
Chapter 7
Observer Design for Switched Linear Systems
with State Jumps

Aneel Tanwani, Hyungbo Shim and Daniel Liberzon

Abstract An observer design for switched linear systems with state resets is
proposed based on the geometric conditions for large-time observability from our
recent work. Without assuming the observability of individual subsystems, the basic
idea is to combine the maximal information available from each mode to obtain a
good estimate of the state after a certain time interval (overwhich the switched system
is observable) has passed. We first study systems where state reset maps at switching
instants are invertible, in which case it is possible to collect all the observable and
unobservable information separately at one time instant. One can then annihilate the
unobservable component of all the modes and obtain an estimate of the state by intro-
ducing an error correction map at that time instant. However, for the systems with
non-invertible jump maps, this approach needs to be modified and a recursion-based
error correction scheme is proposed. In both approaches, the criterion for choosing
the output injection matrices is given, which leads to the asymptotic recovery of the
system state.

7.1 Introduction

State estimation in dynamical systems is one of the classical control-theoretic
problems that relates to constructing estimates of the state of the system using the
measurements of the inputs and outputs. This chapter studies the problem of state
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estimation for a class of hybrid systems characterized by linear continuous-time
dynamics, switching vector fields, and state jumps, which are described as

ẋ(t) = Aq x(t) + Bqu(t), t ∈ [tq−1, tq), (7.1a)

x(tq) = Gq x(t−q ) + Hqvq , (7.1b)

y(t) = Cq x(t) + Dqu(t), t ∈ [tq−1, tq) (7.1c)

where x : [t0,∞) → R
n is the state, y : [t0,∞) → R

y is the output, vi ∈
R
v and u : [t0,∞) → R

u are the inputs, and u is a measurable function. The
index q ∈ N determines the active subsystem over the interval [tq−1, tq) and the
system trajectories are right-continuous. It is assumed that there are a finite number
of switching times in any finite time interval, thus we rule out the Zeno phenomenon
in our problem formulation. The switching mode q ∈ N and the switching times
{tq} may be governed by a supervisory logic controller, or determined internally
depending on the system state, or considered as an external input. In any case, it is
assumed in this paper that the active subsystem and the switching times {tq} as well
are known. For estimation of the active subsystem, one may be referred to, e.g., [4,
6, 8, 18, 25, 26].

Over the past decade and a half, the structural properties of switched systems
have been investigated by many researchers and observability along with observer
construction has been one of them. For switched systems, observability can be studied
from various perspectives. If we allow for the use of the differential operator in the
observer, then it may be desirable to determine the state of the system instantaneously
from the measured output. This in turn requires each subsystem to be observable;
however, the problem becomes nontrivial when the switching signal is treated as
a discrete state and simultaneous recovery of the discrete and continuous state is
required for observability. Some results on this problem are published in [2, 5, 25].

On the other hand, with the knowledge of switching signal, even though the
subsystems at individual modes are not observable, it is possible to recover the initial
state x(t0) when the output is observed over an interval [t0, T ) that involves multiple
switching instants. This phenomenon is of particular interest for switched systems as
the notion of instantaneous observability and observability over an interval1 coincide
for linear time invariant systems. This variant of the observability in switched systems
has been studiedmost notably by [4, 9, 10, 17, 27], andwe refer the reader to Chap. 8
for more references on different notions of observability. The observer design has
also received some attention in the literature [1, 3, 13], where authors have assumed
that each mode in the system is in fact observable, hence admitting a state observer,
and have treated the switching as a source of perturbation effect. This approach
immediately incurs the need of a common Lyapunov function for the switched error
dynamics, or a fixed amount of dwell-time between switching instants, because it is
intrinsically a stability problem of the error dynamics.

1 See Definition 7.1 for precise meaning.

http://dx.doi.org/10.1007/978-3-319-10795-0_8
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The approach adopted for observer design in our work is based on the notion of
observability over an interval, and is conceptually similar to the work of [4]. This
relaxed notion of observability for switched systems does not require observability
of individual subsystems in the classical sense. As a result, one cannot simply take
the Luenberger observer for individual subsystem and work out the stability of the
error dynamics using slow switching, or commonLyapunov function approach. Since
the amount of observable information coming from different modes may vary, the
interesting aspect of this approach is to design an algorithm that recovers themaximal
possible information available from each mode and combines this information in an
appropriatemanner that results in an asymptotically converging state estimate. This is
the fundamental idea behind our recent papers on observer design for switched linear
systems [19, 20], switched nonlinear systems [14, 15], and systems with switched
linear differential-algebraic equations [22].

In this chapter, we address the problem of observer design in the context of
switched systemswith linear ordinarydifferential equations, and the technical content
is primarily based on our papers [19–21]. We focus only on the linear case because
this relatively simpler class of systems brings out our design methodology in the
most transparent manner. The construction of the observer is based on the necessary
and sufficient conditions of forward observability (see Definition 7.1), or what is
also called determinability in [17], and final-state observability in [16]. The detailed
treatment of this notion of observability is considered in Chap. 8 of this book, and
here in Sect. 7.2, for the sake of completeness, we will only recall the definition and
the related formulae that set-up the ground work for observer construction.

Section7.3 then considers the construction of the observers. The key idea is to
combine the partial information available from each mode and collect them at one
instant of time to get the estimate of the state at that time. We show that under
mild assumptions, such estimates converges to the actual state of the plant. More
emphasis will be given to the case when the individual modes of the system (7.1) are
not observable (in the classical sense of linear time-invariant systems theory) since
it is obvious that the system becomes immediately observable when the system is
switched to the observable mode. The distinct feature of our observer design is that
we do not inject error in the continuous dynamics of the proposed observer, but rather
apply the error correction at discrete switching instants. This way the state estimation
error may grow in between two consecutive switches, but the error correction terms
are designed in a manner such that the error eventually converges to zero. One can
already see that, in contrast to slow switching, our approach would work only if the
switching is persistent and the estimation gets better if the frequency of switching
is high since we can apply error corrections more often in that case. We basically
treat two different cases: in the first case [19, 20], we assume that all the jump maps
Gq are invertible, because it is relatively easier to do computations for this case. The
second case [21] allows for jump maps Gq to be non-invertible, but the calculations
are more involved in this case. As a result the error correction term in the later case
is computed using a recursion-based algorithm instead of a direct formula.

http://dx.doi.org/10.1007/978-3-319-10795-0_8
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In the end, we give some concluding remarks on how the ideas presented in this
paper have been applied to more general classes of switched systems, and where the
proposed observer has been applied in practice.

Notation: For a matrix A, R(A) denotes the column space (range space) of A.
The sum of two subspaces V1 and V2 is defined as V1 + V2 := {v1 + v2 : v1 ∈
V1, v2 ∈ V2}. For a possibly non-invertible matrix A, the pre-image of a subspace
V under A is given by A−1V = {x : Ax ∈ V }. Let ker A := A−1{0}; then it
is seen that A−1 ker C = ker(CA) for a matrix C . For convenience of notation,
let A−�V := (A�)−1V where A� is the transpose of A, and it is understood
that A−1

2 A−1
1 V = A−1

2 (A−1
1 V ). Also, we denote the products of matrices Ai as

∏k
i= j Ai := A j A j+1 . . . Ak when j < k, and

∏k
i= j Ai := A j A j−1 . . . Ak when

j > k. The notation col(A1, . . . ,Ak) means the vertical stack of matrices A1, . . .,
Ak , that is, [A�

1 , . . . , A�
k ]�.

7.2 Preliminaries: Observability Notion

As mentioned earlier, our observer design is based on geometric conditions for
forward observability. The related observability notions are treated in detail in this
chapter. For the sake of completeness, here we recall the definition, and the related
formulae that will be used in the design of observer. The notion of observability that
we consider is formulated as follows:

Definition 7.1 (Forward observability) The system (7.1) is said to be forward
observable if, and only if, for every pair of solutions (u1, v1, y1, x1), (u2, v2, y2, x2),
there exists T > t0, such that the following implication holds:

(u1, v1, y1) = (u2, v2, y2) ⇒ x1[T,∞) = x2[T,∞)

where xi
[T,∞), i = 1, 2, denotes the restriction of xi over the interval [T,∞).

Since the value of the state at time T , x(T ), and the inputs (u, v) uniquely
determine x on [T,∞) through the Eq. (7.1), forward observability is achieved if
and only if x(T ), for some T > t0, is uniquely determined by the inputs and the
output. In case, all the jump maps are invertible, one can, in theory, recover x(t0)
from the knowledge of x(T ) and in that case forward observability implies global
(in time) observability. However, if the state reset maps Gq are not invertible, then
the two notions may not coincide. We refer the reader to Chap. 8 for more details
and examples related to this issue.

7.2.1 Characterization of Forward Observability

Roughly speaking, the switched system (7.1) is forward observable in the sense of
Definition 7.1 if there exists m ∈ N such that x(tm) could be determined from the

http://dx.doi.org/10.1007/978-3-319-10795-0_8
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knowledge of external signals (u, v, y)measured over the interval [t0, tm+1). Because
x(t−m+1) = eAm+1(tm+1−tm )x(tm), uncertainty in the knowledge of x(tm) and x(t−m+1)

is the same, so that, recovering x(tm) is equivalent to recovering x(t−m+1). We now
proceed toward quantifying the unknown information about the state using the mea-
surements of (u, v, y) over a certain interval. Since Definition 7.1 does not require
individual subsystems to be observable, the basic idea in formulating the geometric
conditions that quantify the unknown information is to characterize howmuch infor-
mation could be extracted from each subsystem about the state by measuring the
output over a certain interval. To do so, it is seen that system (7.1) is an LTI system
between two consecutive switching times, so that its unobservable subspace on the
interval [tq−1, tq) is simply given by the largest Aq -invariant subspace contained in
ker Cq , i.e., ker Oq where

Oq := col(Cq , Cq Aq , . . . , Cq An−1
q ).

For system (7.1), let N m
q be the subspace such that x(t−m ) is determined modulo

N m
q using the knowledge of external signals (u, v, y) over the interval [tq−1, tm).

We callN m
q the unobservable subspace for [tq−1, tm) and compute it recursively as

follows, for q ≥ 1:

N
q

q := ker Oq

N k
q := ker Ok ∩ Gk−1eAk−1τk−1N k−1

q , q + 1 ≤ k ≤ m, (7.2)

where τk := tk − tk−1.
An alternative dual characterization of forward observability is possible by

inspecting whether the complete state information is available. This is achieved
in terms of the observable subspace Qm

q , defined in this chapter as the orthogonal
complement of N m

q . It is noted that a recursive expression for Qm
q is given by

Q
q
q = R(O�

q )

Qk
q = G−�

k−1e−A�
k−1τk−1Qk−1

q + R(O�
k ), q + 1 ≤ k ≤ m.

(7.3)

We characterize the observability of system (7.1) using these subspaces in the fol-
lowing result, which is essentially a restatement of [20, Theorem 2]:

Theorem 7.2 (Forward observability characterization) Consider the switched sys-
tem (7.1) with (u, v) ≡ 0. Then, N m

q for some m ≥ q ≥ 1 characterizes the
unobservable space in the following sense:

y[tq−1,tm ) ≡ 0 ⇔ x(tm−1) ∈ N m
q .

In particular, if there exists m ≥ q such that N m
q = {0}, or equivalently Qm

q = R
n,

then the state x(tm−1) (and hence the complete future trajectory) can be determined
from the knowledge of (u, v, y) on the interval [tq−1, tm).
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We are often interested in deriving a direct formula forQm
q instead of the recursive

one given in (7.2). For that, let us consider the matrix

Φk
j = Gk−1eAk−1τk−1 . . . G j e

A j τ j , k > j

which defines the flow of system (7.1) with zero inputs from t j−1 to tk−1, and assume
that, for k ≥ q + 2, i = 1, 2, . . . , k − q − 1, q ∈ N, the following condition holds2:

Φk
k−i (ker Ok−i ∩ Φk−i

k−i−1N
k−i−1

q ) = Φk
k−i ker Ok−i ∩ Φk

k−i−1N
k−i−1

q . (7.4)

It is readily checked that, if (7.4) holds, then the sequential definition (7.2) leads to
another equivalent expression forN m

q , m ≥ q ≥ 1, given by:

N m
q =

⋂

j=m,...,q

Φm
j ker O j

= ker Om ∩ Gm−1 ker(Om−1) ∩
⎛

⎝
m−2⋂

i=q

i+1∏

l=m−1

Gle
Alτl Gi ker Oi

⎞

⎠ ,

(7.5)

where Φk
k denotes the identity matrix, and we used the fact that eA j τ j ker G j =

ker G j . Condition (7.4) indeed holdswhen each of thematrixGq , q ∈ N, is invertible
because in that case the mapping Φk

j , for all j, k ∈ N, k > j , is invertible.
Similarly, when (7.4) holds, Qm

q in (7.3) is equivalently expressed as:

Qm
q =(N m

q )⊥

=
m−2∑

i=q

i+1∏

l=m−1

G−�
l e−A�

l τl G−�
i R(O�

i ) + G−�
m−1R(O�

m−1) + R(O�
m ). (7.6)

7.3 Observer Design

Using the geometric conditions for forward observability stated in the previous
section, we now proceed to design an observer. Our proposed observer is given
by:

˙̂x(t) = Aq x̂(t) + Bqu(t), t ∈ [tq−1, tq), (7.7a)

x̂(tq) = Gq(x̂(t−q ) − ξq) + Hqvq , (7.7b)

2 Note that, A(V1 ∩ V1) ⊂ AV1 ∩ AV2, and the equality does not hold in general. The necessary
and sufficient condition for equality to hold is that (V1 + V2) ∩ ker A = V1 ∩ ker A + V2 ∩ ker A,
which is the case when A is invertible. For systems with non-invertible jump maps, the flow matrix
Φ

j
i is not necessarily invertible and (7.4) does not hold in general.
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with an arbitrary initial condition x̂(t0) ∈ R
n and the expression for ξq will be

computed in the sequel. It is seen that the observer consists of a system copy and
unlike classicalmethodswhere the continuous dynamics of the estimate are driven by
an error injection term, the observer (7.7) updates the state estimate only at discrete
switching instants by an error correction vector ξq . If for some q ∈ N, ξq equals the
state estimation error x̂(t−q )− x(t−q ), then the Eq. (7.7) gives x̂(tq) = x(tq), and from
then onward we can recover the exact value of the trajectory x . However, in practice,
where we do not use the derivatives of the output, it is not easy to recover the exact
value of the state estimation error. Thus, our goal is to compute ξq , for each q ∈ N,
such that it approximates the value of state estimation error at time t−q , which will
result in x̂(t) converging to x(t) as t increases.

With this motivation, we introduce the state estimation error x̃ := x̂ − x , and the
error dynamics are given by

˙̃x(t) = Aq x̃(t), t ∈ [tq−1, tq), (7.8a)

x̃(tq) = Gq(x̃(t−q ) − ξq). (7.8b)

The corresponding output error is defined as

ỹ(t) := Cq x̂(t) + Dqu(t) − y(t) = Cq x̃(t), t ∈ [tq−1, tq).

The basic idea in computing ξq is to

• Firstly, identify the observable components of the individual subsystems that can
be estimated using classical state-estimation techniques. For subsystem q ∈ N, let
zq ∈ R(O�

q ) denote the vector of such observable component.
• Secondly, derive an equation for x̃(t−q ) of the form3

x̃(t−q ) = Ξq(zq , zq−1, . . . , zq−m∗ , ξq−1, . . . , ξq−m∗) (7.9)

for some m∗ ∈ N.
• Finally, let

ξq = Ξq(ẑq , ẑq−1, . . . , ẑq−m∗ , ξq−1, . . . , ξq−m∗). (7.10)

We will develop calculations for each of the aforementioned steps in detail and
arrive at a formal statement on error convergence that results from the observer. To
do that, we need to introduce some assumptions that allow us to follow this proposed
line of thought.

3 With slight abuse of notation, the vectors z j in (7.9) will be replaced by z j (t
−
j ), so that the

notation z j will be used to denote a function.
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The identification of observable components in the first step could be achieved
easily by Kalman-like decomposition without imposing any constraints on system
structure. For the second step, however, where we want to write x̃(t−q ), for each
q ∈ N, in terms of the observable components of the currently active mode and some
past modes, we need the following assumption on the switching signal and system
dynamics:

Assumption 7.3 The switched system (7.1) is persistently forward observable in
the sense that there exists an m∗ ∈ N such that

dimQ
q
q−m∗ = n, ∀ q ≥ m∗ + 1. (7.11)

The integer m∗ in Assumption 7.3 is interpreted as the minimal number of switches
required to gain forward observability.

For the third step, it is seen that if ẑq closely approximates zq , and Ξq is globally
Lipschitz (in our calculations, it will be linear), then it follows from (7.8) that the
norm of the state estimation error at switching instants x̃(tq) becomes small. Since
there is no error correction between the switching instants, it is important to update
the estimate repeatedly for asymptotic convergence and also make sure that the error
does not get arbitrarily large between the two switching instants. This motivates us
to introduce the following assumptions for our observer design:

Assumption 7.4 The switching is persistent in the sense that a switch occurs at least
once in any time interval of length D; that is,

tq − tq−1 < D, ∀ q ∈ N. (7.12)

Assumption 7.5 The inducedmatrix norms ‖Aq‖ and ‖Gq‖ are uniformly bounded
for all q ∈ N.

Note that Assumption 7.5 holds when Aq , Gq belong to a set of finite elements.
Assumption 7.4 is in contrast to the conditions proposed for observer designs in [1]
in the sense that we require the switching to be sufficiently fast and not too slow. This
is not surprising because the works like [1] assume the observability of individual
modes, so that the resulting error dynamics are stable for each subsystem, and a
result on stability of switched systems with slow switching could be invoked [7] to
show error convergence. In our work, however, since the individual subsystems are
not assumed to observable, so that the resulting error dynamics for a particular mode
are not necessarily stable, we need to switch fast enough between the unstable (or,
partly stable) switched systems to obtain error convergence.

In the remainder of this section, the above thought process is formalized by follow-
ing the steps outlined earlier to compute the correction vector ξq . The identification
of observable components for individual subsystems is carried out in Sect. 7.3.1. For
the computation of the map Ξq , we will discuss two cases separately: in the first
case, we assume that all the jump maps Gq , q ∈ N, are invertible and in the second
case, we allow for non-invertible jump maps. For each of these cases, we show that
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the resulting state estimation error converges to zero (Theorems 7.6 and 7.7, respec-
tively) if the observable components are estimated accurately enough. Followed by
the theorem statements, we will arrive at a specific criteria for obtaining the estimates
by carrying out the error analysis for each case. Our computations are summed up
in Algorithm 7.1 (for invertible jump maps) and Algorithm 7.2 (for non-invertible
jump maps).

7.3.1 Observability Decomposition of Error Dynamics

As a first step in computing ξq , q ∈ N, we want to write x̃ in terms of observable
components of individual subsystems. To do that, we first find a coordinate change for
eachmode, similar to theKalmandecomposition. For eachq ∈ N, choose amatrix Zq

such that its columns are an orthonormal basis ofR(O�
q ), so thatR(Zq) = R(O�

q ).
Similarly, choose a matrix Wq such that its columns are an orthonormal basis of
ker Oq . From the construction, there are matrices Sq ∈ R

rq×rq and Rq ∈ R
y×rq ,

where rq = rankOq , such that Z�
q Aq = Sq Z�

q and Cq = Rq Z�
q , and that the pair

(Sq , Rq) is observable. Let zq := Z�
q x̃ ∈ R

rq and wq := W �
q x̃ ∈ R

n−rq . So, for the
interval [tq−1, tq), we obtain,

żq = Z�
q Aq x̃ = Sq zq , ỹ = Cq x̃ = Rq zq , (7.13a)

zq(tq−1) = Z�
q x̃(tq−1). (7.13b)

Since zq is observable over the interval [tq−1, tq), a standard Luenberger observer is
designed as

˙̂zq = Sq ẑq + Lq(ỹ − Rq ẑq), t ∈ [tq−1, tq), (7.14a)

ẑq(tq−1) = 0, (7.14b)

whose role is to estimate zq(t−q ) at the end of the interval. Note that we have fixed
the initial condition of the estimator to be zero for each interval. A consequence of
introducing the observable and unobservable components is that the vector x̃(t−q )

can be written as,

x̃(t−q ) =
[

Z�
q

W �
q

]−1 [
zq(t−q )

wq(t−q )

]

= Zq zq(t−q ) + Wqwq(t−q ), (7.15)

wherewq(t−q ) on the right-hand side remains unknown. Our objective now is to write
x̃(t−q ) only in terms of known or recoverable quantities, that is, only as a function of

the vectors z j (t
−
j ), j = q, q − 1, . . . , q − m∗, and ξk , k = q − 1, . . . , q − m∗, for

m∗ given in Assumption 7.3. The calculations for arriving at such a formula for the
general case are given in Sect. 7.3.3, but for the case when all jumps are invertible,
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one can derive a simpler formula. Because of simplicity, and to give an intuition
about the calculations leading up to the computable expression for ξq , we choose to
treat the case with invertible jumps first in the following section.

7.3.2 Error Correction with Invertible State Reset Maps

The goal of this subsection is to derive an expression of the form (7.9) when the jump
maps Gq are invertible. For that, we first define the state-flow matrix Ψ

q
p , p, q ∈ N,

p < q, as

Ψ
q
p := eAqτq GqeAq−1τq−1Gq−1, . . . , eAp+1τp+1G p,

which transports x̃(t−p ) to x̃(t−q ) along (7.8) by

x̃(t−q ) = Ψ
q
p x̃(t−p ) −

q−1∑

k=p

Ψ
q
k ξk, (7.16)

where for convenience, we let Ψ
q
q to be the identity matrix. For q > m∗, we now

have the following series of equivalent expressions for x̃(t−q ):

x̃(t−q ) = Zq zq(t−q ) + Wqwq(t−q )

= Ψ
q
q−1Zq−1zq−1(t

−
q−1) + Ψ

q
q−1Wq−1wq−1(t

−
q−1) − Ψ

q
q−1ξq−1

= Ψ
q
q−2Zq−2zq−2(t

−
q−2) + Ψ

q
q−2Wq−2wq−2(t

−
q−2) −

2∑

k=1

Ψ
q
q−kξq−k

...

= Ψ
q
q−m∗ Zq−m∗ zq−m∗(t−q−m∗) + Ψ

q
q−m∗ Wq−m∗wq−m∗(t−q−m∗) −

q−1∑

k=q−m∗
Ψ

q
k ξk .

(7.17)

In these equations, the vector x̃(t−q ) is not only expressed in terms of the observable
and unobservable components of mode q ∈ N, but also those of previously active
q − m∗ modes. In other words, for each q − m∗ ≤ k ≤ q, the term Ψ

q
k Zk zk(t

−
k )

transports the observable information of the kth mode from the interval [tk−1, tk)
to the time instant t−q . However, in each equation, there is an added unknown term

wk(t
−
k ). Thus, in order to obtain an explicit expression for x̃(t−q ) in terms of zk ,

k = q, q − 1, . . . , q − m∗, we must

• first, eliminate wk(t
−
k ) from each equation in (7.17), and
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• secondly, make sure that the resulting set of equations is not under-determined
with x̃(t−q ) as the unknown.

To achieve the first objective, we introduce the matrices Θ
q
k whose columns form

the basis of the subspace R(Ψ
q
k Wk)

⊥; that is,

R(Θ
q
k ) = R(Ψ

q
k Wk)

⊥, k = q − m∗, . . . , q.

Then, for each equality in (7.17), we obtain the relation

Θ
q
k

�
x̃(t−q ) = Θ

q
k

�
⎛

⎝Ψ
q
k Zk zk(t

−
k ) −

q−1∑

j=k

Ψ
q
j ξ j

⎞

⎠ , k = q − m∗, . . . , q. (7.18)

It now follows that if the matrix

Θ�
q := col(Θq�

q ,Θ
q�
q−1, . . . , Θ

q�
q−m∗)

has full column rank equal to n, then the set of equations (7.18) can be solved
for x̃(t−q ). It can be shown that the matrix Θq , q > m∗, has rank n if, and only if,
Assumption 7.3 holds. Indeed,Θ�

q has full column rank n if, and only if, ker(Θ�
q ) =

{0}, or equivalently,

R(Θ
q
q ) + R(Θ

q
q−1) + · · · + R(Θ

q
q−m∗) = R

n.

Using the fact that R(Wk)
⊥ = (ker Ok)

⊥ = R(O�
k ), e−A�

k τkR(O�
k ) = R(O�

k ),
and the expression (7.6), it follows under Assumption 7.3 that

R(Wq)⊥ + R(Ψ
q
q−1Wq−1)

⊥ + · · · + R(Ψ
q
q−m∗ Wq−m∗)⊥

= e−A�
q τq

(
R(O�

q ) + G−�
q−1R(O�

q−1) +
q−2∑

i=q−m∗

i+1∏

l=q−1

G−�
l e−A�

l τl G−�
i R(O�

i )
)

= e−A�
q τqQ

q
q−m∗ = R

n,

(7.19)
where we recall from Sect. 7.2.1 that the second to last equality only holds when the
jumpmaps Gq are invertible. Thus, the matrixΘ�

q is left-invertible, so that (Θ�
q )† =

(ΘqΘ�
q )−1Θq , where † denotes the left-pseudo-inverse. Let us now introduce the

matrix

Ω
q
q−m∗ :=

⎡

⎢
⎢
⎢
⎣

Θ
q�
q Ψ

q
q Zq zq(t−q )

...

Θ
q�
q−m∗

(
Ψ

q
q−m∗ Zq−m∗ zq−m∗(t−q−m∗) −∑q−1

l=q−m∗ Ψ
q
l ξl

)

⎤

⎥
⎥
⎥
⎦

,
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so that the arguments of the matrix Ω
q
q−m∗ are zq(t−q ), zq−1(t

−
q−1), . . . , zq−m∗(t−q−m∗)

and ξq−1, . . . , ξq−m∗ . It then follows that

x̃(t−q ) = (Θ�
q )†Ω

q
q−m∗(zq(t−q ), . . . , zq−m∗(t−q−m∗), ξq−1, . . . , ξq−m∗)

=: Ξq(zq(t−q ), . . . , zq−m∗(t−q−m∗), ξq−1, . . . , ξq−m∗). (7.20)

Once again, it is seen from (7.20) that, if we can estimate zk(t
−
k ), k = q − m∗,

. . . , q, without error, then by (7.20) the plant state x(t−q ) is exactly recovered because
x(t−q ) = x̂(t−q )− x̃(t−q ), and both entities on the right side of the equation are known.
However, since this is not the case, we set ξq to be an estimate of x̃(t−q ) through

ξq = Ξq(ẑq(t−q ), ẑq−1(t
−
q−1), . . . , ẑq−m∗(t−q−m∗), ξq−1, . . . , ξq−m∗), q > m∗

(7.21)

and for 1 ≤ q ≤ m∗, we let ξq = 0. The following theorem now states that if the
estimates used in (7.21) are good enough, then the resulting estimate converges to
the actual state asymptotically.

Theorem 7.6 Consider the observer proposed in (7.7) under Assumptions 7.3–7.5
and also assume that the jump maps Gq, q ∈ N, are invertible. If the error correction
vector ξq is computed using (7.21) in which ẑ j , j = q, . . . , q −m∗ are obtained from
the Luenberger observers (7.14), then the output injection gains L j in (7.14) can be
chosen such that

lim
t→∞ |x̂(t) − x(t)| = 0.

To complete the design procedure, we need to choose the gainmatrices Lq , q ∈ N.
This is done in Sect. 7.3.2.1, where we analyze the state estimation error resulting
from injecting the expression for ξq from (7.21) in Eq. (7.8).

7.3.2.1 Error Analysis and Gain Criterion

The gain matrices Lq , q ∈ N, are basically chosen such that x̃(tq) converges to zero
as q increases, because it follows from (7.8) and Assumptions 7.4 and 7.5 that the
estimation error x̃(t) for the interval [tq , tq+1) is bounded by

|x̃(t)| = |eAq+1t x̃(tq)| ≤ ea(t−tq )|x̃(tq)|

with constant a such that ‖Aq‖ ≤ a, and thus,

|x̃(t)| ≤ ea D|x̃(tq)|.
Therefore, if |x̃(tq)| → 0 as q → ∞, then we achieve that

lim
t→∞ |x̃(t)| = 0. (7.22)
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Since the operator Ω
q
q−m∗ is linear in its arguments, it is noted that,

x̃(tq) = Gq(x̃(t−q ) − ξq) (7.23a)

= Gq

(
Ξq(zq(t−q ), . . . , zq−m∗(t−q−m∗), ξq−1, . . . , ξq−m∗)

− Ξq(ẑq(t−q ), . . . , ẑq−m∗(t−q−m∗), ξq−1, . . . , ξ
−
q−m∗)

)
(7.23b)

= −Gq(Θ�
q )†Ω

q
q−m∗(z̃q(t−q ), . . . , z̃q−m∗(t−q−m∗), 0, . . . , 0) (7.23c)

where z̃ j := ẑ j − z j , j = q, . . . , q − m∗. It follows from (7.13) and (7.14) that

z̃ j (t j−1) = ẑ j (t j−1) − z j (t j−1) = 0 − Z�
j x̃(t j−1),

and

z̃ j (t
−
j ) = e(S j −L j R j )τ j z̃ j (t j−1) = −e(S j −L j R j )τ j Z�

j x̃(t j−1).

Plugging this expression in (7.23), and introducing the matrices Mq
j , for j =

q, q − 1, . . . , q − m∗, as follows:

[Mq
q , Mq

q−1, . . . , Mq
q−m∗ ] :=Gq(Θ�

q )†×
blockdiag

(
Θ

q�
q Ψ

q
q ,Θ

q�
q−1Ψ

q
q−1, . . . , Θ

q�
q−m∗Ψ

q
q−m∗

)
,

(7.24)

we obtain

x̃(tq) =
q∑

j=q−m∗
Mq

j Z j e
(S j −L j R j )τ j Z�

j x̃(t j−1), (7.25)

where we note that the argument of every n× n matrix Mq
j , j = q − m∗, · · · , q, is

the vector (τq , . . . , τq−m∗+1) because of the matrices Ψ
q
j in the definition.

In order to bound the norm of x̃(tq), one can always find the constants α j , γ j > 0
such that ‖Z j e(S j −L j R j )τ j Z�

j ‖ ≤ α j e−γ j τ j . With constants λ
q
j > 0 denoting the

induced norm of Mq
j , we get

|x̃(tq)| ≤
q∑

j=q−m∗
λ

q
j α j e

−γ j τ j |x̃(t j−1)|. (7.26)

If for each q > m∗, and j = q − m∗, . . . , q, the gains L j are chosen such that

λ
q
j α j e

−γ j τ j ≤ c <
1

m∗ + 1
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(such a choice is always feasible [12, Lemma 1]), then

|x̃(tq)| < c
q∑

j=q−m∗
|x̃(t j−1)|.

One can now use [19, Lemma 1] to conclude that limq→∞ |x̃(tq)| = 0.

Algorithm 7.1 Implementation of hybrid observer for invertible jump maps
Require: u, v, y
Ensure: Run (7.7) for t ∈ [t0, tm∗+1) with some x̂(t0)
1: for all q ≥ m∗ + 1 do
2: for j = q − m∗ to q do
3: Compute the injection gain L j such that

‖Mq
j Z j e

(S j −L j R j )τ j Z�
j ‖ ≤ c <

1

m∗ + 1
. (7.27)

4: Obtain ẑ j (t
−
j ) by running the individual observer (7.14) for the j-th mode.

5: end for
6: Compute ξq from (7.21) , to implement (7.7).
7: Compute x̂(tq ) using (7.7) and run (7.7) over the interval [tq , tq+1).

8: end for

7.3.3 Error Correction for Non-invertible State Reset Maps

The formula for ξq computed in Sect. 7.3.2 is only valid for the case of invertible
jump maps. To derive a more general formula, which is also valid for the case of
non-invertible jumpmaps, we basically follow the same procedure but the details are
slightly more involved.

For p, q ∈ N with p < q, let Qq
p and N q

p be matrices such that their columns are

an orthonormal basis of e−A�
q τqQq

p and eAqτqN q
p , respectively. The corresponding

projections of x̃(t−q ) onto these subspaces are defined by letting χ
q
p := Qq�

p x̃(t−q )

and ν
q
p := N q�

p x̃(t−q ). Thus, it is seen that in addition to (7.15), another way of
expressing x̃(t−q ) is:

x̃(t−q ) =
[

Qq�
p

N q�
p

]−1 [
χ

q
p

ν
q
p

]

= Qq
pχ

q
p + N q

pν
q
p. (7.28)

The definition of χ
q
p implies that it contains the information of the error x̃(t−q ),

which we are able to extract from the output on the interval [tp−1, tq) as given by the
observability space Qq

p. For q > m∗, the forward observability assumption ensures
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that χ
q
q−m∗ contains all information of x̃(t−q ); in fact Qq

q−m∗ is then an invertible

matrix, and hence the equation χ
q
q−m∗ = Qq �

q−m∗ x̃(t−q ) is uniquely solvable for x̃(t−q ).
Thus, once again we are interested in representing x̃(t−q ) only in terms of

the known vectors χ
q
j , and eliminate its dependency over the terms involving

ν
q
j , j = q, q − 1, . . . , q − m∗. For that, we once again introduce the matrix Θ

q
p

whose columns form the basis of the subspace R(eAq+1τq+1Gq N q
p )⊥; that is,

Θ
q
p
�

eAq+1τq+1Gq N q
p = 0. (7.29)

Compared to the case treated earlier, the key difference is that we do not transport
the observable components of the individual subsystems to one time instant through
the state-transition matrix. Instead, we gather all the observable information for
x̃(t−q−1) over the interval [tp−1, tq−1) into the vector χ

q−1
p , p < q, and combine it

with the local observability information zq(t−q ) for x̃(t−q ) obtained on the interval
[tq−1, tq) in order to recover more information for x̃(t−q ), represented by χ

q
p . For

that, the following relationship between x̃(t−q ) and χ
q−1
p , p < q, is crucial:

x̃(t−q ) = eAqτq Gq−1(x̃(t−q−1) − ξq−1)

= eAqτq Gq−1

(
Qq−1

p χ
q−1
p + N q−1

p ν
q−1
p − ξq−1

)
. (7.30)

Combining this with (7.15) we obtain

(
Z�

q

Θ
q−1
p

�

)

x̃(t−q ) =
(

zq(t−q )

Θ
q−1
p

� (
eAqτq Gq−1

(
Qq−1

p χ
q−1
p − ξq−1

))

)

,

and hence we have more information about x̃(t−q ) by combining zq(t−q ) and χ
q−1
p

accordingly. Now, consider a full column rank matrix U q
p such that

[Zq ,Θ
q−1
p ]U q

p = Qq
p.

Such a matrix always exists because from the definition of Qq
p and Zq , we have

R(Qq
p) = R([Zq ,Θ

q−1
p ]).

From χ
q
p = Qq

p
�

x̃(t−q ), it now follows that

χ
q
p = U q

p
�
[

Z�
q

Θ
q−1
p

�

]

x̃(t−q )
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= U q
p
�
(

zq(t−q )

Θ
q−1
p

� (
eAqτq Gq−1

(
Qq−1

p χ
q−1
p − ξq−1

))

)

(7.31)

= U q
p
�
[

Z�
q 0

0 Θ
q−1
p

�
eAqτq Gq−1

](
Zq zq(t−q )

Qq−1
p χ

q−1
p − ξq−1

)

(7.32)

� J q
p Zq zq + K q

p

(
Qq−1

p χ
q−1
p − ξq−1

)
. (7.33)

Note that (7.32) expresses the vector χ
q
p recursively in terms of χ

q−1
p . Recall that

Q
p
p = R(O�

p )⊥ = R(Z p), hence we can assume Q p
p = Z p and we have the “initial

value” for the recursion (7.32) given by χ
p
p = z p.

If zq−m∗ , . . . , zq were known, then we would be able to compute the error x̃(t−q )

exactly and would pick ξq = x̃(t−q ). Since this is not the case, we work with the
estimates ẑq−m∗ , . . . , ẑq to compute ξq .

In summary, having introduced the matrices Zq as in (7.15), Qq
p as in (7.28), and

Θ
q
p as in (7.29), for q ∈ N, we let

ξq =
{
0, 1 ≤ q ≤ m∗
Qq

q−m∗ χ̂
q
q−m∗ , q ≥ m∗ + 1 (7.34)

where χ̂
q−k
q−m∗ , for k = m∗ − 1, . . . , 0, is computed recursively as follows:

χ̂
q−m∗
q−m∗ = ẑq−m∗

χ̂
q−k
q−m∗ = J q−k

q−m∗ Zq−k ẑq−k + K q−k
q−m∗

(
Qq−k−1

q−m∗ χ̂
q−k−1
q−m∗ − ξq−k−1

)
,

(7.35)

and

[J q−k
q−m∗ , K q−k

q−m∗ ] := U q−k
q−m∗

�
[

Z�
q−k 0

0 Θ
q−k−1
q−m∗

�
eAq−kτq−k Gq−k−1

]

. (7.36)

Using the formula for ξq in (7.34), we can again state a result very similar to
Theorem 7.6, but this time we do not place any constraints on the jump maps.

Theorem 7.7 Consider observer (7.7) under Assumptions 7.3–7.5. If the error cor-
rection vector ξq is computed using (7.34) in which χ̂

q
q−m∗ is computed in a recursive

manner from Eqs. (7.35) and (7.36), then the output injection gains L j in (7.14) can
be chosen such that

lim
t→∞ |x̂(t) − x(t)| = 0.
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It just remains to show howwell χ̂q
q−m∗ should approximate χ

q
q−m∗ by appropriate

choice of gains L j , j ∈ N. Once again we motivate the gain criterion by analyzing
the error.

7.3.3.1 Error Analysis and Gain Criterion

As in Sect. 7.3.2.1, we want to derive a gain criterion for L j , j ∈ N, such that
limq→∞ |x̃(tq)| = 0. It is noted that, for q > m∗:

x̃(tq) = Gq(x̃(t−q ) − ξq) = Gq Qq
q−m∗(χ

q
q−m∗ − χ̂

q
q−m∗)

= −Gq Qq
q−m∗ χ̃

q
q−m∗ , (7.37)

where χ̃
q
q−m∗ := χ̂

q
q−m∗ − χ

q
q−m∗ . In the sequel, we will derive an expression for

χ̃
q
q−m∗ for a fixed q > m∗ and plug it in (7.37) to show that |x̃(tq)| converges to zero

as q increases for appropriate choice of the matrices L j , j ∈ N.
Toward this end, we first compute the difference z̃q := ẑq − zq , for q ∈ N as

follows:

z̃q(t−q ) = ẑq(t−q ) − zq(t−q ) = e(Sq−Lq Rq )τq z̃q(tq−1) = −Λq Zq
� x̃(tq−1),

where we define Λq := e(Sq−Lq Rq )τq . As a first step in arriving at the expression for

χ̃
q
q−m∗ , we observe that χ̃

q−m∗
q−m∗ = z̃q−m∗(t−q−m∗) and we compute χ̃

q−m∗+1
q−m∗ as follows:

χ̃
q−m∗+1
q−m∗ = χ̂

q−m∗+1
q−m∗ − χ

q−m∗+1
q−m∗

= J q−m∗+1
q−m∗ Zq−m∗+1 z̃q−m∗+1(t

−
q−m∗+1) + K q−m∗+1

q−m∗ Zq−m∗ z̃q−m∗(t−q−m∗)

= −
1∑

i=0

(
V q−m∗+1

q−m∗,q−m∗+i Zq−m∗+iΛq−m∗+i Z�
q−m∗+i x̃(tq−m∗+i−1)

)
,

where

V q−m∗+1
q−m∗,q−m∗ := K q−m∗+1

q−m∗ (7.38a)

V q−m∗+1
q−m∗,q−m∗+1 := J q−m∗+1

q−m∗ . (7.38b)

Finally, by introducing the matrices, q > m∗, k = m∗ −2, . . . , 0 and i = 0, . . . ,m∗ −
k − 1

V q−k
q−m∗,q−k := J q−k

q−m∗ (7.38c)

V q−k
q−m∗,q−m∗+i := K q−k

q−m∗ Qq−k−1
q−m∗ V q−k−1

q−m∗,q−m∗+i (7.38d)
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the expression for χ̃
q−k
q−m∗ , k = m∗ − 1, . . . , 0, is derived recursively:

χ̃
q−k
q−m∗ = χ̂

q−k
q−m∗ − χ

q−k
q−m∗

= J q−k
q−m∗ Zq−k z̃q−k(t

−
q−k) + K q−k

q−m∗ Qq−k−1
q−m∗ χ̃

q−k−1
q−m∗

= −
m∗−k∑

i=0

V q−k
q−m∗,q−m∗+i Zq−m∗+iΛq−m∗+i Z�

q−m∗+i x̃(tq−m∗+i−1).

Plugging this expression for χ̃
q
q−m∗ in (7.37), we now obtain

x̃(tq) = Gq Qq
q−m∗

q∑

i=q−m∗
V q

q−m∗,i ZiΛi Z�
i x̃(ti−1). (7.39)

If, for each k = 0, . . . ,m∗, and q > m∗, the output injection matrices Lq−k are
chosen to minimize the norm of Λq−k such that

‖Gq Qq
q−m∗ V q

q−m∗,q−k Zq−kΛq−k Z�
q−k‖ ≤ c <

1

m∗ + 1
, (7.40)

then it follows that

|x̃(tq)| ≤ c
q∑

i=q−m∗
|x̃(ti−1)|.

We can again invoke Lemma 1 from [19] to obtain limq→∞ |x̃(tq)| = 0, which
proves the desired result.

Algorithm 7.2 Hybrid observer for systems with non-invertible jump maps
Require: u, v, y
Ensure: Run (7.7) for t ∈ [t0, tm∗+1) with some x̂(t0)
1: for all q ≥ m∗ + 1 do
2: for j = q − m∗ to q do
3: Compute the injection gain L j such that (7.40) holds.
4: Obtain ẑ j (t

−
j ) by running the individual observer (7.14) for the j-th mode.

5: end for
6: Compute ξq from (7.34), (7.35), and (7.36), to implement (7.7).
7: Compute x̂(tq ) using (7.7) and run (7.7) over the interval [tq , tq+1).

8: end for
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7.4 Illustrative Examples

Wewill now apply our results for two academic examples. The first one considers the
case without any state resets, and in the second case, we consider switching dynamics
with non-invertible state reset maps.

7.4.1 Invertible State Reset Maps

Consider a switched system given by:

A2k−1 =
[
0 0
0 0

]

, A2k =
[
0 1

−1 0

]

, k ≥ 1

C2k−1 = [
1 0

]
, C2k = [

0 0
]
, k ≥ 1.

with Gk = I , Hk = 0, Bk = 0, and Dk = 0 for each k ≥ 1.
We assume that each mode is activated for τ seconds and τ �= κπ for any κ ∈ N.

For simplicity, let us call [(2k−2)τ, (2k−1)τ ), k ∈ N, an odd interval, and themode
active on the odd intervals as the odd mode. Similarly, the intervals [(2k −1)τ, 2kτ),
k ∈ N are called even intervals, and the mode active on these intervals is called the
even mode. We also use the notation qo, ko for odd positive integers and qe, ke for
even positive integers. It can be verified that the system is forward observable over a
time interval that involves the mode sequence odd → even → odd. Hence, we pick
m∗ = 3 so that Assumption 7.3 holds. With an arbitrary initial condition x̂(0), the
observer to be implemented is:

˙̂x(t) = A2k−1 x̂(t)
ŷ(t) = C2k−1 x̂(t)

}

, t ∈ [(2k − 2)τ, (2k − 1)τ ), (7.41a)

˙̂x(t) = A2k x̂(t)
ŷ(t) = C2k x̂(t)

}

, t ∈ [(2k − 1)τ, 2kτ), (7.41b)

x̂(tk) = x̂(t−k ) − ξk, k ∈ N. (7.41c)

In order to determine the value of ξk , we start offwith the estimators for the observable
part of each subsystem, denoted by zq in (7.13). Note that the odd mode has a
one-dimensional unobservable subspace, whereas for even mode, the unobservable
subspace isR2. Let zqo represent the partial information obtained from the oddmode,
and zqe be a null vector as no information is gathered from the even mode. So the
one-dimensional partial observer in (7.14) is implemented only for odd intervals.
Also, for the odd mode, we obtain:

Oqo =
[
1 0
0 0

]

, Wqo =
[
0
1

]

, Zqo =
[
1
0

]

,
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so that Sqo = 0 and Rqo = 1, which yields the observer in (7.14) as

˙̂zqo = −lqo ẑqo + lqo ỹ, t ∈ [(qo − 1)τ, qoτ),

with the initial condition ẑqo((qo − 1)τ ) = 0, and ỹ being the difference between
the measured output and the estimated output of (7.41). The gain lqo will be chosen
later (see (7.42)). For the even mode, we get Wqe = I2×2, and Oqe = 02×2, so that
Zqe , Sqe , and Rqe are null-matrices.

The next step is to use the value of ẑqo(t
−
qo) to compute ξk , k ∈ N, using the

procedure outlined in Sect. 7.3.2. The matrices appearing in the computation of ξk

are given as follows. For every qe > 3:

Ψ
qe
qe−3 =

[
cos 2τ sin 2τ

− sin 2τ cos 2τ

]

⇒ Θ
qe
qe−3 =

[
cos 2τ

− sin 2τ

]

,

Ψ
qe
qe−2 =

[
cos τ sin τ

− sin τ cos τ

]

⇒ Θ
qe
qe−2 = null,

Ψ
qe
qe−1 =

[
cos τ sin τ

− sin τ cos τ

]

⇒ Θ
qe
qe−1 =

[
cos τ

− sin τ

]

,

Ψ
qe
qe = I2×2 ⇒ Θ

qe
qe = null

where, as a convention, we have takenΘ
qe
j as a null matrix wheneverR(Ψ

qe
j W j )

⊥ =
{0}. Using the matrices Θ

qe
j , j = qe − 3, . . . , qe, we obtain for every qe > 3:

Θqe =
[
Θ

qe
qe−1 Θ

qe
qe−3

]
=
[
cos τ cos 2τ

− sin τ − sin 2τ

]

.

Thus, for every qe > 3, the error correction term ξqe can be computed by the formula:

ξqe = Θ−�
qe

[
ẑqe−1(t

−
qe−1) − ξqe−1(1)

ẑqe−3(t
−
qe−3) − ξqe−3(1) − [cos τ − sin τ ](ξqe−2 + ξqe−1)

]

,

where we use the notation ξq( j) to denote the j th component of the vector ξq . Next,
for every qo > 3, we repeat the same calculations and obtain

Θqo =
[
Θ

qo
qo Θ

qo
qo−2

]
=
[
1 cos τ

0 − sin τ

]

which further gives

ξqo = Θ−�
qo

[
ẑqo(t

−
qo)

ẑqo−2(t
−
qo−2) − ξqo−2(1) − [cos τ − sin τ ] ξqo−1

]

.
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To compute the gain lqo , we note that Mqe
qe , Mqe

qe−2 are null matrices, and

Mqe
qe−1 =

[ sin 2τ
sin τ

0
cos 2τ
sin τ

0

]

and Mqe
qe−3 =

[ −1 0
− cos τ

sin τ
0

]

.

Also, for qo > 3, Mqo
qo−1 and Mqo

qo−3 are null matrices, and

Mqo
qo =

[
1 0

cos τ
sin τ

0

]

and Mqo
qo−2 =

[
0 0

− 1
sin τ

0

]

.

By taking lqo equal to l for each qo, and computing the induced 2-norm of the matrix,
it is seen that, maxq−3≤ j≤q, j :odd,q>3 ‖Mq

j Z j e(S j −l R j )τ Z j�‖ = e−lτ /| sin τ |. So, the
lower bound for the gain l, is obtained as follows:

e−lτ

| sin τ | <
1

m∗ + 1
= 1

4
⇒ l >

1

τ
ln

4

|sin τ | . (7.42)

It can be seen that the singularity occurs when τ is an integer multiple of π .
Moreover, if τ approaches this singularity, then the gain required for convergence
gets arbitrarily large. This shows that even though the condition sin τ �= 0 guarantees
observability, it may cause some difficulty in practice if sin τ ≈ 0. This also explains
why the knowledge of the switching signal is required in general to compute the
observer gains.

Fig. 7.1 State estimation error in x1 and x2
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The results of simulations with τ = 1, and l = 2, are illustrated in Fig.7.1. The
error initially evolves according to the (marginally stable) system dynamics as no
correction is applied till t4.When the error correction is applied, there is a jump in the
state estimation error, which highlights the hybrid nature of the proposed observer.

7.4.2 Non-invertible State Reset Maps

We next consider an academic example of a third order (n = 3) switched system
with three modes where Aq , Bq , Hq , Dq , q ∈ N, are zero matrices of appropriate
dimensions. The output measurements are given by:

C3k−2 = [1 0 0], C3k−1 = [0 1 0], C3k = [0 0 1], k ≥ 1,

and the state reset maps are:

G3k−2 = G3k = I3×3, G3k−1 =
[
1 1 0
1 1 0
0 0 1

]
, k ≥ 1.

For this system, it can be checked that the Assumption 7.3 indeed holds, that is,
dim Qq

q−m∗ = 3, for each q > 2, where we take m∗ = 2. The observer (7.7) is now
implemented to obtain the state estimate in which we let ξ1 = ξ2 = 0.

For q ≥ 3, the following expressions are obtained for the vector ξq using the
calculations in Sect. 7.3.3:

ξ3k =
⎛

⎝
ẑ3k−2 + ẑ3k−1
ẑ3k−2 + ẑ3k−1

ẑ3k

⎞

⎠−
⎛

⎝
ξ3k−2(1) + ξ3k−1(1) + ξ3k−1(2)
ξ3k−2(1) + ξ3k−1(1) + ξ3k−1(2)

0

⎞

⎠ , k ≥ 1,

ξ3k+1 =
⎛

⎝
ẑ3k+1
0

ẑ3k

⎞

⎠−
⎛

⎜
⎝

1√
2
ξ3k(1) − 1√

2
ξ3k(2)

1√
2
ξ3k(2) − 1√

2
ξ3k(1)

ξ3k(3)

⎞

⎟
⎠ , k ≥ 1,

ξ3k+2 =
⎛

⎝
ẑ3k+1
ẑ3k+2
ẑ3k

⎞

⎠−
⎛

⎝
ξ3k+1(1)

0
ξ3k+1(3) + ξ3k(3)

⎞

⎠ , k ≥ 1,

where the short-hand ẑq is used to denote ẑq(t−q ), which for each q ∈ N is obtained
from the following equation:

˙̂zq(t) = −lq ỹ(t), t ∈ [tq−1, tq), ẑ(tq−1) = 0.

For simplicity, if we let lq = l, and τq = τ for some l, τ > 0 and each q ∈ N, then
the condition (7.40) boils down to:
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Fig. 7.2 The plot shows the state estimates x̂i , i = 1, 2, 3 (dashed lines in blue) converging to the
actual states of the plant xi , i = 1, 2, 3 (solid lines in red)

√
2 · e−lτ <

1

3
⇔ l >

log 3
√
2

τ
.

For τ = 1, the simulation results are shown in Fig. 7.2. The plot shows the
continuous and discrete nature of the error dynamics where the estimate does not
improve between the two switching instants and only when the correction ξq is
applied, the estimate gets closer to the actual state value.

7.5 Conclusions

This chapter has addressed the problems of observer design for switched linear
systems with state reset maps based on a notion of observability, which does not nec-
essarily require the observability of individual subsystems in the classical sense. The
proposed state estimators apply error correction only at discrete switching instants
and are inherently hybrid in nature. The examples considered in this chapter are
purely academic, but it is not difficult to encounter practical systems where such
techniques could be applied. First and foremost application that comes to mind are
the electrical circuits:Multicellular converters could bemodeled as switched systems
where each mode is not observable. Our observer design has been used to study diag-
nostic problems in such systems [24]. Another instance of the utility of our observer
design in a power converter has been reported in [11].
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Although, we only consider the linear systemswith ordinary differential equations
in this chapter, the ideas presented in this chapter have been applied to a more
general class of systems. The first of these extensions has been studied for the case
when the dynamics of individual subsystems are represented by differential-algebraic
equations [22]. Such systems have more structure because the solution only evolves
in the consistency space determined by the algebraic constraints of individual modes.
The state jumps in these systems are also determined by the algebraic constraints,
and moreover the solutions of such systems may contain derivatives of jumps for
which we adopt the distributional framework proposed in [23].

In another related work, we have used similar ideas to study the problem of
observer design in switched nonlinear systems [14, 15]. The major difficulty in deal-
ing with nonlinear systems is that one cannot explicitly solve the system equations to
transport the observable information from one time instant to another and neither this
map is expected to be linear. Thus, we have to introduce some additional assump-
tions on the dynamics of individual subsystems that allow for previously recovered
information (or part of it) to flow through the unobservable manifold of the following
subsystems without being perturbed by the unknown variables. This approach leads
to a sufficient condition for forward observability, and the observer design based on
this approach has somewhat different structure than the one proposed in this chapter,
as one would expect it to be the case when making transition from linear to nonlinear
systems.
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