that a switching signal has
average dwell-time τa if there exist numbers N0, τa > 0
such that

∀T ≥ t ≥ 0 : Nσ(T, t) ≤ N0 +
T − t
τa

, (3)

where Nσ(T, t) is the number of switches occurring in the
interval (t, T ].

Denote the switching times in the interval (0, t] by
τ1, τ2, ..., τNσ(t,0) (by convention, τ0 := 0) and the index
of the system that is active in the interval [τi, τi+1) by pi.

The switched system (2) is input/output-to-state stable
(IOSS) [3] if there exist functions γ1, γ2 ∈ K∞ 1 and
β ∈ KL 2 such that for all x0 ∈ Rn and each input u(·), the
corresponding solution satisfies

|x(t)| ≤ β(|x0|, t) + γ1(‖u‖[0,t]) + γ2(‖y‖[0,t]) (4)

for all t ≥ 0, where ‖ · ‖J denotes the supremum norm on
an interval J . If no outputs are considered and equation (4)
holds for γ2 ≡ 0, then the system is said to be input-to-state
stable (ISS).

In the following, the notion of a state-norm estimator will
formally be introduced, which will be done in consistency
with [3].

Definition 1: Consider a system

ż = g(z, u, y) (5)

whose inputs are the input u and the output y of the switched
system (2). Denote by z(t) the solution trajectory of (5)

1A function α: [0,∞)→ [0,∞) is of class K if α is continuous, strictly
increasing, and α(0) = 0. If α is also unbounded, it is of class K∞.

2A function β: [0,∞) × [0,∞) → [0,∞) is of class KL if β(·, t) is
of class K for each fixed t ≥ 0, and β(r, t) decreases to 0 as t→∞ for
each fixed r ≥ 0.

starting at z0 at time t = 0. We say that (5) is a state-
norm estimator for the switched system (2) if the following
properties hold:

1) The system (5) is ISS with respect to (u, y).
2) There exist functions γ ∈ K and β ∈ KL such that,

for arbitrary initial states x0 for (2) and z0 for (5) and
each input u(·),

|x(t)| ≤ β(|x0|+ |z0|, t) + γ(|z(t)|) (6)

for all t ≥ 0. �

Definition 1 ensures that the norm of the switched system
state at time t, |x(t)|, can be bounded above by the norm of
the state-norm estimator at time t, |z(t)|, modulo a decaying
term of the initial conditions of the switched system and the
state-norm estimator. In this sense, (5) “estimates” the norm
of the switched system (2), and thus it is called a state-norm
estimator.

Remark 1: In [3], it was shown that for continuous-time
systems, the existence of a state-norm estimator according
to Definition 1 implies that the system is IOSS. This is
still the case if we consider switched systems, as the proof
works in the exact same way as for continuous-time, non-
switched systems. Thus, in the following, we concentrate on
establishing conditions under which a state-norm estimator
exists, and on how such a state-norm estimator can be
constructed.

III. STATE-NORM ESTIMATORS: ALL SUBSYSTEMS IOSS

In this section, the first main result will be stated and
proven, i.e., how and under what conditions a state-norm
estimator for a switched system can be constructed in the
case where all of the constituent subsystems are IOSS.

Theorem 1: Consider the family of systems (1). Suppose
there exist functions α1, α2, γ1, γ2 ∈ K∞, continuously
differentiable functions Vp : Rn → R and constants λs > 0,
µ ≥ 1 such that for all x ∈ Rn and all p, q ∈ P we have

α1(|x|) ≤ Vp(x) ≤ α2(|x|) (7)
∂Vp
∂x

fp(x, u) ≤ −λsVp(x) + γ1(|u|) + γ2(|hp(x)|) (8)

Vp(x) ≤ µVq(x). (9)

If σ is a switching signal with average dwell-time

τa >
lnµ
λs

, (10)

then there exists a (non-switched) state-norm estimator for
the switched system (2). A possible choice for such a state-
norm estimator is

ż(t) = −λ∗sz(t) + γ1(|u(t)|) + γ2(|y(t)|), z0 ≥ 0 (11)

for some λ∗s ∈ (0, λs).

Remark 2: The conditions in Theorem 1, i.e., (7) – (10),
are the same conditions under which it was proven in
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Theorem 1 in [8] that the switched system (2) is IOSS. In [8],
condition (8) was stated in a slightly different way, namely

|x| ≥ ϕ1(|u|) + ϕ2(|hp(x)|)

⇒ ∂Vp
∂x

fp(x, u) ≤ −λ̄sVp(x) (12)

for some ϕ1, ϕ2 ∈ K∞ and λ̄s > 0. However, these two
different formulations are equivalent ([4],[9]); here, we use
(8) instead of (12) as this formulation is better suited for
the proof later on. Furthermore, as stated in Remark 1, the
existence of a state-norm estimator for a system implies that
it is IOSS. Thus Theorem 1 can be seen as an alternative
way of establishing IOSS for the switched system (2), which
yields the nice “intermediate” result of obtaining a state-norm
estimator for the considered switched system.

Remark 3: Similar conditions to those in Theorem 1 are
quite common in the literature, when average dwell-time
switching signals are considered. Conditions (7) and (8) are
necessary and sufficient conditions for the subsystems to be
IOSS [4], and the function Vp is called an exponential decay
IOSS-Lyapunov function for the p-th subsystem [4]. Finally,
condition (9) ensures that the IOSS-Lyapunov function for
the different subsystems are somehow compatible; e.g., it
doesn’t hold if one of IOSS-Lyapunov functions is quadratic
and a different one quartic.

Remark 4: In Theorem 1 (and also the following The-
orems), for technical reasons in the proofs, we restrict the
initial condition of the state-norm estimator to be nonnega-
tive, whereas in Definition 1 we allow (in consistency with
[3]) the initial condition of the state-norm estimator to be
arbitrary. However, as we design the state-norm estimator
and thus can choose any initial condition we want, this is
not a major restriction.

Proof of Theorem 1: Consider as a candidate for a
state-norm estimator the system (11) with λ∗s ∈ (0, λs). In
the following, we have to verify that (11) satisfies the two
properties of Definition 1, namely that it is ISS with respect
to the inputs (u, y) and that (6) holds. It is easy to see that
(11) is ISS with respect to the inputs (u, y), as it is a linear,
exponentially stable system driven by these inputs. Thus it
remains to show that (6) holds.

Note that as γ1(|u|) + γ2(|y|) ≥ 0, we have

ż(t) ≥ −λ∗sz(t)

and thus, as z0 ≥ 0,

z(t) ≥ e−λ
∗
stz0 ≥ 0 (13)

for all t ≥ 0. Furthermore, for all 0 ≤ τi ≤ t we get

z(τi) ≤ eλ
∗
s(t−τi)z(t). (14)

Now consider the function W (t) := Vσ(t)(x(t))−z(t). Using
(8), (11), and (13), we obtain that in any interval [τi, τi+1),

Ẇ = V̇pi − ż ≤ −λsVpi + λ∗sz ≤ −λsVpi + λsz = −λsW

and thus

W (τi+1) = Vσ(τi+1)(x(τi+1))− z(τi+1)

≤ µVσ(τi)(x(τ−i+1))− z(τi+1)
= µW (τ−i+1) + (µ− 1)z(τi+1)

≤ µW (τi)e−λs(τi+1−τi) + (µ− 1)z(τi+1) (15)

Iterating (15) from i = 0 to i = Nσ(t, 0) and using (14), we
arrive at

W (t) = µNσ(t,0)
(
e−λstW (0)

+ (µ− 1)
Nσ(t,0)∑
k=1

µ−ke−λs(t−τk)z(τk)
)

≤ eNσ(t,0) lnµ−λstW (0)

+ (µ− 1)z(t)
Nσ(t,0)∑
k=1

e(Nσ(t,0)−k) lnµ−(λs−λ∗s)(t−τk)

(16)

Since Nσ(t, 0)− k = Nσ(t, τk), we get, using (3),

(Nσ(t, 0)− k) lnµ− (λs − λ∗s)(t− τk)
≤ Nσ(t, τk) lnµ− (λs − λ∗s)(t− τk)

≤
(
N0 +

t− τk
τa

)
lnµ− (λs − λ∗s)(t− τk)

≤ N0 lnµ− λ(t− τk) (17)

for some λ ∈ (0, λs − λ∗s) if the average dwell time τa
satisfies the bound

τa >
lnµ

λs − λ∗s
. (18)

The average dwell-time property (3) furthermore implies that

t− τk ≥ (Nσ(t, 0)− k −N0)τa. (19)

Combining (17) and (19) we arrive at
Nσ(t,0)∑
k=1

e(Nσ(t,0)−k) lnµ−(λs−λ∗s)(t−τk)

≤ eN0(lnµ+λτa)

Nσ(t,0)∑
k=1

e−λτa(Nσ(t,0)−k) =: a1.

Applying the index shift i := Nσ(t, 0)− k we obtain

a1 = eN0(lnµ+λτa)

Nσ(t,0)−1∑
i=0

e−λτai

≤ eN0(lnµ+λτa)
∞∑
i=0

e−λτai

= eN0(lnµ+λτa)
1

1− e−λτa
=: a2. (20)

Thus, by virtue of (16), we get

W (t) ≤ eNσ(t,0) lnµ−λstW (0) + (µ− 1)a2z(t)

= e(N0+
t
τa

) lnµ−λstW (0) + (µ− 1)a2z(t)

≤ µN0e−λ
′tW (0) + (µ− 1)a2z(t)
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for some λ′ ∈ (λ∗s, λs) if τa satisfies (18). This leads to

Vσ(t)(x(t)) ≤ (1 + a2(µ− 1))z(t)

+ µN0e−λ
′t(Vσ(0)(x0)− z0)

≤ (1 + a2(µ− 1))|z(t)|
+ 2µN0e−λ

′tα2(|x0|+ |z0|),

if we assume without loss of generality that α2(r) ≥ r for
all r ≥ 0. Using (7) again, we finally arrive at

|x(t)| ≤ α−1
1 (2(1 + a2(µ− 1))|z(t)|)

+ α−1
1 (4µN0e−λ

′tα2(|x0|+ |z0|))
=: γ(|z(t)|) + β(|x0|+ |z0|, t), (21)

which means that our state-norm estimator candidate (11)
satisfies the condition (6).

Concluding the proof, we note that as we can choose λ∗s
arbitrarily close to 0, we can choose it small enough such
that for any average dwell time τa satisfying (10), condition
(18) is also satisfied and thus a state-norm estimator for the
switched system (2) exists. �

Remark 5: If a state-norm estimator is constructed as
proposed in Theorem 1, a degree of freedom in the design is
the choice of λ∗s . The only restriction is that condition (18)
has to be satisfied, which, as stated in the last paragraph of
the proof, is always possible and gives an upper bound for
the values λ∗s can take. Choosing λ∗s as large as possible
would be desirable as the state-norm estimator (11) then has
a better convergence rate. However, if λ∗s is chosen close to
its largest possible value, i.e., such that (18) is only barely
satisfied, then (17) is only valid for λ very close to zero.
According to (20), this leads to a large value for a2, which
in turn implies that the gain γ in (21), with which |x| can
be bounded in terms of |z|, becomes also large, which is not
desirable. Thus a tradeoff for a good choice of λ∗s has to be
found.

IV. STATE-NORM ESTIMATORS: SOME SUBSYSTEMS NOT
IOSS

In the following, we will consider the case where some
of the subsystems of the family (1) are not IOSS, i.e., (8)
doesn’t hold for all p ∈ P , but only for a subset Ps of P .

Let P = Ps ∪ Pu such that Ps ∩ Pu = ∅. Denote by
Tu(t, τ) the total activation time of the systems in Pu and
by T s(t, τ) the total activation time of the systems in Ps
during the time interval [τ, t), where 0 ≤ τ ≤ t. Clearly,
T s(t, τ) = t− τ − Tu(t, τ).

A. Known switching times

In the following Theorem, we show that given certain
conditions hold, a state-norm estimator can be constructed
if the exact switching times between an IOSS and a non-
IOSS subsystem of (2) are known.

Theorem 2: Consider the family of systems (1). Let the
conditions (7) and (9) hold for all x ∈ Rn and all p, q ∈ P .

Furthermore, suppose there exist functions γ1, γ2 ∈ K∞ and
constants λs, λu > 0 such that

∂Vp
∂x

fp(x, u) ≤ −λsVp(x) + γ1(|u|) + γ2(|hp(x)|)
∀p ∈ Ps (22)

∂Vp
∂x

fp(x, u) ≤ λuVp(x) + γ1(|u|) + γ2(|hp(x)|)
∀p ∈ Pu (23)

for all x ∈ Rn.
If there exist constants T0, ρ ≥ 0 such that

ρ <
λs

λs + λu
(24)

∀ t ≥ τ ≥ 0 : Tu(t, τ) ≤ T0 + ρ(t− τ), (25)

and if σ(·) is a switching signal with average dwell-time

τa >
lnµ

λs(1− ρ)− λuρ
, (26)

then there exists a switched state-norm estimator ż =
gs(t)(z, u, y) for the switched system (2), consisting of two
subsystems, where s : [0,∞)→ {0, 1} is a switching signal
whose switching times are those switching times of σ where
a switch from a system in Ps to a system in Pu or vice versa
occurs. A possible choice for the two subsystems is

ż = g0(z, u, y) = −λ∗sz(t) + γ1(|u(t)|) + γ2(|y(t)|)
ż = g1(z, u, y) = λ∗uz(t) + γ1(|u(t)|) + γ2(|y(t)|)

(27)

with an appropriate choice of λ∗s ∈ (0, λs) and λ∗u ≥ λu.

Remark 6: Similarly to Remark 2, also for the case
where some of the subsystems are not IOSS it holds that the
conditions in Theorem 2 are the same conditions (modulo
a slightly different but equivalent formulation of (22)–(23)
as pointed out in Remark 2) under which it was proven
in Theorem 2 in [8] that the switched system (2) is IOSS.
Furthermore, the idea to restrict the fraction of time during
which the non-IOSS subsystems are active (through (24)–
(25)) was e.g. also used in [10] and [11], where stability
of switched systems consisting of both stable and unstable
subsystems was considered.

We will now proceed with the proof of Theorem 2. Note
that this proof follows the lines of the proof of Theorem 1.
However, as some of the subsystems are not IOSS, some
of the intermediate steps get more involved and are omitted
here for the sake of brevity.

Proof of Theorem 2: Consider as a candidate for a
switched state-norm estimator the system

ż = gs(t)(z, u, y), z0 ≥ 0, (28)

where the switching signal s(t) is defined by

s(t) =
{

0 if σ(t) ∈ Ps
1 if σ(t) ∈ Pu

(29)

and gi, i ∈ {0, 1} is the family of two systems (27) with
λ∗s ∈ (0, λs) and λ∗u ≥ λu.
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This means that the system (28) consists of a subsystem
ż = g0, which is ISS with respect to the inputs (u, y) and
which is active whenever one of the IOSS subsystems of (2)
is active, and an unstable subsystem ż = g1, which is active
whenever one of the non-IOSS subsystems of (2) is active.
Thus the switching times of s coincide with those switching
times of σ, where a switch from a subsystem in Ps to a
subsystem in Pu or vice versa occurs, and the activation time
of g1 in any interval [τ, t), denoted by Tuz (t, τ), is equal to
the activation time Tu(t, τ) of the non-IOSS subsystems of
the switched system (2) in this interval.

In the following, we have to verify that our state-norm
estimator candidate (28) satisfies the two properties of Def-
inition 1, namely that it is ISS with respect to the inputs
(u, y) and that (6) holds.

As stated in Remark 6, in [8] it was shown that the
first property is satisfied, i.e., the system (28) is ISS with
respect to the inputs (u, y), if the conditions of Theorem
2 are satisfied for the state-norm estimator candidate (28).
Choosing e.g. V0(z) = V1(z) =: V (z) = 1

2z
2, it is

straightforward to verify that this is the case if Tuz (t, τ)
satisfies (25) with ρ < λ∗s

λ∗s+λ
∗
u

, but with no further condition
on the average dwell time τza of the switching signal s, as
(26) yields τza > 0, or differently stated, V (z) is a common
ISS-Lyapunov function for the system (28).

It remains to show that our state-norm estimator candidate
(28) satisfies the second property of Definition 1, i.e., that
(6) holds.

As γ1(|u|) + γ2(|y|) ≥ 0, we have g0(z, u, y) ≥ −λ∗sz(t)
and g1(z, u, y) ≥ λ∗uz(t), and thus, as z0 ≥ 0, it holds
that z(t) ≥ e−λ

∗
sT

s(t,0)+λ∗uT
u(t,0)z0 ≥ 0 for all t ≥ 0.

Furthermore, for all 0 ≤ τi ≤ t, we get

z(τi) ≤ eλ
∗
sT

s(t,τi)−λ∗uT
u(t,τi)z(t). (30)

Note that (25) implies that

T s(t, τ) ≥ (1− ρ)(t− τ)− T0. (31)

Now consider the function W (t) := Vσ(t)(x(t)) − z(t).
Following the lines of the proof of Theorem 1, we get that
for any interval [τi, τi+1),

W (τi+1) ≤ µW (τi)e−λs(τi+1−τi) + (µ− 1)z(τi+1)
if s(t) = 0 in [τi, τi+1)

W (τi+1) ≤ µW (τi)eλu(τi+1−τi) + (µ− 1)z(τi+1)
if s(t) = 1 in [τi, τi+1)

Iterating this from i = 0 to i = Nσ(t, 0) and proceeding as
in the proof of Theorem 1, we arrive at

W (t) ≤ µN0e(λs+λu)T0W (0)e−λ
′t + b1z(t) (32)

for some constant b1 > 0, which can be calculated in a
similar way as a2 in (20), and some λ′ ∈ (λ∗s − ρ(λ∗s +
λ∗u), λs− ρ(λs + λu)), if the average dwell-time τa satisfies
the bound

τa >
lnµ

λs − ρ(λs + λu)−
[
λ∗s − ρ(λ∗s + λ∗u)

] . (33)

Note that if we choose λ∗s ∈ (0, λs) and λ∗u ≥ λu such that

ρ <
λ∗s

λ∗s + λ∗u
<

λs
λs + λu

, (34)

then the above given interval in which λ′ is contained is well
defined, i.e., λ∗s − ρ(λ∗s + λ∗u) < λs − ρ(λs + λu).

Following the final steps of the proof of Theorem 1, we
eventually arrive at

|x(t)| ≤ α−1
1 (2(1 + b1))|z(t)|)

+ α−1
1

(
4µN0e(λs+λu)τ0e−λ

′tα2(|x0|+ |z0|)
)

=: γ(|z(t)|) + β(|x0|+ |z0|, t), (35)

which means that our state-norm estimator candidate (28)
satisfies the condition (6).

Concluding the proof, we note that for any average dwell
time τa satisfying (26) and any ρ satisfying (24), we can
choose λ∗s ∈ (0, λs) and λ∗u ≥ λu such that the conditions
(33) and (34) are also satisfied, and thus a switched state-
norm estimator for the switched system (2) exists. �

Remark 7: Similar considerations as in Remark 5
apply to the choice of λ∗s ∈ (0, λs) and λ∗u ≥ λu, if a
state-norm estimator is constructed as proposed in Theorem
2. Namely, a tradeoff between a good convergence rate of
the state-norm estimator and a tighter gain γ, with which
|x| can be bounded in terms of |z|, has to be found.

B. Unknown switching times

The construction of the state-norm estimator in Theorem 2
requires the exact knowledge of the switching times of the
considered switched system (2), at least of those switching
times, where a switch from a subsystem in Ps to a subsys-
tem in Pu or vice versa occurs. This is a very restrictive
assumption, as the switching signal would have to be known
a priori or switches would somehow have to be detected
instantly. Thus, one would like to have some robustness in
the construction of the state-norm estimator with respect to
the knowledge of the switching times, i.e., that a state-norm
estimator can still be constructed if not the exact switching
times are known, but only small time intervals in which
the switching times lie. Even more desirable would be the
case where a state-norm estimator can be constructed with a
switching signal that is independent of the switching times
of the switched system the state-norm estimator is designed
for. Then, the only knowledge needed about the switching
signal σ of the switched system would be that it satisfies
some average dwell-time condition, but knowledge about the
(exact) switching times would not be needed.

In the following, we show that under the same conditions
as in Theorem 2, a state-norm estimator can be constructed
whose switching times are independent of the switching
times of σ. For the proof of this result, we exploit that a state-
norm estimator as proposed in Theorem 2, i.e., with (exact)
knowledge of the switching times of σ, exists; however, this
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knowledge is not needed for designing the switching signal
s′ of the proposed state-norm estimator.

Theorem 3: Let all the conditions of Theorem 2 hold.
Then there exists a switched state-norm estimator

ζ̇ = gs′(t)(ζ, u, y), ζ0 ≥ 0 (36)

for the switched system (2), consisting of two subsystems,
where s′ : [0,∞) → {0, 1} is a switching signal whose
switching times are independent of the switching times of σ.
As in Theorem 2, a possible choice for the two subsystems
of the state-norm estimator is given by (27). Furthermore, a
possible choice for the switching signal s′ is given by

s′(t) =
{

0 ∀t ∈ [kτ ζa , kτ
ζ
a + (1− ρζ)τ ζa )

1 ∀t ∈ [kτ ζa + (1− ρζ)τ ζa , (k + 1)τ ζa ) (37)

with k = 0, 1, 2, . . ., where the constants τ ζa > 0 and ρζ > 0
are chosen such that

ρ < ρζ <
λ∗s

λ∗s + λ∗u
, (38)

ρζτ ζa ≥ T0 + ρτ ζa . (39)

Due to space restrictions, a complete proof of Theorem 3
is omitted as it is quite long, but only the main ideas are
sketched. First, note that due to the choice of the switching
signal s′ (37), the activation time of g1 in any interval [τ, t),
denoted by Tuζ (t, τ), satisfies

Tuζ (t, τ) ≤ T ζ0 + ρζ(t− τ) (40)

with T ζ0 = ρζ(1−ρζ)τ ζa . Using the same argumentation as in
the proof of Theorem 2, we see that according to Remark 6,
the candidate state-norm estimator (36) is ISS with respect
to the inputs (u, y), i.e. the first property of Definition 1 is
satisfied.

In order to prove fulfilment of the second property of Defi-
nition 1, we compare the state-norm estimator candidate (36)
to the state-norm estimator (28) designed in the proof of
Theorem 2 with state z(t). Namely, if we can show that for
all t ≥ 0, it holds that

|z(t)| ≤ c|ζ(t)| (41)

for some constant c, then the second property of Definition 1
is also satisfied with |x(t)| ≤ β(|x0|+ c|ζ0|, t) + γ(c|ζ(t)|),
and thus the candidate (36) is also a state-norm estimator for
the switched system (2). To this end, note that according to
the choice of the switching signal s′ (37) and the constants τ ζa
and ρζ (38)–(39), it holds that in any interval of length τ ζa ,
the period of time during which ζ(t) is unstable (namely
Tuζ = ρζτ ζa according to (37)) is greater or equal than the
maximum unstable time of z(t) (Tuz ≤ T0 + ρτ ζa according
to (25)). With this we can prove that if for some integer k ≥ 0
it holds that |z(kτ ζa )| ≤ |ζ(kτ ζa )|, then also |z((k+ 1)τ ζa )| ≤
|ζ((k + 1)τ ζa )| and furthermore

|z(t)| ≤ c|ζ(t)|, kτ ζa ≤ t ≤ (k + 1)τ ζa (42)

for some c > 1. The desired result (41) then follows by
induction over k. �

Remark 8: As pointed out earlier, the state-norm estima-
tor proposed in Theorem 3 uses significantly less information
about the switched system (2) than the one proposed in
Theorem 2, as no knowledge of the exact switching times
of σ is required. On the other hand, this is achieved at the
price of a more conservative estimate for |x(t)|.

V. CONCLUSIONS

In this paper, we considered the concept of state-norm
estimators for switched nonlinear systems in the setting of
multiple IOSS-Lyapunov functions and constrained switch-
ing. We showed that there exists a non-switched state-norm
estimator if all subsystems of the considered switched system
are IOSS, whereas a switched state-norm estimator exists
for the case where some of the subsystems are not IOSS.
For the latter case, we showed that the switching signal
of the state-norm estimator can be designed such that its
switching times are independent of the switching times of the
considered switched system. The close connection of state-
norm estimators to the IOSS property was demonstrated by
the fact that the conditions under which the existence of a
state-norm estimator could be established turned out to be the
same conditions for which the considered switched system
is IOSS.
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