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ABSTRACT

This paper deals with control of hybrid systems based on
limited information about their state. Specifically, measure-
ments being passed from the system to the controller are
sampled and quantized, resulting in finite data-rate com-
munication. The main ingredient of our solution to this
control problem is a novel method for propagating over-
approximations of reachable sets for hybrid systems through
sampling intervals, during which the discrete mode is un-
known. In addition, slow-switching conditions of the (aver-
age) dwell-time type and multiple Lyapunov functions play
a central role in the analysis.

Categories and Subject Descriptors
H.1.1 [Models and Principles]: Systems and Information
Theory—general systems theory, information theory

Keywords
Hybrid systems, quantized control, reachable sets

1. INTRODUCTION
The topic of this paper is control of hybrid systems based

on limited information about their state. More precisely,
by “limited information” here we mean that measurements
being passed from the system to the controller are sam-
pled and quantized using a finite alphabet, resulting in fi-
nite data-rate communication. Our aim is to bring together
two research areas—hybrid systems and control with limited
information—which have both enjoyed a lot of activity in the
last two decades and made great impact on applications, but
synergy between which has been lacking.
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Hybrid systems are ubiquitous in realistic system mod-
els, because of their ability to capture the presence of two
types of dynamical behavior within the system: continuous
flow and discrete transitions. Amidst the large body of re-
search on hybrid and switched systems, particularly relevant
here is the work on stability analysis and stabilization of
such systems, covered in the books [36, 19], the survey [32],
and the many references therein. Among the specific techni-
cal tools typically employed to study these problems, com-
mon and multiple Lyapunov functions and slow-switching
assumptions are prominently featured. There is also recent
work that combines these Lyapunov-based approaches with
tools from program analysis like ranking functions and ab-
straction [28, 5].

Feedback control problems with limited information have
been an active research area for some time now, as surveyed
in [25] (several specifically relevant works will be cited be-
low). Information flow in a feedback control loop is an im-
portant consideration in many application-related scenarios.
One notable example is networked control systems, where
the controller is not collocated with the plant and both con-
trol and measurement signals are transmitted through a net-
work. Even though in modern applications a lot of communi-
cation bandwidth is usually available, there are also multiple
resources competing for this bandwidth (due to many con-
trol loops sharing a network cable or wireless medium). In
the networked control systems literature, Lyapunov analysis
and data-rate/transmission-interval bounds are commonly
employed tools [27, 26]. In many other applications, one has
constraints on the sensors dictated by cost concerns or phys-
ical limitations, or constraints on information transmission
dictated by security considerations. Besides multiple prac-
tical motivations, the questions of how much information is
really needed to solve a given control problem, or what inter-
esting control tasks can be performed with a given amount
of information, are quite fundamental from the theoretical
point of view.

Control problems with limited information do not seem to
have received much attention so far in the context of hybrid
systems. (One exception we are aware of is some existing
work on quantized Markov jump linear systems [24, 39, 22],
but these systems are quite different from the models we
consider, and the information structure considered in these
references implies that the discrete mode is always known to
the controller, which would remove most of the difficulties
present in our problem formulation. On the other hand,
control of hybrid systems with unknown discrete state was
also considered in [37] but there the continuous state was



not quantized.) In view of the commonality of the technical
tools employed for the analysis of hybrid systems and for
control design with limited information, evident from the
previous discussion, we contend that a marriage of these
two research areas is quite natural. In particular, multiple
Lyapunov functions and slow-switching assumptions of the
(average) dwell-time type will play a crucial role in our work.
In order to understand how much information is needed—

and how this information should be used—to control a given
system, we must understand how the uncertainty about the
system’s state evolves over time along its dynamics. In more
precise terms, we need to be able to characterize propagation
of reachable sets or their suitable over-approximations dur-
ing the sampling interval (for a known control input). The
reason is that at each sampling time, the quantizer singles
out a bounded set which contains the continuous state and
the controller determines the control signal to be applied to
the system over the next sampling interval; no further in-
formation about the state is available during this interval,
and at the next sampling time a bounded set containing
the state must be computed to generate the next quantized
measurement. The system will be stabilized if the factor by
which the state estimation error is reduced at the sampling
times is larger than the factor by which it grows between the
sampling times. Thus propagation of reachable set bounds
is a crucial ingredient in the available results on quantized
sampled-data control of non-hybrid systems (such as our
earlier work [18] which provides the basis for some of the
ideas presented here), and the bulk of the effort required to
handle the hybrid system scenario will be concentrated in
implementing this step and analyzing its consequences.
If the discrete state were precisely known to the controller

at each time, then the problem of reachable set propagation
would be just a sequence of corresponding problems for the
individual continuous modes, and as such would pose very
little extra difficulty. (This would essentially correspond to
the situation considered, in a discrete-time stochastic set-
ting, in [24].) On the other hand, if the discrete state were
completely unknown, then the set of possible trajectories of
the hybrid system would be too large to hope for a reason-
able (not overly conservative) solution. To strike a balance
between these two situations, we assume here that we have a
partial knowledge of the discrete state of the hybrid system;
specifically, we assume that the discrete state is known at
each sampling time, whereas its behavior between switching
times is unknown except for an upper bound on the number
of discrete transitions. Under these assumptions we imple-
ment a novel method for computing over-approximations of
reachable sets at the end of each sampling interval. If in
addition the allowed data rate is large enough, then we are
able to design a provably correct communication and control
strategy.
Our plan of attack on the problem described above is

as follows. As a first step, we consider switched systems
which can be viewed as high-level abstractions of hybrid
systems. Instead of having a precise model of the discrete
dynamics governing the transitions of the discrete state, in
a switched system the continuous dynamics are given ex-
plicitly (by ordinary differential equations) while discrete
dynamics are captured more abstractly by a class of possi-
ble switching signals which specify the discrete state as a
function of time. In other words, we basically first consider
systems with time-dependent switching (switched systems)

instead of systems with state-dependent switching (hybrid
systems). This system class allows us to focus our attention
on formulating an appropriate “slow-switching” assumption;
the relevant definitions are given in Section 2. We then de-
velop a novel method for propagating over-approximations
of reachable sets for such switched systems; this method is
described in Sections 3 and 4. With these two ingredients—a
slow-switching condition and an algorithm for reachable set
propagation—we are able to define and validate a control
strategy based on sampled and quantized measurements of
the continuous state; the analysis is sketched in Section 5
followed by a short simulation example in Section 6. After
this, we build a bridge to hybrid systems by returning to a
detailed description of the discrete dynamics in Section 7.

2. PROBLEM FORMULATION

2.1 Switched system
The system to be controlled is the switched linear control

system

ẋ = Aσx+Bσu, x(0) = x0 (1)

where x ∈ R
n is the state, u ∈ R

m is the control input,
{(Ap, Bp) : p ∈ P} is a collection of matrix pairs defin-
ing the individual control systems (“modes”) of the switched
system, P is a finite index set, and σ : [0,∞) → P is a right-
continuous, piecewise constant function called the switching
signal which specifies the active mode at each time. The
solution x(·) is absolutely continuous and satisfies the dif-
ferential equation away from the discontinuities of σ (in par-
ticular, we assume for now that there are no state jumps,
but state jumps can also be handled as explained in Sec-
tion 7.3). The switching signal σ is fixed but not known to
the controller a priori. The discontinuities of σ are called
“switching times” or simply “switches” and we let Nσ(t, s)
stand for their number on a semi-open interval (s, t]:

Nσ(t, s) := number of switches on (s, t].

Our first basic assumption is that the switching is not too
fast, in the following sense.

Assumption 1 (Slow Switching)

1. There exists a number τd > 0 (called a dwell time)
such that any two switches are separated by at least
τd, i.e., Nσ(t, s) ≤ 1 when t− s ≤ τd;

2. There exist numbers τa > τd (called an average dwell
time) and N0 ≥ 1 such that

Nσ(t, s) ≤ N0 +
t− s

τa
∀ t > s ≥ 0.

The concept of average dwell time was introduced in [13]
and has since then become standard; it includes dwell time
as a special case (for N0 = 1). Note that if the con-
straint τa > τd were violated, the average dwell-time condi-
tion (item 2) would be implied by the dwell-time condition
(item 1). Switching signals satisfying Assumption 1 were
considered in [38], where they were called “hybrid dwell-
time” signals.

Our second basic assumption is stabilizability of all indi-
vidual modes.



Assumption 2 (Stabilizability) For each p ∈ P the pair
(Ap, Bp) is stabilizable, i.e., there exists a state feedback gain
matrix Kp such that Ap +BpKp is Hurwitz (all eigenvalues
have negative real parts).

In the sequel, we assume that a family of such stabilizing
gain matrices Kp, p ∈ P has been selected and fixed. We
understand that (at least some of) the open-loop matrices
Ap, p ∈ P are not Hurwitz. Note, however, that even if
all the individual modes are stabilized by state feedback (or
stable without feedback), stability of the switched system is
not guaranteed in general.

2.2 Information structure
The task of the controller is to generate a control input

u(·) based on limited information about the state x(·) and
about the switching signal σ(·). The information to be com-
municated to the controller is subject to the following two
constraints.

Sampling: State measurements are taken at times tk := kτs,
k = 0, 1, 2, . . . , where τs > 0 is a fixed sampling period.

Quantization: Each state measurement x(tk) is encoded by
an integer from 0 to Nn, where N is an odd positive integer,
and sent to the controller. In addition, the value of σ(tk) ∈
P is also sent to the controller.

As a consequence, data is transmitted to the controller at
the rate of (log2(N

n + 1) + log2 |P|)/τs bits per time unit,
where |P| is the number of elements in P. We assume the
data transmission to be noise-free and delay-free. We take
the sampling period τs to be no larger than the dwell time
from Assumption 1 (item 1):

τs ≤ τd. (2)

This guarantees that at most one switch occurs within each
sampling interval.1 Since the average dwell time τa in As-
sumption 1 (item 2) is larger than τd, we know that switches
actually occur less often than once every sampling period.
The reason for taking the integer N to be odd is to ensure
that the control strategy described later preserves the equi-
librium at the origin.
Throughout the paper, we work with the ∞-norm ‖x‖∞ =

max1≤i≤n |xi| on R
n and the corresponding induced matrix

norm ‖A‖∞ = max1≤i≤n

∑n
j=1 |Aij | on R

n×n, both of which

we denote simply by ‖ · ‖. To formulate our final basic as-
sumption, we define

Λp := ‖eApτs‖, p ∈ P. (3)

Assumption 3 (Data Rate) Λp < N for all p ∈ P.

We can view the above inequality as a data-rate bound be-
cause it requires N to be sufficiently large relative to τs,
thereby imposing (indirectly) a lower bound on the avail-
able data rate. A very similar data-rate bound but for the
case of a single mode appears in [18], where it is shown to be
sufficient for stabilizing a non-switched linear system. That
bound is slightly conservative compared to known bounds

1This assumption is made for simplicity. It could be re-
laxed to allow multiple switches, up to a fixed number, per
sampling interval. This would make our formulas more com-
plicated but would not cause conceptual difficulties.

that characterize the minimal data rate necessary for stabi-
lization (see, e.g., [34], [15]). However, the control scheme
of [18] can be refined by tailoring it better to the structure of
the system matrix A, and then the data rate that it requires
will approach the minimal data rate (see also the discussion
in [31, Section V]). Therefore, it is fair to say that Assump-
tion 3 does not introduce a significant conservatism beyond
requiring that the data rate be sufficient to stabilize each
individual mode of the switched system (1).

2.3 Main objective
The control objective is to asymptotically stabilize the sys-

tem defined in Section 2.1 while respecting the information
constraints described in Section 2.2. More concretely, we
want to provide a constructive proof of the following result.

Theorem 1 (Main Result) Consider the switched linear
system (1) and let Assumptions 1–3 and the inequality (2)
hold. If the average dwell time τa is large enough, then
there exists an encoding and control strategy that yields the
following two properties:

Exponential convergence: There exist a number λ > 0 and
a function g : [0,∞) → (0,∞) such that for every initial
condition x0 and every time t ≥ 0 we have

‖x(t)‖ ≤ e−λtg(‖x0‖). (4)

Lyapunov stability: For every ε > 0 there exists a δ > 0 such
that

‖x0‖ < δ ⇒ ‖x(t)‖ < ε ∀ t ≥ 0. (5)

A precise lower bound on the average dwell time τa is
derived in the course of the proof (see the formula (24) in
Section 5). As for the function g in the exponential conver-
gence property, g(r) does not go to 0 as r → 0 and, in gen-
eral, g grows faster than any linear function at infinity (see
the formula (25) in Section 5 and the discussion at the end
of Section 4.3). For this reason, Lyapunov stability needs
to be established separately, and the two properties (expo-
nential convergence and Lyapunov stability) combined still
do not give the standard global exponential stability, but
rather just global asymptotic stability with an exponential
convergence rate.

The control strategy that we will develop to prove The-
orem 1 is a dynamic one: it involves an additional state
denoted by x̂. Theorem 1 only discusses the behavior of the
state x, which is the main quantity of interest, but it can
be deduced from the proof that the controller state x̂ satis-
fies analogous bounds. We will also see that x̂ is potentially
discontinuous at the sampling times tk (which are not syn-
chronized with the switching times of the original system);
in other words, our controller is a hybrid one.

3. BASIC ENCODING AND CONTROL
SCHEME

In this section we outline our encoding and control strat-
egy, assuming for now that the state x satisfies known
bounds at the sampling times. The problem of generating
such state bounds is solved in the next section.

First, suppose that at some sampling time tk0
we have

‖x(tk0
)‖ ≤ Ek0



where Ek0
> 0 is a number known to the controller. (In Sec-

tion 4.3 we will show how such a bound can be generated
for an arbitrary initial state x0, by using a “zooming-out”
procedure.) At the first such sampling time our controller
is initialized. The encoder works by partitioning the hyper-
cube {x ∈ R

n : ‖x‖ ≤ Ek0
} into Nn equal hypercubic boxes,

N per each dimension, and numbering them from 1 to Nn

in some specific way. It then records the number of the box
that contains2 x(tk0

) and sends it to the controller, along
with the value of σ(tk0

). We assume that the controller
knows the box numbering system used by the encoder, so it
can decode the box number. It lets ck0

∈ R
n be the center

of the box containing x(tk0
). We then have

‖x(tk0
)− ck0

‖ ≤ Ek0

N
.

For t ∈ [tk0
, tk0+1), the control is set to

u(t) = Kσ(tk0
)x̂(t)

where x̂ is defined to be the solution of

˙̂x = (Aσ(tk0
) +Bσ(tk0

)Kσ(tk0
))x̂ = Aσ(tk0

)x̂+Bσ(tk0
)u

with the boundary condition

x̂(tk0
) = ck0

.

At a general sampling time tk, k ≥ k0 +1, suppose that a
point x∗

k ∈ R
n and a number Ek > 0 are known such that

‖x(tk)− x∗
k‖ ≤ Ek. (6)

Of course the encoder has precise knowledge of x; the
quantities x∗

k and Ek have to be obtainable on the de-
coder/controller side, based on the knowledge of the system
matrices (but not the switching signal) and previously re-
ceived measurements. We explain later how such x∗

k and Ek

can be generated. The encoder also computes x∗
k and Ek in

the same way, to ensure that the encoder and the decoder
are synchronized. The encoding is then done as follows.
Partition the hypercube {x ∈ R

n : ‖x− x∗
k‖ ≤ Ek} into Nn

equal hypercubic boxes, N per each dimension. Send the
number of the box to the controller, along with the value of
σ(tk). On the decoder/controller side, let ck be the center
of the box containing x(tk). This gives

‖x(tk)− ck‖ ≤ Ek

N
(7)

and also

‖ck − x∗
k‖ ≤ N − 1

N
Ek. (8)

Note that the formula (8) is also valid for k = k0 if we set
x∗
k0

:= 0, a convention that we follow in the sequel. For
t ∈ [tk, tk+1) define the control, along the same lines as
before, by

u(t) = Kσ(tk)x̂(t)

where x̂ is the solution of

˙̂x = (Aσ(tk) +Bσ(tk)Kσ(tk))x̂ = Aσ(tk)x̂+Bσ(tk)u (9)

with the boundary condition

x̂(tk) = ck. (10)

2In case x(tk0
) lies on the boundary of several boxes, either

one of these boxes can be chosen.

The above procedure is to be repeated for each subse-
quent value of k. Note that x̂ is, in general, discontinu-
ous (only right-continuous) at the sampling times, and we
will use the notation x̂(t−k ) := limtրtk x̂(t). In the earlier
work [18], x∗

k was obtained directly from x̂ via x∗
k := x̂(t−k ).

On sampling intervals containing a switch this construction
no longer works, and the task of defining x∗

k as well as Ek

becomes more challenging.

4. STATE BOUNDS: REACHABLE SET
OVER-APPROXIMATIONS

Proceeding inductively, we start with known x∗
k and Ek

satisfying (6), where k ≥ k0, and show how to find x∗
k+1 and

Ek+1 such that

‖x(tk+1)− x∗
k+1‖ ≤ Ek+1. (11)

Generation of Ek0
is addressed at the end of the section.

4.1 Sampling interval with no switch
We first consider the simpler case when σ(tk) = σ(tk+1) =

p ∈ P. By (2) we know that no switch has occurred
on (tk, tk+1], since two switches would have been impos-
sible. So, we know that on the whole interval [tk, tk+1]
mode p is active. We can then proceed as in [18]. It is
clear from (1) and (9) that the error e := x − x̂ satisfies
ė = Ape on [tk, tk+1), and we know from (10) and (7) that
‖e(tk)‖ ≤ Ek/N , hence

‖e(t−k+1)‖ ≤ Λp
Ek

N
=: Ek+1 (12)

where Λp was defined in (3). It remains to let

x∗
k+1 := x̂(t−k+1) = e(Ap+BpKp)τsck (13)

and recall that x is continuous to see that (11) indeed holds.

4.2 Sampling interval with a switch
Suppose now that σ(tk) = p and σ(tk+1) = q 6= p. Then

again by (2) the controller knows that exactly one switch,
from mode p to mode q, has occurred somewhere on the
interval (tk, tk+1], but it does not know exactly where. This
case is more challenging.

Let the (unknown) time of the switch from p to q be tk+ t̄,
where t̄ ∈ (0, τs].

4.2.1 Analysis before the switch

On [tk, tk+ t̄) mode p is active, and we can derive as before
that

‖x(tk + t̄)− x̂(tk + t̄)‖ ≤ ‖eAp t̄‖Ek

N
.

But x̂(tk + t̄) is unknown, so we need to describe a set that
contains it. Choose an arbitrary t′ ∈ [0, τs] (which may vary
with k). By (9) and (10) we have3

x̂(tk + t′) = e(Ap+BpKp)t
′

ck (14)

and

x̂(tk + t̄) = e(Ap+BpKp)(t̄−t′)x̂(tk + t′)

3In case either tk + t′ or tk + t̄ equals tk+1, the value of x̂ at
that time should be replaced by the left limit x̂(tk + t′−) or
x̂(tk + t̄−), respectively.



hence

‖x̂(tk + t̄)− x̂(tk + t′)‖
≤ ‖e(Ap+BpKp)(t̄−t′) − I‖‖x̂(tk + t′)‖
≤ ‖e(Ap+BpKp)(t̄−t′) − I‖‖e(Ap+BpKp)t

′

‖‖ck‖.
We also have from (8) that

‖ck‖ ≤ ‖x∗
k‖+

N − 1

N
Ek. (15)

By the triangle inequality, we obtain

‖x(tk + t̄)− x̂(tk + t′)‖
≤ ‖e(Ap+BpKp)(t̄−t′) − I‖‖e(Ap+BpKp)t

′

‖

×
(

‖x∗
k‖+

N − 1

N
Ek

)

+ ‖eAp t̄‖Ek

N
=: Dk+1(t̄).

4.2.2 Analysis after the switch

On the interval [tk+ t̄, tk+1), the closed-loop dynamics are
(

ẋ
˙̂x

)

=

(

Aq BqKp

0 Ap +BpKp

)(

x
x̂

)

. (16)

Letting

z :=

(

x
x̂

)

, Āpq :=

(

Aq BqKp

0 Ap +BpKp

)

(17)

we can write (16) in the more compact form

ż = Āpqz. (18)

The previous analysis shows that

∥

∥

∥
z(tk + t̄)−

(

x̂(tk + t′)
x̂(tk + t′)

)

∥

∥

∥
≤ Dk+1(t̄)

(noting the property ‖(aT , bT )T ‖ ≤ max{‖a‖, ‖b‖} of the
∞-norm). Consider the auxiliary system copy (on R

2n)

˙̄z = Āpq z̄, z̄(0) =

(

x̂(tk + t′)
x̂(tk + t′)

)

.

We have

‖z(t−k+1)− z̄(τs − t̄)‖ ≤ ‖eĀpq(τs−t̄)‖Dk+1(t̄).

We now need to generate a bound for the unknown z̄(τs− t̄).
Similarly to what we did before, pick a t′′ ∈ [0, τs]. Then

z̄(t′′) = eĀpqt
′′

z̄(0) and z̄(τs− t̄) = eĀpq(τs−t̄−t′′)z̄(t′′), hence

‖z̄(τs − t̄)− z̄(t′′)‖ ≤ ‖eĀpq(τs−t̄−t′′) − I‖‖z̄(t′′)‖
≤ ‖eĀpq(τs−t̄−t′′) − I‖‖eĀpqt

′′

‖‖z̄(0)‖
= ‖eĀpq(τs−t̄−t′′) − I‖‖eĀpqt

′′

‖‖x̂(tk + t′)‖
≤ ‖eĀpq(τs−t̄−t′′) − I‖‖eĀpqt

′′

‖‖e(Ap+BpKp)t
′

‖

×
(

‖x∗
k‖+

N − 1

N
Ek

)

where we used (14) and (15) in the last step. By the triangle
inequality,

‖z(t−k+1)− z̄(t′′)‖ ≤ ‖eĀpq(τs−t̄−t′′) − I‖

× ‖eĀpqt
′′

‖‖e(Ap+BpKp)t
′

‖
(

‖x∗
k‖+

N − 1

N
Ek

)

+ ‖eĀpq(τs−t̄)‖Dk+1(t̄) =: Ek+1(t̄).

To eliminate the dependence on the unknown t̄, we take the
maximum over t̄ (with t′ and t′′ fixed as above):

Ek+1 := max
0≤t̄≤τs

Ek+1(t̄) = max
0≤t̄≤τs

{

‖eĀpq(τs−t̄−t′′) − I‖

× ‖eĀpqt
′′

‖‖e(Ap+BpKp)t
′

‖
(

‖x∗
k‖+

N − 1

N
Ek

)

+ ‖eĀpq(τs−t̄)‖
(

‖e(Ap+BpKp)(t̄−t′) − I‖‖e(Ap+BpKp)t
′

‖

×
(

‖x∗
k‖+

N − 1

N
Ek

)

+ ‖eAp t̄‖Ek

N

)}

.

We can use the inequalities

‖M − I‖ ≤ ‖M‖+ 1, ‖eAs‖ ≤ e‖A‖s (19)

to obtain a more conservative upper bound which is more
useful for computations:

Ek+1 ≤
(

e‖Āpq‖max{t′′,τs−t′′} + 1
)

‖eĀpqt
′′

‖‖e(Ap+BpKp)t
′

‖

×
(

‖x∗
k‖+

N − 1

N
Ek

)

+ e‖Āpq‖τs

×
(

(

e‖Ap+BpKp‖max{t′,τs−t′} + 1
)

‖e(Ap+BpKp)t
′

‖

×
(

‖x∗
k‖+

N − 1

N
Ek

)

+ e‖Ap‖τs Ek

N

)

.

Note that setting t′ = t′′ = 0 simplifies the formulas but
does not necessarily minimize Ek+1. Finally, x

∗
k+1 is defined

by projecting z̄(t′′) onto the x-component:

x∗
k+1 : =

(

In×n 0n×n

)

z̄(t′′)

=
(

In×n 0n×n

)

eĀpqt
′′

(

x̂(tk + t′)
x̂(tk + t′)

)

(20)

=
(

In×n 0n×n

)

eĀpqt
′′

(

In×n

In×n

)

e(Ap+BpKp)t
′

ck.

4.3 Initial state bound Ek0

Initially, set the control to u ≡ 0. At time 0, choose an
arbitrary E0 > 0 and partition the hypercube {x ∈ R

n :
‖x‖ ≤ E0} into Nn equal hypercubic boxes, N per each
dimension. If x0 belongs to one of these boxes, then send
the number of the box to the controller. Otherwise send
0 (the “overflow” symbol). Choose an increasing sequence
E1, E2, . . . that grows fast enough to dominate the rate of
growth of the open-loop dynamics. For example, we can
pick a small ε > 0 and let

Ek := e(2+ε)maxp∈P ‖Ap‖tkE0, k = 1, 2, . . . (21)

There are other options but for concreteness we assume that
the specific “zooming-out” sequence (21) is implemented.
Repeat the above encoding procedure at each step. (As long
as the quantization symbol is 0, there is no need to send the
value of σ to the controller.) Then we claim that there will
be a time tk0

such that, for the corresponding value Ek0
,

the symbol received by the controller will not be 0. At this
time, the encoding strategy described in Section 3 can be
initialized.

We skip the proof that k0 is well defined but mention
that there exist functions η : [0,∞) → Z≥0 and γ : [0,∞) →
(0,∞) such that

k0 ≤ η(‖x0‖), Ek0
≤ γ(‖x0‖) (22)



and

‖x(t)‖ ≤ γ(‖x0‖) ∀ t ∈ [0, tk0
]. (23)

Both functions depend on the initial choice of E0. We can
pick them so that η(r) = 0 and γ(r) = E0 for all r ≤ E0. For
large values of its argument, γ(·) is in general super-linear.
In fact, we can calculate that γ(r) is of the order of r2/E0,
and η(r) is of the order of (maxp∈P ‖Ap‖τs)−1 log(r/E0), for
large values of r.

5. STABILITY VERIFICATION
We only sketch very briefly the main steps of the stability

proof. First, consider a sampling interval with no switch:
σ ≡ p on [tk, tk+1]. Rewrite (13) as

x∗
k+1 = e(Ap+BpKp)τsck = e(Ap+BpKp)τs(x∗

k + (ck − x∗
k)).

This is an exponentially stable discrete-time system with
input ∆k := ck − x∗

k. We know from (8) that ‖∆k‖ ≤
Ek(N − 1)/N , whereas (12) and Assumption 3 give us
Ek+1 = EkΛp/N < Ek. We see that, as long as there are
no switches, Ek decays exponentially, hence the overall “cas-
cade” system describing the joint evolution of x∗

k and Ek is
exponentially stable. This fact can be formally proved by
constructing a Lyapunov function in the form of a sum of a
positive definite quadratic form in x∗

k and a positive multiple
of E2

k:

Vp(x
∗
k, Ek) := (x∗

k)
TPpx

∗
k + ρpE

2
k

which can be shown to satisfy, on a sampling interval with
no switch that we are considering,

Vp(x
∗
k+1, Ek+1) ≤ νVp(x

∗
k, Ek)

for some number ν < 1 that can be precisely computed.
Next, if a sampling interval [tk, tk+1] contains a switch

from σ = p to σ = q, then the above mode-dependent Lya-
punov function satisfies

Vq(x
∗
k+1, Ek+1) ≤ µVp(x

∗
k, Ek)

for some µ > 1 which again can be computed. It can now
be shown that Vσ(tk)(x

∗
k, Ek) converges to 0 exponentially

fast if the average dwell time τa introduced in Assumption 1
satisfies the lower bound

τa ≥ mτs, m > 1 +
log µ

log 1
ν

. (24)

From this, the same exponential convergence property holds
for x(tk) and, with a bit of extra effort needed to analyze
the intersample behavior, can be established for x(t). Specif-
ically, recalling (22) and (23), we can establish the desired
exponential convergence property (4) with

λ :=
1

2τs
log

1

θ
, θ := µ1/mν(m−1)/m < 1

and

g(r) := c̄
( 1√

θ

)1+η(r)

γ(r). (25)

Finally, the proof of Lyapunov stability proceeds along the
lines of [18, 20].

6. SIMULATION EXAMPLE
We simulated the above control strategy with the fol-

lowing data: P = {1, 2}, A1 =

(

1 0
0 −1

)

, B1 =

(

1
0

)

,

K1 =
(

−2 0
)

, A2 =

(

0 1
−1 0

)

, B2 =

(

0
1

)

, K2 =
(

0 −1
)

,

x0 = (2, 2)T , E0 = 0.5, τs = 0.5, N = 5 (Assumption 3 is
satisfied), τd = 1.05, τa = 7.55, and N0 = 5. Figure 1 plots a
typical behavior of the first component x1 of the continuous
state (in solid red) and the corresponding component x̂1 of
the state estimate (in dashed green) versus time; switches
are marked by blue circles. Observe the initial “zooming-
out” phase and the nonsmooth behavior of x when x̂ experi-
ences a jump (causing a jump in the control u). The above
value of the average dwell time τa was picked empirically
to be just large enough to provide consistent convergence in
simulations. For this example, the theoretical lower bound
on the average dwell time from the formula (24) is about
85.5 which is, not surprisingly, quite conservative.
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Figure 1: Simulation example

7. HYBRID SYSTEMS
In a hybrid system, the abstract notion of the switching

signal σ that we used to define the switched system (1) is
replaced (or, we may say, realized) by a discrete dynamics
model which generates the sequence of modes, based typi-
cally on the evolution of the continuous state. Many specific
modeling formalisms for hybrid systems exist in the litera-
ture, but a common paradigm which we also have in mind
here is that each mode corresponds to a region in the con-
tinuous state space (sometimes called the invariant for that
mode) where the corresponding continuous dynamics are ac-
tive, and transitions (or switchings) between different modes
take place when the continuous state x crosses boundaries
(called switching surfaces, or guards) between these regions.
At the times of these discrete transitions, the value of x in
general can also jump to a new value according to some reset
map.

Thus, compared to the switched system model (1), the two
main new aspects that must be incorporated are switching
surfaces and state jumps. We will address both these aspects
in what follows. However, since we saw that propagating
(over-approximations of) reachable sets is a key ingredient
of our control strategy, we first discuss some relevant prior



work on reachable set computation for hybrid systems in
order to put our present developments in a proper context.

7.1 Comparison with existing reachable set
algorithms

Without aiming for completeness, we give here an
overview of some representative results. We classify them
roughly according to the type of dynamics in the considered
hybrid system model and the shapes of the sets used for
reachable set approximation.
Early work by Puri, Borkar, and Varaiya on differential

inclusions [30] approximates a general nonlinear differential
inclusion by a piecewise constant one, and computes over-
approximations of reachable sets which are unions of poly-
hedra. Henzinger et. al. [12] and Preußig et. al. [29] ap-
proximate hybrid systems by rectangular automata (hybrid
systems whose regions and flow in each region are defined
by constant lower and upper bounds on state and velocity
components, respectively) and base reachable set computa-
tion on the tool HyTech; Frehse later developed a refined
tool, PHAVer [6], for a similar purpose. Also related to this
is reachability analysis using “face lifting” [4]. Asarin et. al.
[1, 2] work with linear dynamics and rectangular polyhedra
and develop the tool called d/dt. They reduce the conser-
vatism due to the so-called “wrapping effect” by combin-
ing propagation of exact reachable sets at sampling instants
with convex over-approximation during intersample inter-
vals. Similar ideas appeared in the earlier work of Green-
street and Mitchell [10] who also handle nonlinear models
and non-convex polyhedra by using two-dimensional projec-
tions. Mitchell et. al. [23, 35] work with general nonlin-
ear dynamics and compute reachable sets as sublevel sets of
value functions for differential games, which are solutions of
Hamilton-Jacobi PDEs. Kurzhanski and Varaiya [17] work
with affine open-loop dynamics and use ellipsoids for reach-
able set approximation (based on ellipsoidal methods for
continuous systems developed in their prior work). They
handle discrete transitions by taking the union of reachable
sets over possible switching times and covering it with one
bounding ellipsoid. Chutinan and Krogh [3] compute op-
timal polyhedral approximations of continuous flow pipes
for general nonlinear dynamics, using the tool CheckMate.
Stursberg and Krogh [33] work with nonlinear dynamics and
“oriented rectangular hulls” relying on principal component
analysis. Girard et. al. [8, 9] use a procedure similar to that
of Asarin et. al. mentioned earlier, but work with zonotopes
(affine transforms of hypercubes) which allow more efficient
computation for linear dynamics. More recently, this ap-
proach was refined with the help of support-function repre-
sentations [11] and the accompanying tool SpaceEx [7] was
developed. Another example of very recent work in this area
is the result of [16] on computation of ε-reach sets.
There are several similarities between our method and the

previous ones just mentioned. Like d/dt and related tech-
niques, we also reduce the conservatism due to the “wrap-
ping effect” by making a distinction between sampling and
intersample approximations (although we do not present
the analysis of our method at sufficient level of detail to
fully demonstrate this point here, it should be clear that
the bounds derived in Section 4 are valid at sampling times
only). Also, similarly to Kurzhanski and Varaiya, we handle
discrete transitions by taking the union of reachable sets over
possible switching times and covering it with one bounding

set, except we work with hypercubes rather than ellipsoids.
On the other hand, in spite of the multitude of available
methods, these methods were designed for reachability ver-
ification and are not directly tailored to control problems of
the kind considered here. There are at least two important
reasons why we prefer to build on the method from Section 4
rather than just adopt one of the above methods for dealing
with hybrid systems:

i) The methods just mentioned are computational (on-
line) in nature; by this we mean that approximations of
reachable sets are generated in real time as the system
evolves. By contrast, the method from Section 4 is ana-
lytical (off-line). Indeed, the size of the reachable set bound
Ek at each time step, as well as the center point x∗

k, are
obtained iteratively from the formulas given in Section 4. In
other words, knowing the system data (the matrices Ap and
Bp as well as the control gains Kp), we can pre-compute
these bounds; there is no need to synchronize their compu-
tation with the evolution of the system. Consequently, the
corresponding lower bound on the data rate required for sta-
bilization can be obtained a priori, which makes more sense
in the context of applications where communication strate-
gies are designed separately from on-line control tasks. (On
the negative side, this makes the bounds on reachable sets
that our method provides more conservative.)

ii) Our method is tailored specifically to linear dynamics
and to sets in the shapes of hypercubes. Our choice of hyper-
cubes as bounding sets is very natural from the point of view
of quantizer design with rectilinear quantization boxes, such
as those arising from simple sensors. (However, in other ap-
plication contexts it may be possible to work with different
set shapes. For example, zonotopes—which are affine trans-
forms of hypercubes—would correspond to pre-processing
the continuous state by an affine transformation before pass-
ing it to a digital encoder; this generalization appears to be
quite promising for more efficient computations.)

7.2 Switching surfaces
With regards to hybrid systems where mode switching

occurs on switching surfaces, the first observation is that
our Theorem 1 already covers such systems, because our
reachable set over-approximation is computed by taking the
union over all possible switching times t̄ (see Section 4).
Indeed, a switched system admits more solutions than a hy-
brid system (for which it serves as a high-level abstraction),
and so our stabilization result conservatively captures the
hybrid system solutions. The main issue is to verify that
a given hybrid system fulfills the slow-switching assumption
(Assumption 1), i.e., that all solutions satisfy the dwell-time
and average dwell-time properties specified there. This can
be difficult, but is possible in some cases. Notable exam-
ples are hybrid systems whose switching surfaces are con-
centric circles with respect to some norm, or lines through
the origin in the plane. (Average dwell time is not directly
helpful but in these cases we can compute dwell time, as-
suming linear dynamics in each mode.) Some more inter-
esting examples where time-dependent properties (of dwell-
time type) are established a posteriori for control systems
with state-dependent switching can be found in [14], [21].
Thus, translating a hybrid system to a switched system and
applying our previous result off-the-shelf via verifying the
slow-switching condition can actually be a reasonable route



to follow. In fact, since our strategy guarantees containment
of the reachable set at each sampling time within a bounding
hypercube, we can just run it and verify empirically whether
or not the switching is slow enough for convergence. This
is what we actually did in the simulation example given in
Section 6. This in some sense moves us closer to the on-line
computational methods cited above.
A better approach, however, is to improve our reachable

set bounds by explicitly incorporating the information avail-
able in a hybrid system about where in the continuous state
space the switching can occur. Recall that our informa-
tion structure makes the current mode available to the con-
troller at each sampling time tk. So, for example, if we
know as in Section 4.1 that no switch has occurred on an
interval (tk, tk+1] and σ(t) = p there, then the hypercube
{x ∈ R

n : ‖x−x∗
k+1‖ ≤ Ek+1}, which contains the reachable

set at time t = tk+1, can be reduced by intersecting it with
the invariant for mode p. In other words, if a guard passes
through this hypercube then we keep only the portion lying
on that side of the guard on which mode p is active; the point
x∗
k+1 can also be redefined at this step. The resulting reduc-

tion in the size of the bounding set can be quite significant,
especially if the set {x : ‖x− x∗

k‖ ≤ Ek} at time t = tk was
close to some of the switching surfaces. (Note, however, that
if the reachable set over-approximation at time tk+1 must be
a hypercube, then some or all of this size reduction might
become undone when passing to a bounding hypercube.)
Or, consider the situation of Section 4.2 where a sampling
interval (tk, tk+1] contains a switch from σ = p to σ = q at
an unknown time t̄. The bounding set before the switch,
{x : ‖x − x̂(tk + t′)‖ ≤ Dk+1(t̄)} (see Section 4.2(a)) can
be reduced in the same way as above by intersecting it with
the invariant for mode p. (Since t̄ is unknown, we should ei-
ther treat it as a parameter for this computation or take the
maximum over t̄ first; (19) is helpful for doing the latter.)
Then, when this possibly reduced intermediate bounding set
is used to calculate the bounding set after the switch, which
we previously defined as {x : ‖x− x∗

k+1‖ ≤ Ek+1} (see Sec-
tion 4.2(b)), we may reduce it again, this time intersecting
it with the invariant for mode q. Overall, this can lead to
a significant reduction in the size of the reachable set over-
approximation compared to the method of Section 4 which
does not assume any relation between the continuous state
x and the switching signal (but again, working with hyper-
cubes would not allow us to take full advantage of this size
reduction). Additionally, the knowledge of switching sur-
faces can be used to obtain some information about the un-
known switching time t̄: for example, if at time tk we are far
from any switching surface, then using the system dynamics
we can calculate a lower bound on the time that must pass
before a switch can occur.

7.3 State jumps
The reachable set propagation method of Section 4 as-

sumes that there are no state jumps at the switching times,
i.e., the reset map is the identity. However, it is not very
difficult to augment it to nontrivial reset maps. Specifically,
if we have a reset map Rpq : Rn → R

n which defines the new
state Rpq(x) to which x jumps at the time of mode transition
from p to q, all we need is a knowledge of some affine Lips-
chitz bound of the form ‖Rpq(x1)−Rpq(x2)‖ ≤ a‖x1−x2‖+b.
Then, we can apply the transformations c 7→ Rpq(c) and
D 7→ aD + b to the reachable set over-approximations of

the form {x : ‖x − c‖ ≤ D} obtained at each time that
corresponds to a switch (these times are tk + t̄ on sampling
intervals containing a switch, see Section 4.2). We can con-
tinue working with hypercubes because after incorporating
resets in this way we still obtain hypercubes. We see that
accounting for state jumps does not lead to substantial com-
plications in our reachable set algorithm. (The same claim is
true for most of the other existing reachable set algorithms
from the literature: many of them assume the identity reset
map but can be generalized with not much difficulty.) The
stability analysis can proceed similarly, with the constants
a, b affecting the evolution of the Lyapunov function and
leading to a modified average dwell time bound.

8. CONCLUSIONS
We presented a result on sampled-data quantized state

feedback stabilization of switched linear systems, which re-
lies on a slow-switching condition and a novel method for
propagating over-approximations of reachable sets. We ex-
plained how this result can be applied in the setting of hybrid
systems, where it can actually be improved. Future work
will focus on refining the reachable set bounds (possibly by
combining our method with other known reachable set algo-
rithms for hybrid systems) and on addressing more general
systems with external disturbances, output measurements,
and nonlinear dynamics.
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