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Abstract— We investigate the recently introduced bang-bang
funnel controller with respect to its robustness to time delays.
We present slightly modified feasibility conditions and prove
that the bang-bang funnel controller applied to a relative-
degree-two nonlinear system can tolerate sufficiently small time
delays. A second contribution of this paper is an extensive case
study, based on a model of a real experimental setup, where
implementation issues such as the necessary sampling time and
the conservativeness of the feasibility assumptions are explicitly
considered.

I. INTRODUCTION

We consider SISO systems described by a nonlinear
differential equation

ẋ = F (x) +G(x)u, x(0) = x0 ∈ Rn

y = H(x)
(1)

which are uncertain in the sense that we do not assume exact
knowledge of F,G and H . For the controller design we
only assume structural knowledge, i.e., we assume relative
degree r = 2 and positive “high frequency” gain (see
Section II-A for details). In the precursor [6] of this paper
we have introduced the bang-bang funnel controller for this
system class which ensured – provided certain feasibility
assumptions were satisfied – approximate tracking of a
reference signal yref : R≥0 → R. In fact, the bang-bang
funnel controller ensures that the error

e := y − yref, (2)
meets prespecified strict (time-varying) error bounds which
are given by the funnel
F0 :=

{
(t, e) ∈ R≥0 × R

∣∣ ϕ−0 (t) ≤ e ≤ ϕ+
0 (t)

}
, (3)

where ϕ−0 , ϕ
+
0 : R≥0 → R are the prespecified error bounds,

see also the upper part of Figure 1. To achieve this control
objective a second funnel F1, analogously defined as in (3),
for the derivative ė of the error is introduced and a schematic
illustration of a typical closed loop response is shown in
Figure 1.

The advantages of using a bang-bang funnel controller
are as follows: 1) the implementation is a simple switching
logic independent of the actual nonlinear system (apart from
the relative degree), 2) the input consists of only two values
(or one bit) which makes this controller very suitable in a
digitally connected framework, 3) via the funnel the transient
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Fig. 1: A schematic illustration how the error (upper part)
and its derivative (lower part) evolve in closed loop with the
bang-bang funnel controller in the presence of time delays.
The dashed lines denote the safety distances.

performance as well as the desired long-term tracking accu-
racy can precisely be chosen (cf. the works on the continouos
funnel controller [4]). For a literature overview and a further
motivation of the considered topic we refer the reader to [6].

The new contribution of the current work is the allowance
of (constant) time delays in the closed loop as shown in
Figure 2. This is a more realistic scenario then the one
studied in [6]. The usage of a switching logic (implemented
on a digital machine) makes it necessary to sample the
error signal which introduces a time delay τe > 0 in the
measured error signal. Furthermore, the calculation time
introduces another time delay τq > 0 in the switching
signal. Additionally, in a digitally connected closed loop
there might be time delays due to the network transmission
times yielding bigger values for τe and τq . We will present
adjusted feasibility assumptions which take these time delays
into account.

Furthermore, we will carry out an extensive case study
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Fig. 2: Overall system structure with time delays in the error
signal and the input.

of a relative degree two system stemming from a real
experimental setup of two stiff rotary machines as described
in [3]; we also discuss design issues (like choosing suitable
safety distances) not discussed in detail in [6].

II. CONTROLLER DESIGN

In this section we will recall the definition of the switching
logic which then leads to the bang-bang funnel controller.
For this definition we only need to know the relative degree
and the sign of the “high frequency gain”. This structural
assumption is formulated first before the actual definition of
the switching logic is given.

A. Structural assumptions on the system class and the ref-
erence signal

Throughout this work we assume that system (1) has
known relative degree r = 2 with positive gain, which,
roughly speaking, means that the input can directly influence
the second derivative of the output (relative degree two) and
this influence acts in the same “direction” (positive high
frequency gain). More formally we assume the following.

(F1) There exists a coordinate transformation (a diffeo-
morphism) x 7→ (y, ẏ, z>)> which transforms (1)
to the Byrnes-Isidori normal form [5]:

ÿ = f(y, ẏ, z) + g(y, ẏ, z)u,
(
y(0)
ẏ(0)

)
=y0∈R2 (4a)

ż = h(y, ẏ, z), z(0) = z0 ∈ Z0 ⊆ Rn−2 (4b)
where f, g, h are locally Lipschitz continuous, g is
positive and the z-system does not have a finite
escape time for any bounded “input” vector (y, ẏ),
i.e.
∀y, ẏ ∈ L∞(R≥0 → R) ∀z0∈Z0⊆Rn−1

∃ solution z : R≥0 → Rn−1 for (4b)

}
(5)

Since we will consider non-continuous inputs u we have
to allow for solutions in the sense of Carathéodory, i.e.
ẏ and z are absolutely continuous and (4) holds almost
everywhere. The original system (1) inherits this solution
concept. For the implementation of the bang-bang funnel
controller the knowledge of the Byrnes-Isidori normal form
(and the corresponding coordinate transformation) is not
needed, however in order to check the feasibility assumptions
the knowledge of (at least certain bounds on) f , g and h is
needed.

Furthermore, we assume that the controller is able to
obtain the derivative ė of the error signal e := y − yref,
in particular we have to make the following assumption on
the reference signal:

(F2) yref ∈ C1(R≥0 → R) and ẏref is absolutely contin-
uous with right-continuous derivative.

B. Definition of the switching logic

As indicated in Figure 2 the bang-bang control law is
simply given by

u(t) =

{
U−, if q(t) = true,

U+, if q(t) = false.
(6)

where q : [0,∞) → {true, false} is the output of the
switching logic S which maps the error signal to the switch-
ing signal.

The switching logic is given by
q1(t) = S(e(t), ϕ+

0 (t)− ε+
0 , ϕ

−
0 (t) + ε−0 , q1(t−)),

q1(0−) = q0
1 ∈ {true, false},

q(t) =

{
St(t), if q1(t) = true,

Sf (t), if q1(t) = false,

q(0−) = q0 ∈ {true, false},
where S : R× R× R× {true, false} → {true, false} is
a switching predicate given by

S(e, e, e, qold) := [e ≥ e ∨ (e > e ∧ qold)]. (7)
and
St(t) = S(ė(t),min{ϕ̇+

0 (t), 0} − ε+
1 , ϕ

−
1 (t) + ε−1 , q(t−))

Sf (t) = S(ė(t), ϕ+
1 (t)− ε+

1 ,max{ϕ̇−0 (t), 0} − ε−1 , q(t−)).

Here the positive quantities ε+
0 , ε
−
0 , ε

+
1 , ε
−
1 denote the so

called safety distance from the corresponding funnel bound-
aries; for an intuition of this switching rule see Figure 1.
Note that this is the same switching rule as in [6] with one
important difference: Also at the derivative funnel boundaries
the safety distances ε+

1 and ε−1 are introduced. This is the
key change to allow for time delays and will play a role in
the new feasibility assumptions.

III. TIME DELAYS IN THE FEEDBACK LOOP

A. The remaining feasibility assumptions

We first collect further feasibility assumptions which are
needed to state our main theoretical result. We have to
assume that the initial sizes of the funnel boundaries are large
enough to contain the initial error with a “safe” distance, i.e.

(F3) e(i)(0) ∈ [ϕ−i (0) +ε−i , ϕ
+
i (0)−ε+

i ] for i = 0, 1.
The funnel boundaries have to be at least as smooth as
the corresponding error signal evolving within it, hence we
make the following smoothness as well as boundedness
assumptions on the funnel boundaries.

(F4) ϕ+
i , ϕ

−
i ∈ W2−i,∞(R≥0 → R), i.e. (ϕ±i )(1−i) are

absolutely continuous with right-continuous deriva-
tive for i = 0, 1 and ‖(ϕ±i )(j)‖∞ <∞ for i = 0, 1,
j = 0, . . . , 2− i.

Since the control objective is to keep the error signal
within the corresponding funnel the error must be able to
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decrease or increase at least as fast as the funnel boundary,
hence we have to choose the funnel F1 large enough such
that it contains the derivative of the funnel boundaries of F0.
Additionally the safety regions are not allowed to overlap.
Altogether, we obtain the following feasibility assumption
(cf. Figure 1).

(F5) ∀t ≥ 0 : ϕ+
0 (t)− ε+

0 > ϕ−0 (t) + ε−0 and
ϕ+

1 (t)− ε+
1 > max{ϕ̇−0 (t), 0}+ ε−1 ,

ϕ−1 (t) + ε−1 < min{ϕ̇+
0 (t), 0} − ε+

1 .

The next feasibility assumption is a slight modification of
the feasibility assumption [6, (17)] taking the time delay into
account.

(F6) ε+
0 > (τa + τe)‖ϕ̇+

0 − ϕ
+
1 ‖∞ +

(‖ϕ̇+
0 ‖∞+‖ϕ+

1 ‖∞)2

2δ− ,

ε−0 > (τa + τe)‖ϕ̇−0 − ϕ
−
1 ‖∞ +

(‖ϕ̇−0 ‖∞+‖ϕ−1 ‖∞)2

2δ+ ,

where δ+, δ−, as in [6], additionally fulfill

(F7) δ+ > max{ϕ̇−1 (t), ϕ̈−0 (t), 0} and
−δ− < min{ϕ̇+

1 (t), ϕ̈+
0 (t), 0} for all t ≥ 0.

The following feasibility assumption is again identical to [6,
(16)] and states that U± must be sufficiently large in terms
of the system data.

(F8) U− < −δ−+ÿref(t)+f(yt,ẏt,zt)
g(yt,ẏt,zt)

and,

U+ > δ++ÿref(t)+f(yt,ẏt,zt)
g(yt,ẏt,zt)

, hold for all t ≥ 0 and
all (yt, ẏt, zt) ∈ [yref(t) +ϕ−0 (t), yref(t) +ϕ+

0 (t)]×
[ẏref(t) +ϕ−1 (t), ẏref(t) +ϕ+

1 (t)]×Zt, where Zt :=z(t)
∣∣∣∣∣∣∣∣
z : [0, t]→ Rn−1 solves (4b) for some
z0 ∈ Z0 and for some y : [0, t]→R with
ϕ−

0 (τ) ≤ y(τ)− yref(τ) ≤ ϕ+
0 (τ) and

ϕ−
1 (τ) ≤ ẏ(τ)− ẏref(τ) ≤ ϕ+

1 (τ) ∀τ ∈ [0, t]

.
Different to the case without time delays it is not possible
anymore to change the input instantaneously when ė hits its
funnel boundary ϕ±1 . Hence the new safety distance ε±1 must
be large enough so that the derivative of the error does not
leave its funnel even in the case that the input steers the
output in the wrong direction. This is captured by the final
feasibility assumption which is new.

(F9) ε+
1 > (τe + τd)E

+
[t,t+τe+τq ]

and
ε−1 > (τe + τd)E

−
[t,t+τe+τq ]

, where

E+
[t,t+τe+τq ]

:= sup
s∈[t,t+τe+τq ],zs∈Zs

ys−yref(s)∈[ϕ−0 (s),ϕ+
0 (s)]

ẏs−ẏref(s)∈[ϕ−1 (s),ϕ+
1 (s)]

{−ÿref(s)+f(ys,ẏs,zs)+g(ys,ẏs,zs)U
+−ϕ̇+

1 (s)}

and E−[t,t+τe+τq ] is defined analogously.

B. Main result

Theorem 3.1 (Bang-bang funnel controller & time delays):
Consider the nonlinear system (1) and the bang-bang funnel
controller as in Section II with time delays as shown in
Figure 2. Let the feasibility assumptions (F1) – (F9) be
satisfied. Then the bang-bang funnel controller works, i.e.
there exists a global solution of the closed loop such that
q has locally finitely many switches and the error and its
derivatives evolve within the corresponding funnels, i.e.
e(i)(t) ∈ [ϕ−i (t), ϕ+

i (t)] for all t ≥ 0 and i = 0, 1.

Proof: The well-posedness result [6, Cor. 3.3] and its
proof in [7] remain valid without any modification, hence
existence and uniqueness of a maximal solution (x, q0, q) :
[0, ω)→ Rn×{true, false}2 for 0 < ω ≤ ∞ is guaranteed.
It remains to show that the switching logic ensures that
the error and its derivative remain within its corresponding
funnels and ω =∞. The proof follows the same steps as the
one of [7, Thm. 3.4] with some slight modifications due to
the time delays.

If e(t) leaves the funnel F0 then let ω1 > 0 be the first time
the error crosses the funnel boundary, otherwise let ω1 = ω.
Step 1: We show that ė evolves within F1 on [0, ω1).
First observe, that the feasibility assumption (F9) yields the
following implications.
ė(t0)=ϕ+

1 (t0)−ε+
1 ⇒ ∀t∈ [t0, t0+τe+τq] : ė(t)≤ϕ+

1 (t),

ė(t0)=ϕ−1 (t0)+ε−1 ⇒ ∀t∈ [t0, t0+τe+τq] : ė(t)≥ϕ−1 (t).

Furthermore, the switching logic guarantees, for all t ∈
[0, ω1),
ė(t)≥ϕ+

1 (t)−ε+
1 ⇒q(t+τe)=true⇒u(t+τe+τq)=U−,

ė(t)≤ϕ−1 (t)+ε−1 ⇒q(t+τe)=false⇒u(t+τe+τq)=U+

and the feasibility assumption (F8) together with

ë(t) = f(yref(t) + e(t), ẏref(t) + ė(t), z(t))

+ g(yref(t) + e(t), ẏref(t) + ė(t), z(t))u(t)− ÿref(t) (8)
yields, for all t ∈ [0, ω1),
ė(t) ≥ ϕ+

1 (t)− ε+
1 ⇒ ë(t+ τe + τd) < −δ− < ϕ̇+

1 (t),

ė(t) ≤ ϕ−1 (t) + ε−1 ⇒ ë(t+ τe + τd) > δ+ > ϕ̇−1 (t).

Altogether, invoking also (F3), it follows that F1 is positively
invariant for ė on the interval [0, ω1).
Step 2: We show that ω1 = ω.
Let t0 ∈ [0, ω1) be such that e(t0) = ϕ+(t0) − ε+

0 . The
switching logic ensures q1(t) = true for all t ∈ [t0 +
τe, t1 + τe) where t1 > t0 is the smallest time when e(t1) =
ϕ−(t1) + ε− or t1 = ω1. Choose a maximal s0 ∈ [t0, t1]
such that q(t) = true for all t ∈ [t0 + τe, s0 + τe),
i.e. u(t) = U− for all t ∈ [t0 + τe + τq, s0 + τe + τq).
The feasibility assumption (F8) and (8) now ensures that
ë(t) < −δ− on [t0 + τe + τq, s0 + τe + τq). Step 1 also
ensures that ė(t) ≤ ϕ+

1 (t) on [t0, t0 +τe+τ +q], hence (F6)
together with Corollary 6.2 from the Appendix ensures that
e(t) < ϕ+

0 (t) on [t0, s0 + τe + τq) ∩ [t0, t1).

As long as q1(t) = true the same arguments
as in Step 1, invoking (F6), ensure that the set{

(t, ė)
∣∣ ϕ−1 (t) ≤ ė ≤ min{ϕ̇+

0 (t), 0}
}

is positively in-
variant for ė on [t0, t1) if ė(t0) ∈ [ϕ−1 (t0) +
ε−1 ,min{ϕ̇+

0 (t0), 0}− ε+
1 ]. By definition, ė(s0) = ϕ−1 (s0) +

ε−1 if s0 < t1, hence ė(t) ≤ ϕ̇+
0 (t) on [s0, t1). Altogether

this ensures e(t) < ϕ+
0 (t) for all t ∈ [t0, t1).

For t0 ∈ [0, ω1) with e(t0) = ϕ−(t0) + ε− an analogous
argument shows e(t) > ϕ−(t) for all t ∈ [t0, t1) where
t1 > t0 is the smallest time when e(t1) = ϕ+(t1) − ε+ or
t1 = ω1. We can now inductively argue that the error cannot
leave the funnel and ω1 = ω is shown.
Step 3: We show ω =∞.
Since e and ė evolve within the funnels, finite escape time
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for y and ẏ is not possible. By (F1) this also precludes
finite escape time for z. In particular y, ẏ, z are bounded on
[0, ω), therefore ω <∞ is only possible when the switching
times accumulate for t → ω. However, if ω < ∞ then (F5)
ensures a positive distance between the switching surfaces
on the compact interval [0, ω]. Hence, invoking analogous
arguments as in the proof of [7, Thm. 2.4], an accumulation
of switching times would imply unboundedness of ė or ë
which is not possible as ė is contained within the bounded
funnel F1 and ë is governed by the bounded right-hand-side
of (8).

IV. SIMULATIONS

In this section we will apply the bang-bang funnel con-
troller to a model of a laboratory setup of two stiffly coupled
machines on which the continuous funnel controller was
successfully applied [3]. The model has the following form

ÿ = −1
Θ

(
σ0z2+σD(ẏ)

(
ẏ− |ẏ|z2β(ẏ)

)
+σV (ẏ)+uL(z1)

)
+ 1

Θu,

ż1 = 1, ż2 = ẏ − |ẏ|
β(ẏ)z2, (9)

with zero initial values and where y denotes the angle
of the (rotating) machine, u denotes the torque applied
to the machine, z2 denotes the average bristle deflection
from the Lund-Grenoble friction model (cf. [3]), σD(ẏ) =

σ1e
−(|ẏ|/ΩD)δD models the damping (of the deflection rate

ż2), σV (ẏ) = σ2|ẏ|δV sgn(ẏ) models the viscous friction
and β(ẏ) = 1

σ0
(uC + (uS − uC)e−(|ẏ|/ΩS)δS is the Stribeck

function. The function uL describes the load on the mechan-
ical systems, which is unknown but assumed bounded with
known bound. The variable z1 is the time written as a state-
variable (in order to match our framework (4)). Note that
z1 will grow unbounded with time, however its influence on
the systems dynamics is bounded (because of boundedness of
uL(·)). For more details on this model see [3]. The system
parameters Θ, uC , uS , σ0, σ1, σ2,ΩD,ΩS , δD, δV , δS are in
general not known (and also not necessary to know to apply
the bang-bang funnel controller), however for the simulations
we assign (following [3], [2]): Θ = 0.3342, uC = 1, uS =
1.5, σ0 = 104, σ1 =

√
σ0, σ2 = 0.4, ΩD = 0.1, ΩS =

10−3, δD = 2, δV = 1, δS = 2. Note that, compared to
[2], we choose smaller values for σ0 and σ1 to reduce the
numerical stiffness.

To make the simulations comparable to the exper-
iments carried out with the continuous funnel con-
troller we choose the load torque uL, the reference
output yref and the funnel boundaries identical to the
ones from [3], cf. Figure 3, in fact ‖ϕ±0 ‖∞ =
6.2832, ‖ϕ̇±0 ‖∞ = 7.353, ‖ϕ±1 ‖∞ = 8.853, ‖ϕ̇±0 − ϕ

±
1 ‖ =

16.206, ‖ϕ̇±1 ‖∞ = 8.9791 and inft≥0

(
ϕ+

0 (t)− ϕ−0 (t)
)

=
0.52360, inft≥0

(
ϕ+

1 (t)−ϕ̇−0 (t)
)

= inft≥0

(
ϕ̇+

0 (t)−ϕ−1 (t)
)

=
1.5, .

In order to simplify the analysis we assume in the fol-
lowing symmetric safety distances, i.e. ε+

i = ε−i =: ε±i ,
i = 0, 1. According to the feasibility assumptions (F5) the
safety distances must fulfill

0 < 2ε±0 < 0.52360, 0 ≤ 2ε±1 < 1.5.

For our simulation we choose
ε±0 = 0.23562, ε±1 = 0.5.

Using the latter in (F6) we obtain

δ± >
(‖ϕ̇±0 ‖∞ + ‖ϕ±1 ‖∞)2

2ε±0
≈ 557

and, when choosing δ± = 600,

(τe + τq) <
ε±0 −

(‖ϕ̇±0 ‖∞+‖ϕ±1 ‖∞)2

2λ±2

‖ϕ̇±0 − ϕ
±
1 ‖∞

≈ 0.001.

Hence the sampling time of the switching logic (or the
numerical integration step size) must be 10−3 or smaller. The
feasibility assumption (F9) might further reduce the needed
step size for the numerical integration, however we have to
invoke (F8) first to obtain feasible values for U+ and U−.
In [3] it was shown that all solutions of (9) fulfill∥∥∥σ0z2 + σD(ẏ)

(
ẏ − |ẏ|

β(ẏ)z2

)
+ σV (ẏ) + uL(z1)

∥∥∥
∞

≤ us + σ1‖ẏ‖∞(1 + uS
uC

) + σ2‖ẏ‖δV∞ + ‖uL‖∞.
Invoking ‖ẏ‖∞ ≤ ‖ϕ±1 + ẏref‖∞ ≤ ‖ϕ±1 ‖∞, ‖uL‖∞ ≤ 4,
‖ÿref‖∞ = 6.05 and with
Mz := us + σ1‖ϕ±1 ‖∞(1 + uS

uC
) + σ2‖ϕ±1 ‖δV∞ + ‖uL‖∞

≈ 2222.3

we obtain a lower bound for U+ and an upper bound for
U− via (F8):

U+≥ δ++‖ÿref‖∞+Mz
Θ

1
Θ

≈ 2424.8

U−≤ −δ
−−‖ÿref‖∞−MzΘ

1
Θ

≈ −2424.8

Choosing U+ = −U− = 2425 we obtain via (F9)

τe + τq <
ε±1

‖ÿref‖∞ + Mz

Θ + 1
ΘU

+ + ‖ϕ̇±1 ‖∞
≈ 3.6 · 10−5,

which yields a much smaller upper bound for the integration
step size. For the simulation we use the simple explicit Euler
method with a step size h = 10−5 and the switching logic
is initialized with q(0−) = true, q1(0−) = true. The
simulation result for the output y(·) and its capability to
follow the reference signal yref(·) is shown in Figure 3.

On a first glance the results look satisfactory and com-
parable to the experimental results from the application of
the continuous funnel controller in [3]. However, the used
input values, u(t) = ±2425Nm, are much bigger than the
physically possible, −22Nm ≤ u(t) ≤ 22Nm, and the
ones actually needed in the experimental setup of [3], u(t) ∈
[−1.5Nm, 7.5Nm], which sufficed to keep the tracking
error within its funnel. Furthermore, the switching frequency
is very high (about 104Hz) and is too high for the real actua-
tors used in the experimental setup (which allow a frequency
of at most 103Hz). Since the fast switching is a consequence
of the high values of U+ and U− one might wonder whether
the feasibility assumption are just too conservative (as was
already pointed out in [3] in a comparable context), however
a simulation with U+ = −U− = 22 (which are the maximal
values of the considered physical system) shows that the
bang-bang funnel controller is not able to keep the error
within the funnel, see Figure 4. The underlying problem is
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Fig. 4: Simulation with U+ = −U− = 22 showing how
the error leaves the funnel (top) and how the derivative of
the error evolves (below), e(t) (top), ė(t) (below): , ϕ±

0 (t)
(top), ϕ±

1 (t) (below): , ϕ̇±
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that the bang-bang funnel controller “realizes too late” that
the error approaches the funnel boundary (observe how in
Figure 4 the error actually moves in the wrong direction on
the interval [0, 0.25]) and is then not able to “turn the corner”
fast enough. This problem is due to the too small safety
distance ε±0 as already observed in [6, Rem. 3.5.4], where
a time-varying safety distance is suggested. We therefore
repeat the simulations with a time varying safety distance
ε±0 given by

ε±0 (t) = 0.9ϕ+
0 (t).

Note that this yields the same value for the safety distance for
large t as before. As can be seen in Figure 5 the simulation
improves significantly: We can choose U+ = −U− = 8 and
the switching frequency is less then 100Hz and therefore
feasible for a real physical setup.

To further reduce the switching frequency, it might be
beneficial to introduce an additional “neutral” input value
u(t) = 0 to the switching logic, see [1].

V. CONCLUSIONS

We were able to show that the bang-bang funnel controller
can tolerate sufficiently small time delays and presented
feasibility assumptions which made it possible to check

whether the time delays are tolerable. Furthermore, we have
presented a case study, which confirmed our theoretical
result. However, the used input values exceeded by a mag-
nitude of about one hundred the physical bounds of the
experimental setup the model was based on. Restricted to
the physical bounds the bang-bang funnel controller could
not guarantee the desired error bounds. However, with only
a slight modification of the switching logic we were able
to recover error tracking with the prespecified error bounds
with much smaller input values.

VI. APPENDIX: A TECHNICAL LEMMA

Lemma 6.1 (Overshoot bound): Assume η : [t0, t2] → R
is twice differentiable and let a continuous ψd : [t0, t1)→ R
be such that η̇(t) ≤ ψd(t) for all t ∈ [t0, t1) ⊆ [t0, t2].
Furthermore, assume there exists λ > 0 such that η̈(t) ≤ −λ
for all t ∈ [t1, t2). Then, for every absolutely continuous
ψ : [t0, t2] → R with essentially bounded derivative and
ε := ψ(t0) − η(t0) > 0, it holds that η(t) < ψ(t) for all
t ∈ [t0, t2] if

ε > (t1 − t0) max
{

0,−(ψ̇ − ψd)[t0,t1]

}
+

(
ψ̇[t1,t2]−ψd(t1)

)
max

{
0,ψ̇[t1,t2]−ψd(t1)

}
2λ , (10)

where, for any interval I ⊆ R and any function f : R→ R,
fI := ess inf

t∈I
f(t).

Proof: Since, by assumption η̇(t) ≤ ψd(t) on [t0, t1)
it follows that, for all t ∈ [t0, t1],
ψ(t)− η(t) ≥ ψ(t0)− η(t0) + (t− t0)(ψ̇ − ψd)[t0,t1]

≥ ε− (t1 − t0) max
{

0,−(ψ̇ − ψd)[t0,t1]

}
> 0.

From η̈(t) ≤ −λ on [t1, t2) it follows that, for all t ∈ [t1, t2],
η(t) ≤ η(t1) + (t− t1)η̇(t1)− λ

2 (t− t1)2

≤ η(t1) + (t− t1)ψd(t1)− λ
2 (t− t1)2,

hence
ψ(t)− η(t) ≥ ψ(t1) + (t− t1)ψ̇[t1,t2]

−
(
η(t1) + (t− t1)ψd(t1)− λ

2 (t− t1)2
)

≥ ψ(t0)− η(t0)︸ ︷︷ ︸
=ε

+p(t),
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Fig. 5: Simulation results for a time-varying safety distance and U+ = −U− = 8; for the time intervals [0.5, 3.5] and [36, 39]
zoomed plots are provided with additional plots of the discrete variables q1 and q (equivalently u(t)) . The remaining variables
are encoded as in Figure 4.

where p(t) := (t1 − t0)(ψ̇ − ψd)[t0,t1] + (t − t1)(
ψ̇[t1,t2] − ψd(t1)

)
+ λ

2 (t − t1)2. The parabola p(·)
obtains its minimum on [t1,∞) at tmin = t1 +

max
{

0,−
(
ψ̇[t1,t2] − ψd(t1)

)
/λ
}

with value

p(tmin) = (t1 − t0)(ψ̇ − ψd)[t0,t1]

+

(
ψd(t1)−ψ̇[t1,t2]

)
max

{
0,ψd(t1)−ψ̇[t1,t2]

}
2λ .

This concludes the proof.

Corollary 6.2 (Conservative overshoot bound): Assume
η, ψ, ψd : R≥0 → R have the same properties
as in Lemma 6.1 with respect to the intervals
[t0, t1] ⊆ [t1, t2] ⊆ R≥0, then η(t) < ψ(t) for all
t ∈ [t0, t2] if, with ε := ψ(t0)− η(t0),

ε > (t1 − t0)‖ψ̇ − ψd‖∞ + (‖ψd‖∞+‖ψ̇‖∞)2

2λ .
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