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Abstract— In this work, we argue that the usual notion
of controllability is unfit for systems that operate with finite
data-rate constraints. We deal with this issue by defining a
new concept of controllability with finite data-rate. Then, we
specialize our discussion to the case of switched linear systems.
We state a necessary condition and a sufficient condition for
our new controllability notion to hold. Next, we take advantage
of the switched linear system’s structure to present a simple
sufficient condition for controllability with finite data-rate that
only involves the controllable subspace of the individual modes
and some mild assumptions about the switching signal that
guarantee that our sufficient condition holds. We also present
another sufficient condition for systems that activate some
controllable mode often enough. In particular, we illustrate
the power of this result by deriving relations between the
sampling time and the Average Dwell-Time (ADT) of the
switching signal that guarantee that the switched system is
controllable with finite data-rate. Finally, we discuss the gap
between the necessary and the sufficient conditions and show
that the sufficient condition is not necessary.

I. INTRODUCTION

Computers and electronic circuits appear everywhere in
modern control systems practice. The digital nature of mod-
ern controllers and sensors forces our control system not
only to work with discretized time but also with quantized
measurements. Moreover, since these digital controllers only
have a finite number of possible outputs for any given
clock cycle, they must operate with a finite data-rate. This
latter fact restricts what control problems we can solve
with such controllers. Historically, the discovery of new
fundamental limitations in control systems guided us to new
ideas that helped develop new controller design techniques
[14]. For instance, in [8], Kalman introduced the concept
of controllability to explain what plant properties hinder our
ability to design controllers that solve specific problems. In
that same work, he showed how to construct a controller for
a controllable plant that sends the system’s state to zero as
fast as possible, extending the work [2].

In light of this discussion, we ask a natural question:
what new constraints arise from the fact that our controller
must operate with a finite data-rate? The so-called data-
rate theorems [12], which provide the minimum data-rates
for stabilizing plants, give part of the answer. Indeed, the
control over communication networks community devoted
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much of its attention to studying such theorems [17], [11],
[9] since communication channels restrict the data-rate of
the control laws used. Nonetheless, these theorems are not
the only restrictions to finite data-rate control. In this article,
we argue that, in general, a finite data-rate controller cannot
make the system’s state norm decay at a rate that is faster
than exponentially, in a sense we define formally later. This
fact shows us that the usual concept of controllability, as
defined in [8], is unfit for studying the problem of making the
state go to the origin as quickly as possible when data-rate
constraints are present. Thus, this motivates us to introduce
a new controllability notion suited to this case. We do so
with the help of concepts from [3]. In that article, the author
introduced a concept of stabilization with a finite data-rate,
which, loosely speaking, is the ability to drive the state of a
system to zero with a prescribed exponential rate of decay.
In our work, we strengthen that notion to allow for arbitrary
exponential rates of decay. This latter concept is compatible
with the idea of being able to drive the state norm to zero
with the fastest rate of decay, as we discuss later.

The general problem of controllability with finite data-rate
for linear time-varying (LTV) systems is more difficult to
analyze than its classical counterpart. However, it is possible
to get simple and interesting results for the class of switched
linear systems [10]. For this case, we provide a necessary
condition and a sufficient condition for our system to be
controllable with a finite data-rate. The sufficient condition
we present, however, might be hard to check. To address this
issue, we exploit the switched system’s structure to help us
derive simple conditions that we can verify by imposing mild
assumptions on the modes and on the switching signal. One
of these conditions has a geometric nature, involving the
controllable subspace of the modes and an easily checked
assumption on the switching signal. Another condition re-
quires our system to switch to a controllable mode frequently
enough, in a sense specified later. When we assume that
all the modes are controllable and our system satisfies an
average dwell-time condition, this latter result allows us to
derive a simple inequality involving the average dwell-time,
the sampling frequency, and the chatter bound that guarantees
controllability with a finite data-rate. Finally, we discuss the
gap between our necessary condition and the sufficient one.
Closing this gap is the topic of future research.

We take this opportunity to connect this work with [18],
where we discussed controllability with a finite data-rate for
linear time-varying (LTV) systems. In that document, we also
presented a necessary condition and a sufficient condition for
a general LTV system to be controllable with a finite data-
rate. The necessary condition we state here is the same as
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the one from [18]. On the other hand, the sufficient condition
we present here is different and more directly checked than
the one we stated in [18]. In fact, our new condition is a
consequence of the one we discussed in [18], as we prove
in the present paper. Nonetheless, by asking more of our
system, i.e., by imposing the switched linear structure, we get
several elementary conditions for controllability with finite
data-rate that are, in some sense, more realistically verified.
Thus, we can see the current paper as a continuation of
that one where we impose more structure to our system to
get readily checkable sufficient conditions for the class of
switched linear systems.

The structure of this document is as follows: First, in
Section II, we present the model we want to study and
describe why we need a new controllability notion. Still
in Section II, we define controllability with finite data-rate.
Next, in Section III, we state a necessary condition and a
sufficient condition for controllability with finite data-rate.
Then, by constraining the switching signal and the sampling
times, we derive a sufficient condition for controllability
using the controllable subspaces of the modes. After that,
in Section IV, we present another sufficient condition that
requires our system to activate some controllable mode
often enough. In this section, we present our condition that
involves average dwell-time and the sampling frequency. We
finish this section with a discussion on the gap between the
necessary condition and the sufficient one. In Section V, we
conclude and present future research directions.

Notation: We denote by Z>0 (Z≥0) the set of the positive
(nonnegative) integers. We denote by R the set of real
numbers. We denote by R>0 (R≥0) the set of positive
(nonnegative) real numbers. Given m ∈ Z>0, we define the
set [m] := {1, . . . ,m}. Given a set S, we denote by #S
its cardinality. Let dx ∈ Z>0 and du ∈ Z>0, we denote by
Mdx×du the set of dx × du real matrices. Let dx ∈ Z>0,
then we denote by Idx

the dx×dx identity matrix. We denote
the transpose of a matrix A ∈ Mdx×du by A′ ∈ Mdu×dx .
Given a pair of matrices (A,B) with A ∈ Mdx×dx and B ∈
Mdx×du , we denote by ⟨A|B⟩ their controllable subspace.
Given A ∈ Mdx×dx and B ∈ Mdx×dx two symmetric
positive semi-definite matrices, we write that A ≥ B (A >
B) if A−B is positive semidefinite (definite). If A is a dx×dx
real matrix and | · | is a vector norm1 in Rdx , we denote by
∥A∥ := max{|Ax| : |x| = 1, x ∈ Rdx} the norm induced by
that vector norm. For a set S ⊂ Rdx , we define its maximum
distance from the origin as dist(S) := sup{|x| : x ∈ S}.
We denote by log(a) the natural logarithm of a ∈ R>0.
We denote by L∞

loc([t0,∞),Rdu) the set of all Lebesgue
integrable (see, e.g., Chapter 2 of [4]) locally essentially
bounded functions from [t0,∞) to Rdu where t0 ∈ R≥0

and du ∈ Z>0. Finally, given a function u : I ⊂ R → Rdu

and a set J ⊂ I , we denote by u|J(·) the restriction of the
function u(·) to the subset J .

1If not stated otherwise, we assume that | · | is the Euclidean norm.

II. MODEL AND MOTIVATION

A. The Model

In this work, we study the controllability with finite data-
rate of switched linear systems, i.e., systems described by
equation:

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t) (1)

where the current time is t ∈ [t0,∞), the initial time is
t0 ∈ R≥0, the initial state is x(t0) = x0 and it belongs
to a compact set with nonempty interior K ⊂ Rdx ,
m ∈ Z>0 is the number of modes, σ : [t0,∞) → [m]
is the switching signal, u : [t0,∞) → Rdu is the control
function, and Ap ∈ Mdx×dx and Bp ∈ Mdx×du are the
matrices of each mode p ∈ [m]. We also assume that
u(·) ∈ L∞

loc([t0,∞),Rdu) and that σ(·) is a càdlàg function2.
We denote by3 tn the n-th discontinuity point of σ(·) and we
call such points the switching times. Finally, we define by
Φσ(t, τ) for t ∈ R and τ ∈ R the state-transition matrix
associated with the autonomous part of system (1), i.e.,
Φσ(t, τ) is the unique solution to the differential equation
Φ̇σ(t, τ) = Aσ(t)Φσ(t, τ) with Φσ(τ, τ) = Idx

.
A control law is a set U (K) of functions u(x, ·) indexed

by initial conditions x ∈ K ⊂ Rdx , i.e., each initial state
x ∈ K corresponds to a unique control u(x, ·) ∈ U (K).
Denote by UT (K) := {v|[t0,T ](·) ∈ L∞

loc([t0, T ],Rdu) :
v(·) ∈ U (K)} the set of restrictions of functions from our
control law. We define the data-rate of the control law U (K)
as b(U (K)) := lim supT→∞

1
T log(#UT (K)) and we say

that the control law U (K) operates with a finite data-rate
if it satisfies b(U (K)) < ∞.

B. The Need for a New Controllability Notion

In this subsection, we explain why the usual notion of
controllability of LTV systems is not suitable when we
consider control systems that operate with finite data-rate.
To do that, we start by recalling the usual controllability
notion (see, e.g., Chapter 9 of [13]) for LTV systems.

Definition 2.1: We say that system (1) is controllable in
the usual sense on [t0, T ], where T ≥ t0, if for every initial
condition x(t0) = x0 ∈ Rdx there exists a function u :
[t0, T ] → Rdu such that x(T ) = 0.
To see why this notion is unfit when we work with a finite
data-rate, we consider the following simple Example 2.1,
which also appeared in a slightly different form in [18].

Example 2.1: Let ẋ(t) = u(t) where t0 ∈ R≥0, t ∈ R>t0 ,
x0 ∈ K ⊂ R with K compact with a nonempty interior,
and u(t) ∈ R. We can easily solve this equation to get
that x(T ) = x0 +

∫ T

t0
u(τ)dτ . Note that, if u(t) ∈ Rdu ,

this system is controllable in the usual sense on the interval
[t0, T ]. If we impose that this control function comes from a
control law that operates with finite data-rate, we have that
the set of possible controls u[t0,T ](·) on any interval of time
t ∈ [t0, T ] has a finite cardinality. Therefore, the integral

2A function that is right-continuous and has a left limit everywhere.
3We consider t0 the 0-th discontinuity point of σ(·) to keep the notation

simple.
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of u(·) on [0, T ] attains at most finitely many values, but
x0 belongs to the set K, which has infinitely many points.
Hence, it is not possible to make x(T ) = 0 for an arbitrary
initial condition in K.
The goal of the previous example is to make the straight-
forward observation that we cannot have x(T ) = 0 for an
arbitrary initial condition in K, which supports the claim that
the usual controllability notion is unfit for the case where we
have a finite data-rate. Thus, we must define a new notion
of controllability in this setting. One way of doing so, is
to think of controllability as the property of being able to
drive the state with an arbitrarily fast rate to the origin. This
was Kalman’s original idea when he introduced the concept
of controllability [8]. The following Proposition 2.2 shows
that, in general, the fastest mode of decay for the norm of
the state of system (1) using finite data-rate is exponentially
fast. Indeed, a stronger claim is true for a much larger class
of systems.

Proposition 2.2: Let the set of possible initial states K ⊂
Rdx have a nonempty interior, let m ∈ Z>0 be the number
of modes, and let t0 ∈ R≥0 be the initial time. Consider the
switched nonlinear time-varying dynamics given by

ẋ(t) = f(t, σ(t), u(x0, t), x(t)), (2)

where x(t0) = x0 ∈ K is a initial state, u(x0, ·) ∈ U (K)
is the control function that corresponds to the initial state
x0, U (K) is a control law that operates with a finite data-
rate, σ : [t0,∞) → [m] is a càdlàg switching signal,
and f : R≥0 × [m] × Rdu × Rdx → Rdx . Also, define
Ru := {u(x, t) ∈ Rdu : u(·, ·) ∈ U(K), (x, t) ∈ P}, where4

P := {(x, t) ∈ K × [t0,∞) : |u(x, t)| < ∞}. We assume
that:

• Equation (2) has a unique forward-complete5

Caratheodory solution for each initial state x0 ∈ K
and the initial time t0. We denote by6 ξ(t, t0, x0) the
Caratheodory solution of (2) at time t when the initial
time is t0 and the initial state is x0.

• There exists a compact set Bx ⊂ Rdx such that7

{|ξ(t, t0, x0)| : x0 ∈ K, t ∈ [t0,∞)} ⊂ Bx.
• f(·, ·, ·, ·) is continuously differentiable in its fourth

argument. Define the Jacobian of f(·, ·, ·, ·) in its fourth
argument as fx : R≥0 × [m] × Rdu × Rdx →
Rdx×dx where (fx(·, ·, ·, ·))(i,j) := ∂fi

∂xj
(·, ·, ·, ·) for

each pair (i, j) ∈ [dx]
2. We assume that fx(·, ·, ·, ·)

is a continuous function. Further, the quantity a :=
ess sup{∥fx(p1, p2, p3, p4)∥ : p1 ∈ [t0,∞), p2 ∈
[m], p3 ∈ Ru, p4 ∈ Bx} is finite.

Denote by dist(t, t0,K) := sup{|ξ(t, t0, x0)| : x0 ∈ K} the
maximum distance from a point in the reachable set of (2)

4Note that (K × [0,∞)) \ P has measure zero since u(·, ·) is locally
essentially bounded.

5This means that the solution is defined for all t ∈ [t0,∞). See,
e.g., Section 1.5 from [5] for sufficient conditions on f(·, ·, ·, ·) for this
assumption to hold.

6Note that the control is defined by the initial state.
7Informally, we are asking the control law to keep the state bounded

uniformly over all possible initial states.

at time t ∈ [t0,∞) and the origin of Rdx when the initial
condition belongs to K. Then, we have that

lim inf
t→∞

log(dist(t, t0,K))

t
> −∞.

In particular, if f(t, σ(t), u(x0, t), x(t)) = Aσ(t)x(t) +
Bσ(t)u(x0, t), Ru is a bounded subset of Rdu , and the second
bullet above is true, then this result holds.

Thus, it seems natural to relax the usual controllability
notion by asking the norm of the state to converge to zero
with an arbitrary exponential rate of decay instead of asking
the state to equal zero in finite time. To formally state our
controllability notion, we use the following Definition 2.2,
which is an adaptation from the definitions given in [3] about
stabilization with finite data-rate. To improve readability, we
name some sets and properties that were not named in [3].

Definition 2.2: We say that system (1) satisfies the ex-
ponential decay condition with rate α ∈ R≥0, with M ∈
R>0, and ϵ ∈ R>0 if for each x0 ∈ K ⊂ Rdx there
exists u(·) ∈ L∞

loc([t0,∞),Rdu) such that the corresponding
solution satisfies

|x(t)| ≤
(
M |x0|+ ϵ

)
e−α(t−t0) (3)

for all t ∈ R≥t0 . For given α ∈ R≥0, M ∈ R>0, ϵ ∈ R>0,
and K ⊂ Rdx as above, we call a set8 R(ϵ,M,K,α) ⊂
L∞

loc([t0,∞),Rdu) a stabilizing control set of system (1) if
for every x0 ∈ K, there exists a control function u(·) ∈
R(ϵ,M,K,α) such that (3) holds for the corresponding
solution. Furthermore, we denote by

RT (ϵ,M,K,α) := {u|[t0,T ](·) ∈ L∞
loc([t0, T ],Rdu) : (4)

u(·) ∈ R(ϵ,M,K,α)}

a set of restrictions of stabilizing controls, where T > t0
is arbitrary. We define the data-rate associated with system
(1) in the following manner. First, given a stabilizing control
set R(ϵ,M,K,α), we define the data-rate of the stabilizing
control set R(ϵ,M,K,α) as9

b(R(ϵ,M,K,α)) := lim sup
T→∞

1

T
log(#RT (ϵ,M,K,α)).

Next, we define the data-rate of system (1) as10

b(M,α) := lim
ϵ→0

(inf{b(R(ϵ,M,K,α)) : R(ϵ,M,K,α)

(5)
is a stabilizing control set of (1)}) .

Finally, we say that system (1) can be stabilized with finite
data-rate with M ∈ R>0 and α ∈ R>0 if b(M,α) < ∞.

The reader might wonder if we can remove the ϵ term
from inside inequality (3) and still get a reasonable notion of
stabilizability with finite data-rate. The answer is negative,

8We note that this set can be infinite in general.
9The corresponding quantity in [3] uses the limit inferior instead of limit

superior. Because of that, if the quantity given in [3] is infinite, ours is also
infinite.

10Note that b(M,α) also depends on the set of initial conditions K. We
drop that dependence to make the notation simpler.
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and is proved in Proposition 2.2 of [3] where the author
showed that, for any pair (α,M) ∈ R>0×R>0, LTI systems
with poles with a nonnegative real part cannot satisfy (3)
with ϵ = 0 and have b(M,α) < ∞. Also, we take this
opportunity to note that the limit on the right-hand side
of equation (5) exists. That happens because the infimum
on the right-hand side of that equality is a monotonically
decreasing function of ϵ. Consequently, that limit can be
replaced by the supremum over ϵ ∈ R>0. We also note
that R(ϵ,M,K,α) is a control law11 that operates with the
data-rate b(R(ϵ,M,K,α)). Now, we are ready to define
controllability with a finite data-rate.

Definition 2.3: We say that system (1) is controllable with
finite data-rate if for every α ∈ R>0, there exists M ∈ R≥0

such that system (1) can be stabilized with finite data-rate
b(M,α) < ∞.

In light of our discussion, Definition 2.3 captures the
property of the norm of the state converging to zero with
the fastest rate possible in our setting. We believe that it is
a natural candidate for extending the concept of controlla-
bility to switched linear systems with finite data-rate. It is
important to remark that the previous definition is new and it
differs from the definition of stabilization with a finite data-
rate, originally given in [3], in the sense that it captures the
possibility of stabilization with an arbitrary convergence rate
α ∈ R≥0 , while in [3] α was taken to be a fixed parameter.

III. CHARACTERIZING CONTROLLABILITY
WITH A FINITE DATA-RATE

In this section, we characterize controllability with fi-
nite data-rate of switched linear systems using classical
controllability notions. We recall the concept of complete
controllability to state our necessary condition. Next, we use
the well-known uniform complete controllability notion to
present our sufficient condition. Finally, we provide a geo-
metric characterization for uniform complete controllability
of switched linear systems using the controllable subspaces
of each mode and the switching signal.

A. The Necessary Condition

We start this subsection by recalling the notion of complete
controllability, first stated in [8] and [7].

Definition 3.1: We say that system (1) is completely con-
trollable if, for each t̄ ∈ [t0,∞), there exists t1 ∈ (t̄,∞)
such that (1) is controllable in the usual sense12 on the time
interval [t̄, t1].

We have two remarks about this definition. First, some
authors, such as [15] in Chapter 4, use the term “complete
controllability” to refer to usual controllability on a given
time interval. The difference is that Definition 3.1 requires
system (1) to be controllable over infinitely many intervals,
while the definition given in [15] requires the system to
be controllable on a single time interval. Second, recall
that the controllability Gramian of system (1) is given by
W (t, s) :=

∫ t

s
Φσ(t, τ)Bσ(τ)B

′
σ(τ)Φ

′
σ(t, τ)dτ for any t ∈

11See Subsection II-A
12See Definiton 2.1.

R>0 and s ∈ R>0. Then, it is a well-known fact (see,
e.g., [8]) that complete controlabillity is equivalent to the
statement: for every t̄ ∈ R≥0 there exists some t1 > t̄ such
that W (t1, t̄) is invertible. This result gives us an operational
way to check if a system is completely controllable. Now,
we are ready to state our necessary condition in Theorem
3.1.

Theorem 3.1: System (1) is controllable with finite data-
rate only if it is completely controllable.

This statement is interesting because it gives a simple
condition that guarantees that, if not satisfied, we can rule
out the possibility of our system being controllable with finite
data-rate. This theorem appears in a slightly different form,
stated for a more general class of LTV systems, in [18]. We
also refer to [18] for an example of a system that does not
satisfy the assumption of Theorem 3.1.

B. The Sufficient Condition

To state the sufficient condition, we must first recall a
classical controllability notion for LTV systems.

Definition 3.2: We say that system (1) is uniformly com-
pletely controllable (UCC) if there exist T ∈ R>0 and some
w ∈ R>0 such that the controllability Gramian satisfies
wIdx

≤ W (t + T, t) for all t ∈ R>0, where the inequality
here denotes the partial order relation on symmetric positive
definite matrices.

We remark that this concept was introduced by Kalman
in works [8] and [7] using different conditions from the one
we stated. It was [1] who proved that, if Aσ(·) and Bσ(·)
are uniformly bounded for all times, then the condition we
present in Definition 3.2 is equivalent to UCC. Now, we are
ready to state our sufficient condition:

Theorem 3.2: System (1) is controllable with finite data-
rate if it is UCC.

This result is a consequence of Theorem 3.1 from [18]. In
that work, we came up with a different sufficient condition
for general LTV systems to be controllable with a finite data-
rate. It happens that being UCC is a stronger condition than
the one state in that paper. Thus, an LTV UCC system is
controllable with finite data-rate.

The previous result applies to any LTV system13, and it
requires us to prove that our system is UCC, which might
be difficult in general. However, assuming that our system
is given by the switched linear dynamics (1), we can prove
results that involve the controllable subspaces of the modes
and some properties of the switching signal.

C. Geometric Characterization of UCC for switched systems

Up to this point, we did not mention sampling. The reason
is because all the previous results do not need an explicit
sampling strategy to hold. In this subsection, however, the
relationship between the sampling times and the switching
times will be instrumental. Thus, we start it by defining the
sampling times and some related concepts. Then, we present

13Any system with ẋ(t) = A(t)x(t) + B(t)u(t), where the function
u(·) is integrable and locally essentially bounded an the matrix functions
A(·) and B(·) are locally integrable and bounded.
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a controllability notion that allows us to give a geometric
criteria for a switched linear system to be controllable with
finite data-rate.

We define the sequence of sampling times (τn)n∈Z≥0
⊂

[t0,∞) by
τn := t0 + nTp, (6)

where Tp ∈ R>0 is the sampling period. Next, recall that
(tn)n∈Z≥0 is the sequence of switching times. Note that the
sequences (τn)n∈Z>0

and (tn)n∈Z>0
are not, in principle,

related. When (τn)n∈Z≥0
⊂ (tn)n∈Z≥0

, we say that the
switching happens synchronously with the sampling. At this
point, it is convenient to introduce some notation. Let S :=
{n ∈ Z≥0 : σ(τn) ̸= σ(t) for some t ∈ [τn, τn+1)}, i.e.,
n ∈ S if a switching occurs in the interior of the time
interval [τn, τn+1). Note that S = ∅ only if the switchings
happen synchronously with the samplings, or if there are no
switchings.

Now, to state our condition for uniform complete control-
lability, we must introduce a new controllability definition.
We briefly recall that ⟨A|B⟩ denotes the controllable sub-
space of the pair (A,B).

Definition 3.3: Let ℓ ∈ Z>0 be a discrete time-horizon
and let S = ∅. For each k ∈ Z≥0, let n = n(k) := ⌊k

ℓ ⌋.
Define Vk := Φ−1

σ (τk, τℓn)⟨Aσ(τk)|Bσ(τk)⟩. We say that
system (1) is ℓ−uniformly completely controllable if

ℓ(n(k)+1)−1∑
j=ℓn(k)

Vj = Rdx (7)

for each14 k ∈ Z≥0.
To help the reader better understand the idea behind

Definition 3.3, we first discuss its relationship with classical
controllability notions. Notice that equation (7) is the same
as the condition for complete controllability on the interval
[τℓn, τℓ(n+1)] given in Chapter 4 of [15] for some fixed
n ∈ Z≥0

15. In fact, more is true. Since equation (7) holds
for each n ∈ Z≥0, a stronger controllability property must
hold. The following lemma shows that Definition 3.3 and
UCC are equivalent when the switchings are synchronous.
Therefore, the existence of ℓ ∈ Z≥0 such that our system
is ℓ-uniformly completely controllable is sufficient for our
system to be controllable with finite data-rate.

Lemma 3.3: Let S = ∅. Then, there exists some ℓ ∈ Z>0

such that system (1) is ℓ−uniformly completely controllable
if, and only if, system (1) is UCC.

The following example should help us illustrate how we
can apply Lemma 3.3 to show a nontrivial result.

Example 3.4: Let ℓ ∈ Z>0, let m = 2, and let t0 = 0. Let
{e1, e2} ⊂ R2 be the canonical basis. Assume that, for each
n ∈ Z≥0, there exists at least one integer ki(n) such that
ℓn ≤ ki(n) < ℓ(n + 1) and that σ(ki(n)) = i for i ∈ [2].

Also, let A1 =

(
1 0
0 0

)
, A2 =

(
0 0
0 2

)
, B1 = e1 , and

14Note that for each l ∈ Z≥0 there exists some k ∈ Z≥0 such that
l = ⌊ k

ℓ
⌋. Thus, n(k) is a surjective function.

15We also notice that there exists an analogous characterization for the
concept of complete observability, given in [16].

B2 = e2. Note that each individual mode is unstabilizable.
A simple calculation shows that ⟨Ai|Bi⟩ = span{ei} for
i ∈ [2]. Also, since the matrix Ai is diagonal for each i ∈ [2],
we have that Φσ(t, s) is diagonal for each t ∈ R≥0 and
s ∈ [t,∞). This latter fact implies that Φ−1

σ (t, s)⟨Ai|Bi⟩ =
⟨Ai|Bi⟩ = span{ei} for each i ∈ [2], all t ∈ R≥0, and all
s ∈ [t,∞). In particular, for each n ∈ Z≥0 and each i ∈ [2],
we have that Vki(n) = span{ei}. Thus, we conclude that∑ℓ(n+1)−1

j=ℓn Vj ⊃ Vk1(n) + Vk2(n) = R2, which implies that
our system is ℓ-uniformly completely controllable. Thus, by
Lemma 3.3, our system is controllable with a finite data-rate.

The previous example used the fact that the switchings
are synchronous to conclude that the switched system is
controllable with a finite data-rate, even though the modes
are unstabilizable. In the next section, we deal with switching
signals that might not be synchronous.

IV. THEORETICAL APPLICATIONS AND THE GAP
BETWEEN CONDITIONS

A. Average Dwell-Time and Sampling

At this point, the reader might wonder if there are simple
conditions that ensure that the conditions from Theorem
3.2 hold when we do not require the switchings to be
synchronous. The next proposition answers this questions
affirmatively.

Proposition 4.1: Let ℓ ∈ Z≥0. If, for each index n ∈ Z≥0,
there exists some index k(n) ∈ Z≥0 such that ℓn ≤ k(n) <
ℓ(n+1), that k(n) ̸∈ S, and that ⟨Aσ(τk(n))|Bσ(τk(n))⟩ = Rd,
then system (1) is UCC.

Informally, the last proposition is saying the following:
if each interval of the form [τℓn, τℓ(n+1)), where n ∈ Z≥0

and ℓ ∈ Z≥0 is given, has a sampling subinterval without
a switching in its interior and a controllable mode is active
on that subinterval, then the conditions of Theorem 3.2 hold.
This latter condition is verified, for instance, when we have
a “safe” mode, which we visit at least once in each time
interval [τℓn, τℓ(n+1)), i.e., we vist the controllable mode
“frequently enough”.

Interestingly, Proposition 4.1 has an immediate corollary
of practical interest. First, we recall the definition of average
dwell-time.

Definition 4.1 (Average Dwell-Time [6]): We say that
system (1) satisfies an average dwell-time condition [6]
if there exist a chatter bound N0 ∈ Z≥0 and an average
dwell-time τD ∈ R>0 such that the number of switches
Nσ(t, τ) on any time interval of the form [τ, t) ⊂ [t0,∞)
satisfies Nσ(t, τ) ≤ N0 +

t−τ
τD

.
The next result gives us a simple relation between the

sampling period, the chatter bound, and the dwell-time of our
switching signal that ensures that system (1) is controllable
with finite data-rate.

Corollary 4.1: Assume that system (1) satisfies the ADT
condition with average dwell-time τD ∈ R>0 and chatter
bound N0 ∈ Z≥0. Further, assume that system (1) modes’ are
controllable. If τD

N0+2 ≥ Tp, then the system is controllable
with finite data-rate.
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B. The Gap Between Conditions

We see that the difference between the assumptions of
Theorem 3.1 and 3.2 is just uniformity. It seems natural
to ask if the sufficient condition is actually necessary. The
answer is negative as Example 4.2 shows. Before we for-
mally state that example, we take this opportunity to recall
some concepts and results presented in [18]. We recall that
system (1) is called persistently completely controllable if
there exists an increasing sequence of times (sn)n∈Z≥0

⊂
[t0,∞) such that s0 = t0, that limn→∞ sn = ∞, that
lim supn→∞

sn+1

sn
< ∞, and that W (sn+1, sn) is invertible

for each n ∈ Z≥0. We also recall that system (1) satisfies the
exponential energy-growth condition if there exist constants
N ∈ R>0 and θ ∈ R≥0 such that ∥W−1(sn+1, sn)∥ ≤
Neθsn+1 for each n ∈ Z≥0. The latter condition is related to
the minimum control energy needed to drive the state x(sn)
at time sn to zero at time sn+1 for each n ∈ Z≥0. We refer
to [18] for a discussion on this latter point. Now, Theorem
3.1 from [18] says that if an LTV system is persistently
completely controllable and satisfies the exponential energy-
growth condition, then it is controllable with finite data-rate.
We use this result in our next example to show that UCC is
not a necessary condition.

Example 4.2: Let t0 = 2 and consider the equation ẋ(t) =
bσ(t)u(t) with bσ(t) = 1, when t ∈ ∪n≥1[2

n, 2n + 1),
and bσ(t) = 0, otherwise. We claim that this system is
controllable with a finite data-rate but it is not UCC. We
start by choosing a sequence (sn)n∈Z≥0

⊂ [2,∞) such
that sn = 2n+1 for n ∈ Z≥0. Naturally, (sn)n∈Z≥0

is an
increasing sequence that grows to infinity. Also, we have
that lim supn→∞

sn+1

sn
= 2. Further, for each n ∈ Z≥0,

on the interval [2n+1, 2n+2), we have that bσ(t) = 1 only
on the time subinterval [2n+1, 2n+1 + 1) and bσ(t) = 0 for
the remainder of the total interval. Therefore, we get that
W (sn+1, sn) =

∫ sn+1

sn
b2σ(τ)dτ =

∫ 2n+1+1

2n+1 1dτ = 1 for each
n ∈ Z≥0, i.e., W (sn+1, sn) is invertible for each n ∈ Z≥0.
Finally, we can easily see that |W−1(sn+1, sn)| = 1 for
every n ∈ Z≥0, which implies that our system satisfies the
exponential energy-growth condition with N = 1 and θ = 0.
Thus, our system satisfies all the conditions for Theorem 3.1
from [18] to hold. We therefore conclude that this system is
controllable with a finite data-rate. Nonetheless, this system
is not UCC. To see that, note that for every T ∈ R>0 there
exists some n ∈ Z≥0 so that W (sn + 1 + T, sn + 1) = 0.
Indeed, this follows from the fact that bσ(t) = 0 for all t ∈
[sn+1, sn+1+T ) if T < 2n+1−1 since sn+1+T < 2n+2.
This proves the claim.

V. CONCLUSIONS

In this work, we discussed why we need a new control-
lability notion for systems that operate with finite data-rate.
Then, we presented a necessary condition and a sufficient
condition for switched linear systems to be controllable with
finite data-rate. Next, we took advantage of the switched
linear system’s structure to get simpler sufficient conditions.
The first condition, stated in Lemma 3.3, uses the control-

lable subspaces of the modes and a mild assumption on the
switching signal to establish controllability with finite data-
rate. The second one, stated in Proposition 4.1, required us
to activate some controllable mode frequently enough. In
particular, when all the modes are controllable, this latter
condition boils down to a simple inequality for the sampling
frequency that guarantees that a system that satisfies an ADT
condition is controllable with finite data-rate.

In future works, we want to study similar conditions
for nonlinear systems. Also, want to understand and close
the gap between the necessary and the sufficient conditions
presented.
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