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Lyapunov-Based Small-Gain Theorems for
Hybrid Systems

Daniel Liberzon, Fellow, IEEE, Dragan Nešić, Fellow, IEEE, and Andrew R. Teel, Fellow, IEEE

Abstract—Constructions of strong and weak Lyapunov func-
tions are presented for a feedback connection of two hybrid
systems satisfying certain Lyapunov stability assumptions and a
small-gain condition. The constructed strong Lyapunov functions
can be used to conclude input-to-state stability (ISS) of hybrid
systems with inputs and global asymptotic stability (GAS) of
hybrid systems without inputs. In the absence of inputs, we also
construct weak Lyapunov functions nondecreasing along solutions
and develop a LaSalle-type theorem providing a set of sufficient
conditions under which such functions can be used to conclude
GAS. In some situations, we show how average dwell time (ADT)
and reverse average dwell time (RADT) “clocks” can be used
to construct Lyapunov functions that satisfy the assumptions of
our main results. The utility of these results is demonstrated
for the “natural” decomposition of a hybrid system as a feed-
back connection of its continuous and discrete dynamics, and
in several design-oriented contexts: networked control systems,
event-triggered control, and quantized feedback control.

Index Terms—Hybrid system, input-to-state stability, Lyapunov
function, small-gain theorem.

I. INTRODUCTION

S TABILITY theory for nonlinear systems benefits im-
mensely from the consideration of interconnections of

dissipative systems, which allows one to build the analysis
of large systems from properties of smaller subsystems. In
this context, passivity and small-gain theorems play a central
role as they apply to a feedback connection of two systems
which is canonical in control engineering and commonly arises
in a range of other situations. These results are invaluable
tools in the analysis and design of nonlinear systems for es-
tablishing stability and robustness properties of the feedback
interconnection.

Small-gain theorems involving linear input-output gains are
now regarded as classical and a good account of these tech-
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niques can be found in [10]. In the nonlinear context, it was
realized in [30] that working with linear gains is too restrictive
and a small-gain result for monotone stability was developed.
Moreover, the notion of input-to-state stability (ISS) proposed
by Sontag [37] turned out to be very natural for formulating
general small-gain theorems with nonlinear gains, as first il-
lustrated in [17] for continuous-time systems. Further results
on small-gain theorems can be found in [8], [20], [27], [28]
and references cited therein. Such results were shown to be
extremely useful in design of general control systems and they
have already become a part of standard texts on nonlinear
control [15].

Lyapunov functions are central tools in this context as they
not only serve as certificates of stability and simplify stabil-
ity proofs, but also provide means to quantify robustness or
redesign the controller to improve robustness of the feedback
connection [21]. Small-gain theorems are particularly useful
for construction of Lyapunov functions by using ISS Lyapunov
functions of the subsystems in the feedback loop with an
appropriate small-gain condition. This approach was first used
for the special case of cascades of continuous-time systems [38]
and discrete-time systems [33]. A Lyapunov-based small-gain
theorem for general feedback connections was first reported
for continuous-time systems [16] and then for discrete-time
systems [22].

Hybrid systems combine features of continuous-time and
discrete-time systems and, hence, are harder to analyze than
their continuous and discrete counterparts. Viewing hybrid
systems as feedback connections of smaller subsystems opens
the door for the application of small-gain theorems to hybrid
systems. For example, many hybrid systems can be regarded
as feedback connections of their continuous and discrete dy-
namics. First trajectory-based small-gain theorems for classes
of hybrid systems were reported in [32] and [19]. Lyapunov-
based small-gain theorems for a class of hybrid systems were
first presented in [24]. These theorems were shown to be useful
in a range of applications, such as networked and quantized
control systems [6], [32].

Recent progress in the area of hybrid control systems [11]
has led to a new class of hybrid models that are proving to be
very general and natural from the point of view of Lyapunov
stability theory [5]. An appropriate extension of ISS Lyapunov
functions for this class of hybrid systems was reported in [2].
A Lyapunov small-gain theorem that proposes a construction
of strict Lyapunov functions via a small-gain argument and ISS
Lyapunov functions of two subsystems modeled via the frame-
work of [11] was reported in [35]; results in [35] are similar to
[24] but they are more general and apply to a different class
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of models. Results in [35] were recently extended in [9] to
construct strict Lyapunov functions for a network of hybrid
systems. A very similar construction is given in [36] to provide
a Lyapunov function for verifying input-output stability of hy-
brid systems. The more recent results in [26] use constructions
similar to [35] to construct weak Lyapunov functions for hybrid
systems that can be used to conclude stability via LaSalle-type
theorems. We concentrate on Lyapunov small-gain theorems
within the hybrid modeling framework proposed in [11] but the
idea is more general and naturally applies to hybrid systems
modeled differently too; see [24] and [29].

This paper is motivated by early work in [24] and [32] and
builds directly on results in [26] and [35]; its goal is to unify
and generalize the ideas and results from these preliminary
conference papers. We first propose a construction of strict
Lyapunov functions via small-gain theorems. As the assump-
tions needed are strong in general, we show how one can
use average dwell time (ADT) and reverse average dwell time
(RADT) conditions to modify Lyapunov functions so that they
satisfy our assumptions. Then, we construct weak (nonstrictly
decreasing) Lyapunov functions via small-gain arguments. A
novel LaSalle-type theorem is presented which generalizes a
result from [26]; this theorem can be used in conjunction with
our Lyapunov constructions to infer global asymptotic stability
of the hybrid system. Finally, we show how our results can
be used to unify, generalize, derive new and interpret some
known results in the literature. In particular, we demonstrate
that quantized control systems [1] and event-triggered control
[39] can be analyzed in a novel manner. We also consider a
“natural” decomposition of the hybrid system as a feedback
connection of its continuous and discrete parts. We show that
results on networked control systems [34] can be interpreted
within the proposed analysis framework (a different construc-
tion of Lyapunov functions for networked control systems that
does not directly fit our framework was derived in [6]).

The paper is organized as follows. In Section II we present
background and mathematical preliminaries. Section III con-
tains the main results of the paper. Modification of Lyapunov
functions via ADT and RADT conditions is discussed in
Section IV. Our results are applied to several examples of
hybrid systems in Section V. A summary concludes the paper.

II. PRELIMINARIES

Our results are presented for locally Lipschitz Lyapunov
functions for which we cannot use classical derivatives;
we opt to use the so-called Clarke derivative which is a
widely accepted generalization of the classical derivatives in
non-smooth analysis [7]. It plays the same role for locally
Lipschitz functions as the classical derivative does for continu-
ously differentiable (C1) functions. We note that our construc-
tion of Lyapunov functions for feedback systems is such that
even if the Lyapunov functions for subsystems are C1, the com-
posite Lyapunov function is typically not C1 since it is defined
to be a maximum of two functions. The Clarke derivative is
defined as follows: for a locally Lipschitz function U : Rn →
R and a vector v ∈ R

n, U ◦(x; v) := lim suph→0+,y→x(U(y +
hv)− U(y))/h. For a C1 function U(·), the Clarke deriva-

tive U ◦(x; v) reduces to the standard directional derivative
〈∇U(x), v〉, where ∇U(·) is the (classical) gradient. The
following is a direct consequence of [7, Propositions 2.1.2
and 2.3.12].

Lemma II.1: Consider two functions U1 : Rn → R and U2 :
R

n → R that have well-defined Clarke derivatives for all x∈
R

n and v∈R
n. Introduce three sets A :={x : U1(x)>U2(x)},

B :={x :U1(x)<U2(x)}, Γ :={x :U1(x)=U2(x)}. Then, for
any v ∈ R

n, the function U(x) := max{U1(x), U2(x)} satis-
fies U ◦(x; v) = U ◦

1(x; v) for all x ∈ A, U ◦(x; v) = U ◦
2(x; v)

for all x ∈ B, and U ◦(x; v) ≤ max{U ◦
1(x; v), U

◦
2(x; v)} for

all x ∈ Γ.
The following lemma was proved in [16] and it will be used

in our main results.
Lemma II.2: Let1 χ1, χ2 ∈ K∞ satisfy χ1 ◦ χ2(r) < r for

all r > 0 (“small-gain condition”). Then, there exists a function
ρ ∈ K∞ that is C1 on (0,∞) and satisfies χ1(r) < ρ(r) <
χ−1
2 (r) and ρ′(r) > 0 for all r > 0.
Motivated by hybrid system models proposed in [12], we

consider hybrid systems with inputs described by a combination
of continuous flow and discrete jumps, of the form (see also [2])

ẋ ∈F (x,w), (x,w) ∈ C

x+ ∈G(x,w), (x,w) ∈ D (1)

where x ∈ R
n, w ∈ R

m, C and D are closed subsets of Rn ×
R

m, and F and G are set-valued maps from R
n × R

m to
R

n. The solutions of the hybrid system are defined on so-
called hybrid time domains. A set E ⊂ R≥0 × Z≥0 is called
a compact hybrid time domain if E = ∪J

j=0([tj , tj+1], j) for
some finite sequence of times 0 = t0 ≤ t1 ≤ · · · ≤ tJ+1. E
is a hybrid time domain if for all (T, J) ∈ E, E ∩ ([0, T ]×
{0, 1, . . . , J}) is a compact hybrid time domain. A hybrid
signal is a function defined on a hybrid time domain. A
hybrid input is a hybrid signal w : domw → R

m such that
w(·, j) is Lebesgue measurable and locally essentially bounded
for each j. A hybrid arc is a hybrid signal x : domx →
R

n such that x(·, j) is locally absolutely continuous for
each j. A hybrid arc x : domx → R

n and a hybrid input
w : domw → R

m are a solution pair to the hybrid model
(1) if: domx = domw; for all j ∈ Z≥0 and almost all t ∈
R≥0 such that (t, j) ∈ domx we have (x(t, j), w(t, j)) ∈ C
and ẋ(t, j) ∈ F (x(t, j), w(t, j)); for (t, j) ∈ domx such that
(t, j + 1) ∈ domx we have (x(t, j), w(t, j)) ∈ D and x(t, j +
1) ∈ G(x(t, j), w(t, j)). Here, x(t, j) represents the state of the
hybrid system after t time units and j jumps. Under suitable
assumptions on the data (C,D,F,G) of the hybrid system (see,
e.g., [12, Prop. 2.4] or [11, p. 44]) one can establish local
existence of solutions, which may be non-unique; this basically
boils down to checking that flow is possible from every x ∈
C \D. While not directly needed for our Lyapunov function
constructions, local existence of solutions will be assumed

1A continuous function γ : R≥0 → R≥0 is of class K if it is zero at zero and
strictly increasing. It is of class K∞ if it is unbounded; note that K∞ functions
are globally invertible. A function β : R≥0 × R≥0 → R≥0 is of class KL if
β(·, t) is of class K for each fixed t ≥ 0 and β(r, t) is decreasing to zero as
t → ∞ for each fixed r ≥ 0.
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whenever we talk about properties of system trajectories. A
solution is called complete if its domain is unbounded.

We now define basic asymptotic properties of solutions that
are of interest to us, and which we will be able to establish
as eventual consequences of our Lyapunov function construc-
tions. The first property is useful mainly for systems with no
disturbances (or for when the disturbance is 0 or does not have
any influence on the system dynamics); the second property
characterizes the desired response to inputs. These stability
properties are standard in the nonlinear systems literature; for
hybrid system models considered here, they are discussed in
[11] and [2], respectively. For simplicity, we limit ourselves
here to global properties. Consider a compact set A ⊂ R

n, and
let | · | be the Euclidean norm on R

n. A continuous function
ω : Rn → R≥0 is called a proper indicator for A if ω(x) = 0 if
and only if x ∈ A, and ω(x) → ∞ when |x| → ∞. The hybrid
system (1) is globally pre-asymptotically stable (pre-GAS) with
respect to the set A if all its solutions satisfy2

ω (x(t, j)) ≤ β (ω (x(0, 0)) , t+ j) ∀(t, j) ∈ dom x (2)

where ω is a proper indicator for A and β is a function of class
KL. When A = {0}, we just say that the system is pre-GAS.

Remark II.1: We work with proper indicator functions for
A since our results lead naturally to such stability proper-
ties. However, the bound with a proper indicator for A is
(qualitatively3) equivalent to the more common set-stability
bound in terms of the distance to A:

|x(t, j)|A ≤ β̃ (|x(0, 0)|A , t+ j) ∀(t, j) ∈ dom x. (3)

It is obvious that (3) implies (2) since | · |A is a proper indicator
function for A. The converse implication follows from the
fact that for any proper indicator function ω for A there exist
ψ1, ψ2 ∈ K∞ such that ψ1(|x|A) ≤ ω(x) ≤ ψ2(|x|A) for all
x ∈ R

n; this can be proved in the same manner as [21, Lemma
3.5]. Note also that from Theorem 14 of [11, p. 56] we have that
(3) is equivalent to stability plus pre-attractivity for the compact
set A.

The hybrid system (1) is pre-input-to-state stable (pre-ISS)
with respect to the input w and the set A if all its solutions
satisfy

ω (x(t, j)) ≤ max
{
β (ω (x(0, 0)) , t+ j) , κ

(
‖w‖(t,j)

)}
(4)

for all (t, j) ∈ domx, where ω is a proper indicator for A on
R

n, β is a function of class KL, κ is a function of class K∞
(the ISS gain function), and ‖w‖(t,j) stands for the supremum
norm of w up to the hybrid time (t, j) (modulo a set of measure
zero not including jump times; see [2] for a precise definition).
When A = {0}, we just say that the system is pre-ISS.

We choose to work with the pre-GAS notion instead of the
more standard GAS notion because it corresponds more directly
to the existence of Lyapunov functions, as will be clear from the

2We work here with KL functions rather than KLL functions that are
sometimes used for hybrid time domains, see for instance [4]; there is no loss
of generality in working with KL functions, see proof of Lemma 6.1 in [4].

3In other words, the KL functions β in (2) and β̃ in (3) are different in
general.

results given below. If a system is pre-GAS then all complete
solutions converge to A. Completeness is not part of the sta-
bility definition, and needs to be checked separately. As shown
in [11, Theorem S3], for hybrid systems with local existence
of solutions, establishing completeness of solutions amounts
to ruling out the possibility of finite escape time (during flow)
and of jumping out of C ∪D; the former can be done using
well-known results on ODEs, and the latter is automatic when
C ∪D = R

n × R
m. Local existence of solutions, in turn, can

be checked as we explained in the paragraph following (1).
Similar comments apply to the pre-ISS notion. If all solutions
are complete, then the prefix “pre-” is dropped; Section V will
contain examples of such situations.

In this paper, we are concerned with situations where the
hybrid system (1) is decomposed as

ẋ1 ∈ F1(x1, x2, w), ẋ2 ∈ F2(x1, x2, w), (x,w) ∈ C
x+
1 ∈ G1(x1, x2, w), x+

2 ∈ G2(x1, x2, w), (x,w) ∈ D
(5)

where x := (x1, x2) which is a shorthand notation we use for

(xT
1 , x

T
2 )

T
, xi ∈ R

ni , w ∈ R
m, F := (F1, F2), G := (G1, G2)

and n := n1 + n2 (i.e., Rn = R
n1 × R

n2 ). We regard this sys-
tem as a feedback connection of two hybrid subsystems with
states x1 and x2. Decomposing the hybrid system (1) in this
way is very natural and not restrictive; for example, we can
always view it as a feedback connection of its continuous and
discrete dynamics, which yields what we may call the “natural
decomposition” (see Section V-A).

III. MAIN TECHNICAL RESULTS

In this section, we present the main results of the paper,
which specify how to construct a strong or weak Lyapunov
function by using suitable ISS Lyapunov functions for subsys-
tems in a feedback connection with an appropriate small-gain
condition. We will see later how these results can be used to
verify stability and ISS of various examples recently considered
in the literature. We note that in order to use our results we
would sometimes need to modify the given Lyapunov functions
for subsystems to satisfy all assumptions needed in our main
results. These constructions require the use of various “clocks”
that restrict the set of solutions of the hybrid system; this is
demonstrated in the next section.

A. Construction of Strong Lyapunov Functions

The following assumption is an appropriate generaliza-
tion of assumptions typically used for continuous-time [16]
and discrete-time [22] Lyapunov-based small-gain theorems
(cf. Remark III.2 below).

Assumption III.1: For i, j ∈ {1, 2}, i �= j there exist locally
Lipschitz functions Vi : R

ni → R≥0 such that the following
hold:

1) There exist functions ψi1, ψi2 ∈ K∞ and continuous
proper4 functions hi : R

ni → R
�i for some �i such

that for all xi ∈ R
ni we have ψi1(|hi(xi)|) ≤ Vi(xi) ≤

ψi2(|hi(xi)|).

4By proper here we mean that |hi(xi)| → ∞ when |xi| → ∞.
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2) There exist functions χi, γi ∈ K∞ and positive definite
functions αi : R≥0 → R≥0 such that for all (x,w) ∈ C
we have

Vi(xi) ≥ max {χi (Vj(xj)) , γi (|w|)}
⇒ V ◦

i (xi; zi) ≤ −αi (Vi(xi)) ∀zi ∈ Fi(x,w). (6)

3) There exist positive definite functions λi : R≥0 → R≥0

with λi(s) < s ∀s > 0 such that for all (x,w) ∈ D we
have, with the same χi and γi as in item 2,

Vi(zi) ≤ max {λi (Vi(xi)) , χi (Vj(xj)) , γi (|w|)} (7)

∀zi ∈ Gi(x,w).
4) The following small-gain condition holds: χ1 ◦ χ2(s) <

s ∀s > 0.
The functions χi, γi in the Lyapunov-based conditions (6)

and (7) play a role similar to that of the ISS gain function κ
in the definition (4) of pre-ISS, and they can be used to arrive
at the ISS gain of the overall system via the results presented
below; with a slight abuse of terminology, we will refer to these
functions also as “gain functions” or “gains.” We note that we
use the same functions χi, γi in (6) and in (7). We could work
with different functions and at the end take the maximum to
arrive at the overall ISS gain of the system; on the other hand,
we can always take the maximum at the start. Moreover, note
that we use different forms of ISS Lyapunov conditions on the
sets C and D because this simplifies the proofs.

Defining the set

A := {(x1, x2) : h1(x1) = 0, h2(x2) = 0} (8)

we can now state our first main result.
Theorem III.1: Consider the hybrid system (5). Suppose

that Assumption III.1 holds. Let ρ ∈ K∞ be generated via
Lemma II.2 using χ1, χ2. Let

V (x) := max {V1(x1), ρ (V2(x2))} . (9)

Then, there exist functions ψ1, ψ2, γ ∈ K∞ and positive definite
functions α, λ : R≥0 → R≥0, with λ(s) < s∀s > 0, such that
the following hold:

1) For all x ∈ R
n1 × R

n2 we have

ψ1 (|(h1(x1), h2(x2))|) ≤ V (x) ≤ ψ2 (|(h1(x1), h2(x2))|) .
(10)

2) For all (x,w) ∈ C with x �∈ A we have

V (x) ≥ γ (|w|) ⇒ V ◦(x; z) ≤ −α (V (x)) ∀z ∈ F (x,w).
(11)

3) For all (x,w) ∈ D we have

V (z) ≤ max {λ (V (x)) , γ (|w|)} ∀z ∈ G(x,w). (12)

Remark III.1: Note that the function V constructed in (9) is
not guaranteed to be locally Lipschitz everywhere because the
derivative of ρ may grow unbounded as its argument approaches
0. For this reason, we added the quantifier x �∈ A in item 2 of
the theorem to ensure the existence of the Clarke derivative.
However, it is not difficult to check that the theorem remains
valid if (9) is generalized to V (x) := ρ̂(max{ρ̃(V1(x1)), ρ ◦
ρ̃(V2(x2))}) with arbitrary C1 and K∞ functions ρ̂ and ρ̃.

Fig. 1. Sets A (below the middle curve), B (above the middle curve), and Γ
(the middle curve).

Using the extra freedom in choosing these functions, we can
always arrange V to be locally Lipschitz everywhere. Then,
the quantifier x �∈ A in item 2 can also be dropped because V ◦

satisfies (11) as long as it exists.
Proof: Since ρ is generated using χ1, χ2 via Lemma II.2,

we have

χ1(r) < ρ(r) and χ2(r) < ρ−1(r) ∀r > 0. (13)

Denote q(r) := ρ′(r). The proof of item 1 is straightforward
and it is omitted. We now establish item 2. Let
γ(s) := max{ρ ◦ γ2(s), γ1(s)} and α(s) := min{q ◦ ρ−1(s) ·
α2 ◦ ρ−1(s), α1(s)}. Suppose that V (x) ≥ γ(|w|). Now
we introduce three subsets of R

n × R
m (shown in Fig. 1)

and investigate V ◦(x, z), z ∈ F (x,w) on each of them
intersected with C. Define A := {(x1, x2, w) : V1(x1) <
ρ(V2(x2))}, B := {(x1, x2, w) : V1(x1) > ρ(V2(x2))}, and
Γ := {(x1, x2, w) : V1(x1) = ρ(V2(x2))}. Consider first
(x,w) ∈ A ∩ C. In this case V (x) = ρ(V2(x2)) and we have
that V1(x1) < ρ(V2(x2)) which implies V2(x2) > χ2(V1(x1))
using (13). Hence, (6) applies with (i, j) = (2, 1) and
so, whenever V (x) ≥ ρ ◦ γ2(|w|) and z ∈ F (x,w), we
have z2 ∈ F2(x,w) and V ◦(x; z) = q(V2(x2))V

◦
2 (x2; z2)≤

−q(V2(x2))α2(V2(x2))= −q ◦ ρ−1(V (x)) · α2 ◦ ρ−1(V (x)).
Now, consider (x,w) ∈ B ∩ C. Since V1(x1) > ρ(V2(x2)), we
have using (13) that V1(x1) > χ1(V2(x2)) and V (x) = V1(x1).
Hence, (6) applies with (i, j) = (1, 2) and, whenever
V (x) ≥ γ1(|w|) and z ∈ F (x,w), we have z1 ∈ F1(x,w)
and V ◦(x; z) = V ◦

1 (x1; z1) ≤ −α1(V (x)). Finally, consider
(x,w) ∈ Γ ∩ C. Then, using the definition of V and Lemma
II.1 and noting that the previous inequalities remain
valid on the closure of A and B, we have for V (x) ≥
max{ρ ◦ γ2(|w|), γ1(|w|)} and z ∈ F (x,w) that V ◦(x; z) ≤
max{V ◦

1 (x1; z1), q(V2(x2))·V ◦
2 (x2; z2)}≤−min{α1(V (x)),

q◦ρ−1(V (x))·α2◦ρ−1(V (x))}=−α(V (x)) when x �∈ A.
Hence, (11) holds. We now show that item 3 holds. Let
λ(s) : = max{λ1(s), χ1 ◦ ρ−1(s), ρ ◦ λ2 ◦ ρ−1(s), ρ ◦ χ2(s)}
and γ(s) := max{γ1(s), ρ ◦ γ2(s)}. Note that λ(s) < s for
all s > 0. Indeed, λ1(s) < s and λ2(s) < s for all s > 0 by
assumption. The latter implies that ρ ◦ λ2 ◦ ρ−1(s) < s for all
s > 0. By construction of ρ (see (13) and Fig. 1) we have that
χ1 ◦ ρ−1(s) < s and ρ ◦ χ2(s) < s for all s > 0, which shows
that λ(s) < s for all s > 0. Using the definition of V in (9) and
(7), we can write for all (x,w) ∈ D, z ∈ G(x,w) that V (z) =
max{V1(z1), ρ(V2(z2))} ≤ max{λ1(V1(x1)), χ1(V2(x2)),
γ1(|w|), ρ ◦ λ2(V2(x2)), ρ ◦ χ2(V1(x1)), ρ ◦ γ2(|w|)} =
max{λ1(V1(x1)), χ1 ◦ ρ−1 ◦ ρ(V2(x2)), γ1(|w|), ρ◦λ2◦ρ−1◦

liberzon
Highlight
Without loss of generality, we can assume these functions to be nondecreasing. This property is needed in the last step of the proof of Theorem III.1 below (to obtain the first inequality on page 1399).
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ρ(V2(x2)), ρ ◦ χ2(V1(x1)), ρ ◦ γ2(|w|)} ≤ max{λ1(V (x)),
χ1 ◦ ρ−1(V (x)), γ1(|w|), ρ ◦ λ2 ◦ ρ−1(V (x)), ρ ◦ χ2(V (x)),
ρ ◦ γ2(|w|)} ≤ max{λ(V (x)), γ(|w|)}. Hence, (12) holds. �

The calculations used to prove [2, Proposition 2.7] (see
also [3]) can be used to show that, under items 1–3 of
Assumption III.1, the i-th subsystem (i = 1, 2) is pre-ISS with
respect to the input (xj , w), j �= i and the set Ai := {xi :
hi(xi) = 0}. Specifically, ωi(xi) := |hi(xi)| is a proper
indicator for Ai and we have an ISS estimate |hi(xi(t, k))| ≤
max{βi(|hi(xi(0, 0))|, t+ k),κi(‖(xj , w)‖(t,k))} ∀(t, k) ∈
domxi. Similarly, the conclusions of Theorem III.1 (with
the observation of Remark III.1) guarantee that the overall
hybrid system is pre-ISS with respect to the input w and
the set A defined in (8). Note that A is compact because
ω(x) := |(h1(x1), h2(x2))| is a proper indicator for A which
is continuous and radially unbounded. An ISS estimate takes
the form∣∣∣∣
(
h1 (x1(t, j))

h2 (x2(t, j))

)∣∣∣∣ ≤ max

{
β

(∣∣∣∣
(
h1 (x1(0, 0))

h2 (x2(0, 0))

)∣∣∣∣ , t+ j

)
,

κ
(
‖w‖(t,j)

)}
∀(t, j) ∈ dom x.

Hence, we can state the following corollary of [2, Proposition
2.7] and our Theorem III.1.

Corollary III.2: If the hybrid system (5) fulfills Assumption
III.1, then it is pre-ISS with respect to the input w and the set A
defined in (8).

Remark III.2: The formula (9) is the same as the one
used for the special cases of purely continuous-time systems
(D = ∅) in [16] and purely discrete-time systems (C = ∅) in
[22], and the above proof (which also appeared in [35]) is
essentially a streamlined combination of the arguments from
those references. However, our formulation differs from those
previous works in several aspects. In particular, our condition
(10) is more general than those in [16], [22] since we consider
ISS with respect to sets, whereas in the cited references only
ISS with respect to the origin (i.e., the case hi(xi) = xi) is
considered. While this generalization is easily achieved if we
revisit results in [16], [22], it is very useful in the context of
hybrid systems in situations when additional “clock” variables
are introduced to constrain the hybrid time domain with the aim
of ensuring that all conditions of Assumption III.1 hold. The use
of clock variables will be illustrated in the next section. Another
difference with [16] in the treatment of continuous dynamics is
the use of the Clarke derivative, which makes the analysis of Γ
in the proof of Theorem III.1 more elegant.

B. Construction of Weak Lyapunov Functions

In this subsection, we consider a version of the hybrid system
(5) without disturbances

ẋ1 ∈ F1(x1, x2), ẋ2 ∈ F2(x1, x2), x ∈ C
x+
1 ∈ G1(x1, x2), x+

2 ∈ G2(x1, x2), x ∈ D
(14)

where xi ∈ R
ni and all other notation is the same as in the

previous subsection but applied to the above system without
disturbances. We need the following assumption.

Assumption III.2: For i = 1, 2 there exist locally Lipschitz
functions Vi : R

ni → R≥0 such that:

1) Item 1 of Assumption III.1 holds.
2) There exist functions χi ∈ K∞, a positive definite func-

tion α1 : R≥0 → R≥0, and a function R : Rn2 → R≥0

such that for all x ∈ C, we have

V1(x1) ≥ χ1 (V2(x2))

⇒ V ◦
1 (x1; z1) ≤ −α1 (V1(x1)) ∀z1 ∈ F1(x), (15)

V2(x2) ≥ χ2 (V1(x1))

⇒ V ◦
2 (x2; z2) ≤ −R(x2) ∀z2 ∈ F2(x). (16)

3) There exists a positive definite function λ2 : R≥0 → R≥0

with λ2(s) < s ∀s > 0 and a function Y : Rn1 → R≥0

such that for all x ∈ D we have, with the same χi as in
item 2,

V1(z1)≤max {V1(x1)−Y (x1), χ1 (V2(x2))} ∀z1∈G1(x),

(17)

V2(z2)≤max {λ2 (V2(x2)) , χ2 (V1(x1))} ∀z2 ∈ G2(x).

(18)

4) Item 4 of Assumption III.1 (the small-gain condition)
holds.

Note that the individual ISS Lyapunov functions V1, V2 in
Assumption III.2 are “weak” in the sense that they are allowed
to decrease nonstrictly along the continuous dynamics for one
subsystem and the discrete dynamics for the other subsystem,
respectively; thus the subsystems are not required to be ISS.
The next result asserts the existence of a weak Lyapunov
function nondecreasing along trajectories of the overall hybrid
system, suitable for an application of a Barbashin-Krasovskii-
LaSalle-type theorem as we show afterwards.

Theorem III.3: Consider the hybrid system (14). Suppose
that Assumption III.2 holds. Let ρ ∈ K∞ be generated via
Lemma II.2 using χ1, χ2. Let V be defined via (9). Then, there
exist ψ1, ψ2 ∈ K∞, a positive definite function σ : R≥0 → R≥0

with σ(s) < s ∀s > 0, and a positive semi-definite function
S : R≥0 → R≥0 such that the following hold:

1) Item 1 of Theorem III.1 holds.
2) V ◦(x; z) ≤ max{−α1(V (x)),−S(x2)} ∀x ∈ C \ A,

∀z ∈ F (x).
3) V (z) ≤ max{V (x)− Y (x1), σ(V (x))} ∀x ∈ D, ∀z ∈

G(x).

Proof: Denote q(r) := ρ′(r) and let V be defined as in
(9). The proof of item 1 is straightforward and it is omitted. We
now establish item 2. Let S(·) := q(V2(·)) ·R(·) and σ(·) :=
max{χ1 ◦ ρ−1(·), ρ ◦ λ2 ◦ ρ−1(·), ρ ◦ χ2(·)}. By construction
of ρ (see (13) and Fig. 1) we easily see that σ(s) < s for all
s > 0. Similarly to the proof of Theorem III.1, we introduce
three subsets of R

n and investigate the behavior of V on
each one intersected with C. Define A := {(x1, x2) : V1(x1) <
ρ(V2(x2))}, B := {(x1, x2) : V1(x1) > ρ(V2(x2))}, and Γ :=
{(x1, x2) : V1(x1) = ρ(V2(x2))}. Consider first x ∈ A ∩ C.
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Here V (x) = ρ(V2(x2)) and so (16) applies by virtue
of (13), hence for all z ∈ F (x) we have V ◦(x; z) =
q(V2(x2)) · V ◦

2 (x2; z2) ≤ −q(V2(x2))R(x2)= −S(x2). Next,
consider x ∈ B ∩ C so that V (x) = V1(x1). By (15), for all
z ∈ F (x) we have

V ◦(x; z) = V ◦
1 (x1; z2)≤−α1(V1(x1))= −α1 (V (x)) . (19)

Finally, consider x ∈ (Γ ∩ C) \ A. Using Lemma II.1 and
noting that Γ is contained in the closure of both A and B,
we can use the same inequalities as above to obtain for
all z ∈ F (x) that V ◦(x; z) ≤ max{V ◦

1 (x1; z1), q(V2(x2)) ·
V ◦
2 (x2; z2)}≤ max{−α1(V (x)),−q(V2(x2))R(x2)}=

max{−α1(V (x)),−S(x2)}. Therefore, item 2 holds.
We now establish item 3. Using the definition of V in

(9) and item 3 of Assumption III.2, we can write for all
x ∈ D and z∈G(x) that V (z)=max{V1(z1), ρ(V2(z2))}≤
max{V1(x1)− Y (x1), χ1(V2(x2)), ρ ◦ λ2(V2(x2)), ρ ◦
χ2(V1(x1))} = max{V1(x1)−Y (x1), χ1 ◦ ρ−1 ◦ ρ(V2(x2)),
ρ◦λ2◦ρ−1◦ρ(V2(x2)), ρ◦χ2(V1(x1))}≤max{V (x)−Y (x1),
χ1 ◦ ρ−1(V (x)), ρ ◦ λ2 ◦ ρ−1(V (x)), ρ ◦ χ2(V (x))} ≤
max{V (x)− Y (x1), σ(V (x))}, and item 3 is verified. �

Remark III.3: The same comments as in Remark III.1 apply
here concerning the exclusion of points x ∈ A from item 2
in Theorem III.3. Moreover, we can sometimes draw stronger
conclusions if either R(·) or Y (·) or both are positive definite
functions rather than merely nonnegative. For instance, assum-
ing that R(x2) = α2(V2(x2)) where α2(·) is positive definite,
we can replace item 2 in Theorem III.3 by the following item:
2’) For all x ∈ C we have V ◦(x; z) ≤−α̃(V (x)) ∀z ∈ F (x),
where α̃ is a positive definite function. A similar modification
can be made if Y (·) is positive definite or if both R(·) and Y (·)
are positive definite; in the latter case, we recover Theorem III.1
(for no w). On the other hand, if we were to allow α1 and/or
(id−λ2) to be just nonnegative instead of positive definite, then
Theorem III.3 would remain valid but would no longer be useful
for us later because Proposition III.5 will not be possible to
derive under such weaker assumptions.

We can translate the properties of the weak Lyapunov func-
tion V established in Theorem III.3 into a stability property
of the system trajectories by using Theorem 23 of [11], which
is a version of the Barbashin-Krasovskii-LaSalle theorem for
hybrid systems. That result and the conclusion of Theorem III.3
imply that the system (14) is pre-GAS with respect to the com-
pact set A defined by (8) if V does not stay constant and positive
along any complete solution. All complete solutions of the
hybrid system can be classified into the following three types:
(i) (eventually) continuous solutions, i.e., solutions which (pos-
sibly after jumping finitely many times) only flow; (ii) (even-
tually) discrete solutions, i.e., solutions which (possibly after
flowing for some finite time) only jump; and (iii) solutions that
continue to have both flow and jumps for arbitrarily large times.
Ruling out the possibility of V staying constant and positive
along each of the above solution types is not convenient to
do directly. The next result gives more constructive sufficient
conditions that are easier to check. We state it as a general
principle independent of the feedback interconnection structure

of the hybrid system and of the specific function V being used.
Consider the hybrid system (1) without disturbances:

ẋ ∈F (x), x ∈ C

x+ ∈G(x), x ∈ D (20)

Assumption III.3: Let V : Rn → R≥0 be a locally Lipschitz
function. Let h : Rn → R

� be continuous and proper, and de-
fine the compact set A := {x ∈ R

n : h(x) = 0} ⊂ R
n. Sup-

pose that V satisfies the following:
1) For all x ∈ R

n we have ψ1(|h(x)|) ≤ V (x) ≤
ψ2(|h(x)|) for some ψ1, ψ2 ∈ K∞.

2) For all x ∈ C we have V ◦(x; z) ≤ 0 ∀z ∈ F (x).
3) For all x ∈ D we have V (z) ≤ V (x) ∀z ∈ G(x).
Theorem III.4: Consider the hybrid system (20). Suppose

that Assumption III.3 holds, and that:
1) There are no complete, purely continuous solutions that

keep V equal to a nonzero constant.
2) There are no complete, purely discrete solutions that keep

V equal to a nonzero constant.
3) For each point ξ ∈ (C ∩D) \ A one of the following

holds:
a) V ◦(ξ; z) < 0 ∀z ∈ F (ξ).
b) V (z) < V (ξ) ∀z ∈ G(ξ).
c) R<0

c (ξ) ∩ LV (V (ξ)) = ∅, where LV (c) := {x :
V (x) = c} and R<0

c (ξ) denotes the reachable set
from ξ in strictly negative time (i.e., backward time)
for the continuous system ẋ ∈ F (x), x ∈ C.

d) For all η in Rd(ξ) ∩ LV (V (ξ)) ∩ C we have
V ◦(η; z) < 0 ∀z ∈ F (η), where Rd(ξ) denotes the
reachable set from ξ in forward time for the discrete
system x+ ∈ G(x), x ∈ D.

Then, the system is pre-GAS with respect to A.
Proof: In light of [11, Theorem 23], we just need to prove

that there are no complete solutions that keep V (x(t, j)) equal
to a nonzero constant. We have assumed there are no such
complete solutions with time domain [0,∞)× {0} (purely
continuous) or {0} × {0, 1, 2, . . .} (purely discrete). Next, we
observe that there exists a solution with an eventually contin-
uous domain that keeps V equal to a nonzero constant if and
only if there exists a purely continuous solution that keeps V
equal to the same constant; however, this situation is ruled out
by item 1 of the theorem. Similarly, there exists a solution with
an eventually discrete domain that keeps V equal to a nonzero
constant if and only if there exists a purely discrete solution that
keeps V equal to the same constant, but this situation is ruled
out by item 2 of the theorem.

In view of the classification of all complete solutions into
three types given before Theorem III.4, it remains to analyze
solutions of the third type, i.e., solutions that continue to have
both flow and jumps. For every such solution, there exist
nonnegative integers j < k and three real numbers tj < tj+1 <
tk+1 such that (tj , j), (tj+1, j), (tj+1, k), and (tk+1, k) belong
to the domain; in other words, we have “flow followed by
at least one jump followed by flow.” Let ξ := x(tj+1, j). By
construction, ξ ∈ (C ∩D) \ A and so one of the four items in
condition 3 of the theorem holds. If item 3(c) of the theorem
applies to ξ, then it is impossible for V to remain constant
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between (tj , j) and (tj+1, j) (i.e., during the first flow interval)
and thus we have V (x(tj+1, j)) < V (x(tj , j)). If item 3(a) of
the theorem applies to ξ, then V must be decreasing while
flowing just before the jump, and we reach the same conclusion.
If item 3(b) applies to ξ, then V decreases at the jump, i.e.,
V (tj+1, k) < V (tj+1, j). Finally, suppose that item 3(d) of the
theorem applies to ξ. Then, even if V did not decrease through
all of the jumps, it still decreases during the flow just after the
last jump. In other words, item 3(d) implies that V (tk+1, k) <
V (tj+1, k). This analysis shows that V cannot equal a nonzero
constant along any complete solution with “flow followed by at
least one jump followed by flow,” as needed. �

Remark III.4: In practice it is not always necessary to invoke
all the items in condition 3 of Theorem III.4. Indeed, we
will soon see that when using the weak Lyapunov function
V given by (9) in the context of Theorem III.3, each point
ξ ∈ (C ∩D) \ A satisfies one of the items 3(a–c) so item 3(d)
is not needed. We will also give an alternative construction of
a weak Lyapunov function for which each ξ ∈ (C ∩D) \ A
satisfies either 3(a) or 3(b). It is clear from the proof of Theorem
III.4 that when item 3(d) is not needed, the second flow interval
in “flow followed by at least one jump followed by flow” is not
used; instead, we only need to know that our solution contains
(tj , j), (tj+1, j), and (tj+1, j + 1) in its domain, i.e., that it
has “flow followed by a jump,” and the proof shows that V
cannot stay constant and positive along any such solution. It is
also clear from the above proof that if a point ξ ∈ (C ∩D) \ A
satisfies 3(a) then it also satisfies 3(c); however, we stated item
3(a) separately because it may be simpler to apply it first.

We now return to the more specific setting of Theorem III.3
and demonstrate how, combining it with Theorem III.4, we can
establish the desired (pre-)GAS property of our hybrid system.

Proposition III.5: Consider the hybrid system (14). Let the
hypotheses of Theorem III.3 hold, let V be defined via (9), and
define the set A by (8). Then, condition 3 of Theorem III.4
holds.

Proof: We continue to use the notation and calculations of
the proof of Theorem III.3. First, note that V decreases strictly
on B ∩ C (during flow) and on A ∩D (during jumps), i.e.,

V ◦(x; z) < 0 ∀x ∈ B ∩ C, ∀z ∈ F (x) (21)

V (z) < V (x) ∀x ∈ A ∩D, ∀z ∈ G(x). (22)

The first of these properties is an immediate consequence of
(19). To see why the second one is true, consider x ∈ A ∩D
so that V (x) = ρ(V2(x2)) > V1(x1). For z ∈ G(x) we have
V (z) = max{V1(z1), ρ(V2(z2))}. By (17) and (13), V1(z1) ≤
max{V1(x1)− Y (x1), χ1(V2(x2))}< ρ(V2(x2)) = V (x). On
the other hand, by (18) and (13) again, ρ(V2(z2)) ≤ max{ρ ◦
λ2(V2(x2)), ρ ◦ χ2(V1(x1))} ≤ max{ρ ◦ λ2 ◦ ρ−1(V (x)), ρ ◦
χ2(V (x))} < V (x). Hence, (22) is established.

Now, consider a point ξ ∈ (C ∩D) \ A. If ξ ∈ B then ξ ∈
B ∩ C and by (21) we have that item 3(a) holds. If ξ ∈ A then
ξ ∈ A ∩D and by (22) we have that item 3(b) holds. The only
remaining case to consider is when ξ ∈ Γ \ A. We claim that
in this case item 3(c) holds. Seeking a contradiction, suppose
there exists a point η ∈ R<0

c (ξ) ∩ LV (V (ξ)). This means that
there is a solution x : [−s, 0] → C of the differential inclu-

sion ẋ ∈ F (x) such that x(−s) = η and x(0) = ξ and along
which V (x(·)) remains constant. We cannot have x(t) ∈ B ∩ C
for any t ∈ [−s, 0), because then (21) applied with x = x(t)
would force V (x(·)) to decrease during flow. Hence, x(t) ∈
A ∪ Γ ∀t ∈ [−s, 0). We thus have V (x(t)) = ρ(V2(x(t)) on
this interval, and V2(x(·)) must remain constant during flow.
As for V1(x(·)), by (15) and (13) it decreases during flow when
x(·) is in A sufficiently close to Γ or in Γ itself (here we are
using the fact that ξ �∈ A and so the value of V along x(·) is
not 0). However, considering the trajectory x(·) in the (V1, V2)-
plane, we see that it is impossible for it to reach ξ ∈ Γ while
remaining in A ∪ Γ if V1 decreases and V2 stays constant. The
resulting contradiction proves the claim.5 �

We have the following direct corollary of Theorem III.3,
Theorem III.4, and Proposition III.5.

Corollary III.6: Consider the hybrid system (14). Let the
hypotheses of Theorem III.3 hold, let V be defined via (9), and
let the set A be defined by (8). If V does not stay constant
and positive along any complete solution that is either purely
continuous or purely discrete, then the system is pre-GAS with
respect to A.

Corollary III.6 tells us that only purely continuous and purely
discrete solutions require further analysis. In practice, these
classes of solutions are not very rich and we expect to be
able to rule out either the existence of such solutions or the
possibility of V staying constant and positive along them. We
will see examples of such reasoning in Section V, where it
will go through thanks to additional structure relating the flow
and jump sets to the gain functions. What we mean by this is
that in the general setting of Lyapunov-based ISS small-gain
theorems considered so far, the flow and jump sets C and D are
completely separate from the gain functions χ1 and χ2, while
in the design examples treated in Sections V-C and V-D there
is a close relation between them. For this reason, in the context
of these examples we can reach stronger conclusions than what
the general results of this section can provide. We will also be
able to show there that all solutions are complete and hence the
system is GAS and not just pre-GAS.

We end this section with an interesting alternative construc-
tion of a weak Lyapunov function V which, while somewhat
more complicated, allows us to reach the same conclusions with
a simpler proof (in contrast with the proof of Proposition III.5,
there is no set Γ on which additional analysis is needed).

Proposition III.7: Let the hypotheses of Theorem III.3 hold,
and let the set A be defined by (8). Let ρ1, ρ2 ∈ K∞ be both
generated via Lemma II.2 using χ1, χ2 such that for all r > 0,

χ1(r) < ρ1(r) < ρ2(r) and χ2(r) < ρ−1
2 (r) < ρ−1

1 (r). (23)

Let W1 and W2 be defined via (9) using ρ1 and ρ2, respectively,
and let

V (x) := W1(x) +W2(x) = max {V1(x1), ρ1 (V2(x2))}
+max {V1(x1), ρ2 (V2(x2))} . (24)

5Alternatively, we could finish the proof by showing that for ξ ∈ Γ \ A item
3(d) holds. Indeed, if η ∈ Rd(ξ) ∩ LV (V (ξ)) ∩ C then along the jump(s) that
take x from ξ to η we must have that V2 becomes strictly less than V2(ξ) by
virtue of (18) while V1 remains constant, but this implies that η ∈ B ∩ C and
hence (21) establishes item 3(d).
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Then, there exist ψ1, ψ2 ∈ K∞, positive definite functions σi :
R≥0 → R≥0, i = 1, 2 with σi(s) < s ∀s > 0, and positive
semi-definite functions Si : R≥0 → R≥0, i = 1, 2 such that:

1) Item 1 of Theorem III.1 holds.
2) V ◦(x; z) ≤ max{−α1(W1(x)), −S1(x2)}+max{−α1

(W2(x)),−S2(x2)} ∀x ∈ C, ∀z ∈ F (x).
3) V (z) ≤ max{W1(x)−Y1(x1), σ1(W1(x))}+max

{W2(x)−Y2(x1), σ2(W2(x))} ∀x ∈ D, ∀z ∈ G(x).
4) For each ξ ∈ (C ∩D) \ A we have that either item 3(a)

or item 3(b) of Theorem III.4 holds.

Proof (sketch): The proofs of items 1–3 are straightfor-
ward and we omit them. To prove item 4, let Ai, Bi for i =
1, 2 be the sets defined as Ai := {x : V1(x1) < ρi(V2(x2))}
and Bi := {x : V1(x1) > ρi(V2(x2))}, respectively. Using the
calculations from the proof of Proposition III.5 which led us to
(21) and (22), it is not difficult to check that V decreases strictly
on B1 ∩ C during flow and it also decreases strictly on A2 ∩D
during jumps. Since the sets A2 and B1 overlap and cover
C ∪D, we have that either item 3(a) or 3(b) of Theorem III.4
holds. Indeed, ξ ∈ (C ∩D) \ A implies either ξ ∈ B1 ∩ C, in
which case item 3(a) holds, or ξ ∈ A2 ∩D, in which case item
3(b) holds. �

Remark III.5: We note that (23) can always be achieved
via Lemma II.2. Indeed, we can first pick ρ1(·) that satis-
fies χ1(r) < ρ1(r) < χ−1

2 (r) via Lemma II.2 and then apply
Lemma II.2 again to construct ρ2(·) to satisfy ρ1(r) < ρ2(r) <
χ−1
2 (r) for all r > 0.
It follows that Corollary III.6 remains valid if V is defined

via (24) in place of (9).

IV. AVERAGE DWELL TIME AND REVERSE AVERAGE

DWELL TIME CONDITIONS

In general, we cannot expect a hybrid system of interest
to satisfy the assumptions of Theorem III.1. For instance,
the Lyapunov function may not decrease either along flow or
along jumps. Sometimes it is possible to use the construction
in Theorem III.3 together with a LaSalle theorem for hybrid
systems, as explained above, to conclude asymptotic stability
of the hybrid system. When this is not possible, we can try to
modify the hybrid system by augmenting it with a clock that
restricts the set of all trajectories in such a way that conditions
of Theorem III.1 are satisfied. Such constructions also require a
modification of the Lyapunov function and we present two such
cases next. We note that these results are of interest in their own
right and their various versions have been used, e.g., in [13],
[34]. We have not seen, however, the general constructions that
we present here; preliminary results can be found in our earlier
conference papers [24], [35].

Consider the following system:

ẋ ∈F (x, z, w), (x, z, w) ∈ C̃ (25)

x+ ∈G(x, z, w), (x, z, w) ∈ D̃ (26)

where x ∈ R
n and z ∈ R

k. Here x may correspond to either x1

or x2 for subsystems in a feedback connection considered in
the previous section, and z is the state of the other subsystem.

There are two interesting cases which we consider next. The
first one is when the Lyapunov function decreases strictly along
flows but does not decrease (or potentially increases) along
jumps. The second case covers the situation when the Lyapunov
function decreases strictly along jumps but does not decrease
(or potentially increases) along flows; this situation arises in
networked control systems considered in [34] and we revisit it
in the next section.

Remark IV.1: The Lyapunov conditions that we use in this
section are restrictive because of the exponential decay and/or
growth assumptions on the Lyapunov function. These stronger
conditions allow us to state global results with suitable dwell
time clocks and they are appropriate for our illustrative exam-
ples. Such conditions can be relaxed to include non-exponential
decay and/or growth of the Lyapunov function but then the
conclusions would be semi-global practical in the dwell time
parameters; see for instance Remark 3 in [24].

A. Decreasing Flows, Non-Decreasing Jumps

Consider the system (25), (26). The starting point in our
analysis is the following assumption, where we suppose that
we have found a Lyapunov function W (·) for one of the
subsystems which satisfies an appropriate decrease condition
along flow (25) but potentially increases along jumps (26).
We show how to augment the system with an average dwell
time (ADT) clock that restricts the set of all trajectories of
the original system so that an appropriate Lyapunov function
can be constructed from W (·) that satisfies suitable decrease
conditions along both flows and jumps of the augmented sys-
tem. In particular, the constructed Lyapunov function satisfies
all assumptions needed in Theorem III.1. We can think of
U(·) in the assumption as the Lyapunov function for the other
subsystem.

Assumption IV.1: There exist class K∞ functions ψ̃1, ψ̃2,
nondecreasing functions6 χ̃c, χ̃d, γ̃c, γ̃d : R≥0 → R≥0, a con-
tinuous proper function h̃ : Rn → R

� for some �, a locally
Lipschitz function U : Rk → R≥0, a locally Lipschitz function
W : Rn → R≥0, and constants c > 0, d ≥ 0 such that:

1) ψ̃1(|h̃(x)|) ≤ W (x) ≤ ψ̃2(|h̃(x)|) ∀x ∈ R
n.

2) W (x) ≥ max{χ̃c(U(z)), γ̃c(|w|)} ⇒ W ◦(x; y)≤
−cW (x) ∀(x, z, w) ∈ C̃, ∀y ∈ F (x, z, w).

3) W (y) ≤ max{edW (x), χ̃d(U(z)), γ̃d(|w|)}
∀(x, z, w) ∈ D̃, ∀y ∈ G(x, z, w).

We embed the original hybrid system (25), (26) into a bigger
system augmented with the following ADT clock, for some δ >
0, N0 ≥ 1:

τ̇ ∈ [0, δ], τ ∈ [0, N0]; τ+ = τ − 1, τ ∈ [1, N0]. (27)

This models exactly the ADT constraint [14]

j − i ≤ δ(t− s) +N0 (28)

where 1/δ is the ADT. This is to say that a hybrid time domain
satisfies (28) if and only if it is the domain of some solution

6Note that we allow these functions to be identically equal to zero.
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to the hybrid system (27); see the appendix of [5] for a proof
of this fact (see also [31] for a similar construction). A more
familiar special case is just the dwell time (DT) condition
which is obtained when N0 = 1. In this case, consecutive jumps
cannot be separated by less than 1/δ units of time.

Combining the hybrid system (25), (26) with the clock (27),
we arrive at the following hybrid system with state (x, τ) and
flow and jump sets C := C̃ × [0, N0] and D := D̃ × [1, N0]:

ẋ ∈ F (x, z, w), τ̇ ∈ [0, δ], (x, z, τ, w) ∈ C
x+ ∈ G(x, z, w), τ+ = τ − 1, (x, z, τ, w) ∈ D.

(29)

The clock restricts the set of trajectories to only those that
satisfy the ADT constraint (28) and we can state the following
result.

Proposition IV.1: Consider the hybrid system (29). Suppose
that Assumption IV.1 holds with c/δ > d. Let V (x, τ) :=
eLτW (x), where L ∈ (d, c/δ). Then:

1) For all (x, τ) ∈ R
n × [0, N0] we have ψ1(|h(x, τ)|) ≤

V (x, τ)≤ψ2(|h(x, τ)|), where ψ1 := ψ̃1, ψ2 := eLN0 ψ̃2,
and h(x, τ) := h̃(x).

2) For all (x, z, w, τ)∈C we have V (x, τ)≥max{χc(U(z)),
γc(|w|)} ⇒ V ◦((x, τ); (y1, y2)) ≤ −α(V (x, τ)) ∀y1 ∈
F (x, z, w), ∀y2∈ [0, δ], where χc := eLN0 χ̃c, γc :=
eLN0 γ̃c, and α(r) := (c− Lδ)r.

3) For all (x, z, w, τ) ∈ D we have V (y, τ − 1) ≤
max{λ(V (x, τ)), χd(U(z)), γd(|w|)} ∀y ∈ G(x, z, w),
where λ(r) := e−L+dr, χd := eL(N0−1)χ̃d, and
γd := eL(N0−1)γ̃d.

Proof: First, seeing that item 1 holds is straightforward.
To prove item 2, note that V (x, τ) ≥ eLN0 max{χ̃c(U(z)),
γ̃c(|w|)} implies W (x) ≥ max{χ̃c(U(z)), γ̃c(|w|)} from
which it follows by item 2 of Assumption IV.1 that
W ◦(x; y) ≤ −cW (x) ∀y ∈ F (x, z, w), from which we have
that V ◦((x, τ); (y1, y2)) = Lτ̇eLτW (x) + eLτW ◦(x; y1)≤
LδeLτW(x)−ceLτW(x)= −(c−Lδ)V(x,τ)∀y1∈F (x, z, w),
∀y2∈ [0, δ]. To prove item 3, we use item 3 of Assumption IV.1
to write V (y, τ − 1) = eL(τ−1)W (g(x, z, w)) ≤ eL(τ−1)

max{edW (x), χ̃d(U(z)), γ̃d(|w|)} = max{e−L+dV (x, τ),
eL(N0−1)χ̃d(U(z)), eL(N0−1)γ̃d(|w|)} ∀y ∈ G(x, z, w). �

Remark IV.2: We see that the h function does not involve the
clock variables, hence we need it even if we start with h̃(x) =
x. The same is true for the result in the next subsection.

Remark IV.3: We made a distinction between the functions
χ̃c and χ̃d in Assumption IV.1 as well as functions γ̃c and γ̃d
although no such distinction was made in conditions used in
Theorem III.1. The reason is that by making this distinction,
we can obtain less conservative gains using the construction in
Proposition IV.1. We do the same in Assumption IV.2 in the
next subsection.

Next, we state two time-domain implications of Proposition
IV.1. The first corollary provides a conclusion for trajectories
of the augmented system with clock (29).

Corollary IV.2: Let all conditions of Proposition IV.1 hold.
Then, there exist β ∈ KL and κ ∈ K∞ such that all solutions of

the system (29) satisfy∣∣∣h̃ (x(t, j))∣∣∣
≤ max

{
β

(∣∣∣h̃ (x(0, 0))∣∣∣ , t+ j
)
, κ

(
‖(U(z), w)‖(t,j)

)}
(30)

for all (t, j) ∈ domx.
Corollary IV.2 implies that the system (29) is pre-ISS with re-

spect to the input (U(z), w) and the compact set A := {(x, τ) :
h̃(x) = 0, τ ∈ [0, N0]}. The second corollary translates this
result into a property of a subset of solutions of the original
system without clocks (25), (26).

Corollary IV.3: Let all conditions of Proposition IV.1 hold.
Then, (30) holds for all solutions of the system (25), (26) that
satisfy the ADT constraint (28).

Corollary IV.3 implies that all solutions of the original sys-
tem (25), (26) for which the ADT hybrid time domain constraint
(28) holds satisfy a pre-ISS bound with respect to the input
(U(z), w) and the compact set Ã := {x : h̃(x) = 0} (see also
Remark II.1).

B. Decreasing Jumps, Non-Decreasing Flows

In this subsection we cover the situation where we have
found a Lyapunov function W (·) for one of the subsystems
which is not decreasing (or potentially increasing) along the
flow (25) but decreases along jumps (26). We show how to
augment the system with a reverse average dwell time (RADT)
clock that restricts the set of all trajectories of the original
system. We construct an appropriate Lyapunov function from
W (·) and show that it satisfies decrease conditions along both
flows and jumps of the augmented system. In particular, the
constructed Lyapunov function satisfies all assumptions needed
in Theorem III.1.

Assumption IV.2: There exist class K∞ functions ψ̃1, ψ̃2,
nondecreasing functions7 χ̃c, χ̃d, γ̃c, γ̃d, a continuous proper
function h̃ : Rn → R

� for some �, a locally Lipschitz function
U : Rk → R≥0, a locally Lipschitz function W : Rn → R≥0,
and constants c ≥ 0, d > 0 such that:

1) ψ̃1(|h̃(x)|) ≤ W (x) ≤ ψ̃2(|h̃(x)|) ∀x ∈ R
n.

2) W (x) ≥ max{χ̃c(U(z)), γ̃c(|w|)} ⇒ W ◦(x; y)≤
cW (x) ∀(x, z, w) ∈ C̃, ∀y ∈ F (x, z, w).

3) W (y) ≤ max{e−dW (x), χ̃d(U(z)), γ̃d(|w|)}
∀(x, z, w) ∈ D̃, ∀y ∈ G(x, z, w).

We embed the original hybrid system (25), (26) into a bigger
system augmented with the following RADT clock, for some
δ > 0, N0 ≥ 1:

τ̇ = 1, τ ∈ [0, N0δ]; τ+ = max{0, τ − δ}, τ ∈ [0, N0δ].
(31)

This models exactly the RADT constraint [13]

t− s ≤ δ(j − i) +N0δ (32)

7We allow these functions to be identically zero.
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or, equivalently, j − i ≥ (t− s)/δ −N0, where δ is the reverse
ADT. This is to say that a hybrid time domain satisfies (32)
if and only if it is the domain of some solution to the hybrid
system (31); see the Appendix of [5] for a proof of this fact.
A more familiar special case is the reverse DT when N0 = 1,
which enforces jumps at least every δ units of time.

Remark IV.4: It would be more consistent with the previous
case (but equivalent in terms of hybrid time domains this
generates) to write τ+ ∈ [max{0, τ − δ}, τ ] in (31). However,
we want to work with the simplest clock that gives the stated
equivalence.

Combining the system (25), (26) with the clock (31), we
arrive at the following hybrid system with state (x, τ) and flow
and jump sets C := C̃ × [0, N0δ] and D := D̃ × [0, N0δ]:

ẋ ∈ F (x, z, w), τ̇ = 1, (x, z, τ, w) ∈ C
x+ ∈ G(x, z, w), τ+ = max{0, τ − δ}, (x, z, τ, w) ∈ D

(33)
We can state the following result for this augmented system.

Proposition IV.4: Consider the hybrid system (33). Sup-
pose that Assumption IV.2 holds with d > δc. Let V (x, τ) :=
e−LτW (x), where L ∈ (c, d/δ). Then:

1) For all (x, τ) ∈ R
n × [0, N0] we have ψ1(|h(x, τ)|) ≤

V (x, τ) ≤ ψ2(|h(x, τ)|), where ψ1 := e−LN0δψ̃1, ψ2 =
ψ̃2, and h(x, τ) := h̃(x).

2) For all (x, z, w,τ)∈C we have V (x,τ)≥max{χc(U(z)),
γc(|w|)}⇒V ◦((x,τ);(y,1))≤−α(V(x,τ)) ∀y∈F (x, z, w),
where χc := χ̃c, γc := γ̃c, and α(r) := (L− c)r.

3) For all (x, z, w, τ) ∈ D we have V (y,max{0, τ − δ}) ≤
max{λ(V (x, τ)), χd(U(z)), γd(|w|)} ∀y ∈ G(x, z, w),
where λ(r) := eLδ−dr, χd := χ̃d, and γd := γ̃d.

Proof: The proof is similar to that of Proposition IV.1.
It is easy to see that item 1 holds. To show item 2, note
that V (x, τ) ≥ max{χ̃c(U(z)), γ̃c(|w|)} implies W (x) ≥
max{χ̃c(U(z)), γ̃c(|w|)} from which it follows that
W ◦(x; y)≤cW (x) ∀y∈F (x, z, w), hence V ◦((x, τ); (y, 1))=
−Lτ̇V (x, τ) + e−LτW ◦(x; y)≤ − LV (x, τ) + cV (x, τ) =
−(L− c)V (x, τ) ∀y ∈ F (x, z, w). As for item 3, V (y,
max{0, τ − δ}) = e−Lmax{0,τ−δ} W (y) ≤ e−Lmax{0,τ−δ}

max{e−dW(x), χ̃d(U(z)), γ̃d(|w|)}≤max{e−Lmax{0,τ−δ}−d

eLτV (x, τ), χ̃d(U(z)), γ̃d(|w|)} ≤ max{eLδ−dV (x, τ),
χ̃d(U(z)), γ̃d(|w|)} ∀y ∈ G(x, z, w), where we used the
identity τ −max{0, τ − δ} ≤ δ. �

Similarly to the previous subsection, we state two time-
domain implications of Proposition IV.4. The first one provides
a conclusion for trajectories of the augmented system (33).

Corollary IV.5: Let all conditions of Proposition IV.4 hold.
Then, there exist β ∈ KL and κ ∈ K∞ such that all solutions of
the system (33) satisfy∣∣∣h̃ (x(t, j))∣∣∣

≤ max
{
β

(∣∣∣h̃ (x(0, 0)) |, t+ j
)
, κ (‖ (U(z), w)‖(t,j)

)}
(34)

for all (t, j) ∈ domx.
Corollary IV.5 implies that the system (33) is pre-ISS with re-

spect to the input (U(z), w) and the compact set A := {(x, τ) :

h̃(x) = 0, τ ∈ [0, N0]}. The second corollary translates this
result into a property of a subset of solutions of the original
system without clocks (25), (26).

Corollary IV.6: Let all conditions of Proposition IV.4 hold.
Then, (34) holds for all solutions of the system (25), (26) that
satisfy the RADT constraint (32).

Corollary IV.6 implies that all solutions of the original
system (25), (26) for which the RADT hybrid time domain
constraint (32) holds satisfy a pre-ISS bound with respect to
the input (U(z), w) and the compact set Ã := {x : h̃(x) = 0}.

C. Interconnection

We present here a generic case of an interconnection of two
hybrid systems that possibly need ADT and RADT clocks to
satisfy Assumption III.1. As a result of using clocks, the gains
of the two subsystems and the small-gain condition need to
be modified. The result that we present here is abstract but
it is general and it covers all our examples, as illustrated in
Section V. Consider the following system:

ẋ1 ∈ F1(x,w), τ̇1 ∈ H1(τ1), ẋ2 ∈ F2(x,w),
τ̇2 ∈ H2(τ2), (x1, x2, τ1, τ2, w) ∈ C

x+
1 ∈ G1(x,w), τ

+
1 ∈ L1(τ1), x+

2 ∈ G2(x,w),
τ+2 ∈ L2(τ2), (x1, x2, τ1, τ2, w) ∈ D

(35)

where xi ∈ R
ni and τi ∈ R

pi , i = 1, 2. We can think of x1, x2

as the states of subsystems that we are interested in and of
τ1, τ2 as ADT and/or RADT clock variables that are needed
to satisfy the conditions of Assumption III.1. When a clock is
not needed for that subsystem, we will set pi = 0 and ai = 0 in
what follows.

Assumption IV.3: For i, j ∈ {1, 2}, i �= j there exist C1

functions Wi : R
ni → R≥0 and Vi : R

ni+pi → R≥0 such that
the following hold:

1) For all (x1, x2, τ1, τ2) ∈ R
n1 × R

n2 × R
p1 × R

p2 we
have Wi(xi) ≤ eaiVi(xi, τi), i = 1, 2 for some a1, a2 ≥
0.

2) For some functions χc,i, γc,i ∈ K∞ and positive definite
functions αi we have

Vi(xi, τi) ≥ max {χc,1 (Wj(xj)) , γc,1 (|w|)} ⇒
V ◦
i ((xi, τi); (y1, y2)) ≤ −αi (Vi(xi, τi))

∀(x1, x2, τ1, τ2, w) ∈ C, ∀y1 ∈ Fi(x,w), ∀y2 ∈ Hi(τi).

For some functions χd,i, γd,i ∈ K∞ and positive
definite functions λi with λi(s) < s ∀s > 0 we
have Vi(y1, y2) ≤ max{λi(Vi(xi, τi)), χ1,d(Wj(xj)),
γd,1(|w|)} ∀(xi, xj , τi, τj , w) ∈ D, ∀y1 ∈ Gi(x,w),
∀y2 ∈ Li(τi).

3) With χ1(r) := max{χc,1(e
a2r), χd,1(e

a2r)} and
χ2(r) := max{χc,2(e

a1r), χd,2(e
a1r)}, the following

small-gain condition holds: χ1 ◦ χ2(s) < s ∀s > 0.
We note that the conditions in Assumption IV.3 match the

situation in the previous two subsections where we can think
of Wi(·) as the original functions and Vi(·, ·) as the modified
Lyapunov functions that satisfy Assumption III.1; we did not
state item 1 of Assumption III.1 as it is automatically satisfied
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under the Lyapunov function transformations that we use. Then,
the following result is easily shown (we omit the proof):

Proposition IV.7: Consider the hybrid system (35). Sup-
pose that Assumption IV.3 holds. Then, items 2, 3 and 4
from Assumption III.1 hold with χ1, χ2 as defined in item
4 of Assumption IV.3, γ1 := max{γc,1, γd,1}, and γ2 :=
max{γc,2, γd,2}.

V. APPLICATIONS OF MAIN RESULTS

In this section we present several examples to which we ap-
ply our main results. The first one considers a “natural” decom-
position of hybrid systems into its flow part and jump part. In
this example we show how both constructions in Theorems III.1
and III.3 can be used under certain conditions; the approach
based on Theorem III.1 is interesting since we need to use
both ADT and RADT clocks with arbitrarily short ADT and
arbitrarily long RADT. In our second example, we revisit
networked control systems considered in [34]. In this case, we
need to use simpler DT and reverse DT clocks which must be
adjusted appropriately to achieve stability. In the third example,
we revisit the problem of event-triggered sampling considered
in [39]. We provide an alternative model and stability proof
to [39] that uses our Theorem III.3. In our last example, we
consider a class of linear systems with quantized control. This
example provides another application of Theorem III.3 and an
alternative analysis method to those used in [1], [23].

A. Natural Decomposition

The following “natural decomposition” of the hybrid system
(without disturbances)

ẋ1 ∈ F (x1, x2), ẋ2 = 0, (x1, x2) ∈ C̃

x+
1 = x1, x+

2 ∈ G(x1, x2), (x1, x2) ∈ D̃
(36)

is often of interest, where we can call x1 and x2 the continuous
and discrete state variables, respectively. Note that x1 does
not change during the jumps and x2 does not change during
the flow. This class of systems is useful for illustrating both
Theorems III.1 and III.3. We first use directly Theorem III.3
to construct a weak Lyapunov function which can be used
under appropriate conditions to conclude asymptotic stability
via Theorem III.4. Then, we augment the system with ADT and
RADT clocks and use Propositions IV.1, IV.4 and IV.7 to show
that Theorem III.1 can be used to construct a strong Lyapunov
function under appropriate conditions.

The following proposition is a direct consequence of
Theorem III.3.

Proposition V.1: Suppose that there exist C1 functions V1

and V2 and functions ψij , hi, χi, α1, λ2 such that (15), (18)
and items 1 and 4 of Assumption III.2 hold with C̃, D̃ in
place of C,D (all functions are from the same classes as in
Assumption III.2). Let V be defined via (9). Then, there exist
functions ψ1, ψ2 ∈ K∞ such that the item 1 of Theorem III.3
holds and we have V ◦((x1, x2); (z1, 0)) ≤ 0 ∀(x1, x2) ∈ C̃,
∀z1 ∈ F (x1, x2) and V (x1, z2) ≤ V (x1, x2) ∀(x1, x2) ∈ D̃,
∀z2 ∈ G(x1, x2).

Proof: It is immediate that for any C1 positive definite V2

we have V ◦
2 (x2; 0) = 〈∇V2, 0〉 = 0 ∀(x1, x2) ∈ C̃ and, hence,

(16) holds with R(·) ≡ 0. Similarly, for any positive definite
V1 we have V1(x

+
1 ) = V1(x1) ∀(x1, x2) ∈ D̃ and, hence, (17)

holds with Y (·) ≡ 0. Hence, all conditions of Assumption III.2
hold and the conclusion follows from Theorem III.3. �

The next corollary shows how we can use this weak
Lyapunov function construction with our LaSalle theorem
(Theorem III.4) to conclude stability of the system (36); we
specialize our conditions to investigate pre-GAS of the origin
{x = (x1, x2) = (0, 0)} for simplicity.

Corollary V.2: Suppose that all conditions of Proposition V.1
hold with hi(xi) = xi for i = 1, 2 and let V be as in Proposition
V.1. If V does not stay constant and positive along any complete
solution that is either purely continuous or purely discrete, then
(36) is pre-GAS.

Now we augment the system (36) with ADT and RADT
clocks:

τ̇1 ∈ [0, δ1], τ1 ∈ [0, N1]; τ
+
1 = τ1 − 1, τ1 ∈ [1, N1]

τ̇2=1, τ2∈ [0, N2δ2]; τ
+
2 =max{0, τ2−δ2}, τ2∈ [0, N2δ2]

(37)

Defining C := C̃ × [0, N1]× [0, N2δ2] and D = D̃×[1, N1]×
[0, N2δ2], we consider the system (36), (37) as a feedback
connection of (x1, τ1) and (x2, τ2) subsystems.

Assumption V.1: The following hold:

1) Assumption IV.1 holds for x1-subsystem when x2 is
regarded as its input, with the functions W,U, ψ̃1, ψ̃2, χ̃c,
χ̃d, h̃, γ̃c, γ̃d replaced respectively by W1,W2, ψ̃11, ψ̃21,
χ̃c1, χ̃d1 ≡ 0, h̃1, γ̃c1 ≡ 0, ˜γd1 ≡ 0 and with d = 0 and
some c = c1 > 0.

2) Assumption IV.2 holds for x2-subsystem when x1 is
regarded as its input, with the functions W,U, ψ̃1, ψ̃2,
χ̃c, χ̃d, h̃, γ̃c, γ̃d replaced respectively by W2,W1, ψ̃12,
ψ̃22, χ̃c2 ≡ 0, χ̃d2, h̃2, γ̃c2 ≡ 0, γ̃d2 ≡ 0 and with c = 0
and some d = d2 > 0.

3) There exist numbers δ1, δ2 > 0, L1 ∈ (0, c1/δ1), L2 ∈
(0, d2/δ2), and N1, N2 ≥ 1 such that we have the small-
gain condition χ1 ◦ χ2(s) < s ∀s > 0, where χ1(s) :=
eL1N1 χ̃c1(e

L2N2δ2s), χ2(s) := χ̃d2(s).

Remark V.1: Items 1 and 2 in Assumption V.1 can always be
satisfied with χ̃d1 ≡ 0, d = 0 and χ̃c2 ≡ 0, c = 0, respectively,
since x1 does not change during jumps and x2 does not change
during flow. Also note that for linearly bounded gains χ̃c1, χ̃d2

satisfying χ̃c1 ◦ χ̃d2(s) < s ∀s > 0, the small-gain condition in
item 3 can always be satisfied by using arbitrary δ1, δ2, N1, N2

and then choosing L1, L2 sufficiently small. This means that the
ADT can be arbitrarily small and the RADT can be arbitrarily
large.

Proposition V.3: Suppose that Assumption V.1 holds. Then,
all conditions of Assumption III.1 hold for the system
(36), (37) with8 V1(x1, τ1) := eL1τ1W1(x1) and V2(x2, τ2) :=

8This holds modulo a change of notation: the vector (xi, τi) here plays the
role of xi in Assumption III.1, for i = 1, 2.
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e−L2τ2W2(x2) and, hence, the conclusion of Theorem III.1
holds.

Proof: Since Assumptions IV.1 and IV.2 hold for subsys-
tems x1 and x2 respectively (items 1 and 2 of Assumption
V.1), we have from conclusion 1 in Propositions IV.1 and IV.4
that item 1 of Assumption III.1 holds. Using Propositions IV.1
and IV.4 and our small-gain condition in item 3 of Assumption
V.1 we conclude that Assumption IV.3 holds with a1 = 0 and
a2 = L2N2δ2. Hence, from Proposition IV.7 we conclude that
items 2, 3 and 4 of Assumption III.1 hold. �

The next two results consider the special case when we
are interested in stability of the origin {x = (x1, x2) = (0, 0)}
and they are direct consequences of Proposition V.3 and
Corollary III.2.

Corollary V.4: Suppose that Assumption V.1 holds with
h̃i(x1) = xi, i = 1, 2. Then, the system (36), (37) is pre-
GAS with respect to the set A := {(x1, x2) = (0, 0), τ1 ∈
[0, N1], τ2 ∈ [0, δ2N2]}.

Corollary V.5: Suppose that Assumption V.1 holds with
h̃i(x1) = xi, i = 1, 2. Then, all trajectories of the sys-
tem (36) whose hybrid time domains satisfy (28) with
(N0, δ) = (N1, δ1) and (32) with (N0, δ) = (N2, δ2) satisfy
a pre-GAS stability bound (2) with respect to the set Ã =
{(x1, x2) = (0, 0)}.

Remark V.2: Note a subtle difference between Corollaries
V.2 and V.5. Both results are stated for the proper indicator
function ω(x) = |(x1, x2)|. Corollary V.2 concludes a bound
of the form (2) for all trajectories if the system (36) does not
have purely continuous or purely discrete complete trajectories
that keep the constructed V equal to a non-zero constant. On
the other hand, Corollary V.5 proves a bound of the form (2) for
those trajectories of the system (36) that satisfy the indicated
ADT and RADT conditions. The second conclusion is weaker
but there are no trajectories to check separately.

B. Networked Control Systems

Motivated by results in [6], [34] we consider a class of
networked control systems that contain the following equations:

ẋ = f̃1(x, e, w), ė = f̃2(x, e, w), ṡ = 0

x+ = x, e+ = h(s, e), s+ = s+ 1. (38)

The above system can be obtained by following an emulation-
like procedure and the variable x represents the combined states
of the plant and the controller, whereas the variable e represents
an error that captures the mismatch between the networked and
actual values of the inputs and outputs that are sent over the
network. The variable s can be thought of as the variable that
counts the number of transmissions. It was shown in [34] that
the jump equation for e is solely described by the network
protocol. To model transmission times, we use two clocks
which are special cases of the earlier ADT and reverse ADT
clocks. Namely, we consider a combination of DT and reverse
DT clocks, as follows:

τ̇1 ∈ [0, 1/ε], τ̇2 = 1, (τ1, τ2) ∈ C
τ+1 = τ1 − 1, τ+2 = max{0, τ2 − ε̄}, (τ1, τ2) ∈ D

(39)

where C := [0, 1]× [0, ε̄] and D := {1} × [0, ε̄] and we as-
sume ε < ε̄. This gives exactly the hybrid time domains sat-
isfying j − i ≤ (t− s)/ε+ 1 and j − i ≥ (t− s)/ε̄− 1. This
implies that the transmission times tk, k ∈ N satisfy

ε ≤ tk+1 − tk ≤ ε̄, (40)

which is a condition used in [34] and references cited therein.
The overall hybrid system consists of the earlier differential
equations (38) and these clocks. We assume the following
(cf. [34]):

Assumption V.2: There exist C1 functions W1,W2 such
that:

1) There exist γ1, c1 > 0, K∞ functions ψi1, i = 1, 2 and γ
such that for all x, e, s, w we have ψ11(|x|) ≤ W1(x) ≤
ψ21(|x|) and

W1(x) ≥ max {γ1W2(s, e), γ (|w|)}

⇒
〈
∇W1(x), f̃1(x, e, w)

〉
≤ −c1W1(x). (41)

2) There exist γ2, d2 > 0, K∞ functions ψi2, i = 1, 2 and γ
such that for all x, e, s, w we have ψ12(|e|) ≤ W2(s, e) ≤
ψ22(|e|),

W2 (s+ 1, h(s, e)) ≤ e−d2W2(s, e), (42)

and W2(s, e) ≥ max{γ2W1(x), γ̄(|w|)} ⇒ 〈∇W2(e),
f̃2(x, e, w)〉 ≤ c2W2(s, e).

3) The following condition holds: ε̄ < min{(1/L2) ln(e
−L1/

(γ1γ2)), d2/c2}, where L1 ∈ (0, εc1) and L2 ∈
(c2, d2/ε̄).

The condition (42) characterizes the so-called UGES proto-
cols that were introduced in [34]. We only consider ISS with
linear gain in (41) in order to state an explicit condition on ε.

Remark V.3: Note that we can take L2 to be as close as we
want to (but larger than) c2, and L1 can be taken as close to 0
as we want.

Proposition V.6: Suppose that Assumption V.2 holds for the
system (38). Then, all conditions of Assumption III.1 hold
for the system (38), (39) with9 V1(x, τ1) := eL1τ1W1(x) and
V2(s, e, τ2) := e−L2τ2W2(s, e) and, hence, the conclusion of
Theorem III.1 holds.

Proof: Since Assumption V.2 holds for subsystems x and
(s, e) respectively, we have from conclusion 1 in Propositions
IV.1 and IV.4 that item 1 of Assumption III.1 holds. Using
Propositions IV.1 and IV.4 and item 3 of Assumption V.2 we
conclude that Assumption IV.3 holds with a1 = 0 and a2 =
L2ε̄. Hence, from Proposition IV.7 we conclude that items 2,
3, and 4 of Assumption III.1 hold. �

A direct consequence of Proposition V.6 is ISS of the system
(38), (39). In this case, we can show ISS (and not only pre-ISS)
since all solutions can be shown to be complete. Indeed, C ∪
D = R

n and all solutions (x, e) are bounded for all essentially
bounded inputs. We have:

9The vectors (x, τ1) and (s, e, τ2) here play the roles of x1 and x2,
respectively, in Assumption III.1.



LIBERZON et al.: LYAPUNOV-BASED SMALL-GAIN THEOREMS FOR HYBRID SYSTEMS 1407

Corollary V.7: Suppose that Assumption V.2 holds for the
system (38). Then the system (38), (39) is ISS with respect
to the input w and the set A := {(x, e, s, τ1, τ2) : x = 0, e =
0, s ∈ R, τ1 ∈ [0, ε], τ2 ∈ [0, ε̄]}.

The above result uses a different (more conservative) Lya-
punov construction than [6]; however, the result is simpler and
fits directly our framework so it is appropriate for illustration
purposes. The following result provides a time-domain conclu-
sion for the trajectories of the original system:

Corollary V.8: Suppose that Assumption V.2 holds for the
system (38). Then all solutions of the system (38) for which
(40) holds satisfy an ISS bound with respect to the input w and
the set Ã = {(x, e, s) : x = 0, e = 0, s ∈ R}.

C. Emulation With Event-Triggered Sampling

In this section, we revisit results in [39]. Consider a
continuous-time plant ẋ = f(x, u) for which a state feedback
controller u = k(x) was designed to globally asymptotically
stabilize the closed-loop system. Suppose that we want to im-
plement the controller in a sampled-data fashion so that we take
samples of x(·) at times tk, k ∈ N and let u(t) = k(x(tk)), t ∈
[tk, tk+1). The sampling times tk will be designed in an event-
driven fashion. To this end, introduce an auxiliary variable
e(t) := x(tk)− x(t) and assume that there exist C1 functions
V1, V2 : Rn → R and ψij , χ1, α1 ∈ K∞, i, j ∈ {1, 2} such that
for all x and e we have

ψ11 (|x|) ≤ V1(x) ≤ ψ21 (|x|) , ψ12 (|e|) ≤ V2(e) ≤ ψ22 (|e|)
(43)

and

V1(x)≥χ1 (V2(e))⇒〈∇V1, f (x, k(x+ e))〉≤−α1 (V1(x)) .
(44)

Let χ2 ∈ K∞ be arbitrary and satisfy

χ1 ◦ χ2(s) < s ∀s > 0. (45)

Our triggering strategy is to update the control whenever
V2(e) ≥ χ2(V1(x)), which leads to the following closed-loop
hybrid system10:

ẋ = f (x, k(x+ e)) , ė = −f (x, k(x+ e)) , (x, e) ∈ C
x+ = x, e+ = 0, (x, e) ∈ D

(46)
where C := {(x, e) : V2(e) ≤ χ2(V1(x))} and D := {(x, e) :
V2(e) ≥ χ2(V1(x))}.

Proposition V.9: Suppose that there exist Lyapunov func-
tions V1, V2, a positive definite function α1 and functions
ψij , χi ∈ K∞, i, j ∈ {1, 2} such that (43)–(45) hold. Let V
be defined via (9) with x, e in place of x1, x2. Then, there
exist functions ψ1, ψ2 ∈ K∞ such that for the system (46) we
have: ψ1(|(x, e)|) ≤ V (x, e) ≤ ψ2(|(x, e)|) ∀x, e; 〈∇V (x, e),
(f(x, k(x+ e)),−f(x, k(x+ e)))〉≤ −α1(V (x, e)) ∀(x, e) ∈
C; and V (x, 0) ≤ V (x, e) ∀(x, e) ∈ D.

10This hybrid system follows from the same methodology used in [39];
however, [39] uses an alternative model and proof technique to establish its
results.

Proof: First, for all (x, e) ∈ D we have V1(x
+) = V1(x).

By this and (44), the conditions (15) and (17) of Assumption
III.2 hold (with Y ≡ 0, x1 := x, and x2 := e). Consider an
arbitrary χ̄2(s) > χ2(s) ∀s > 0 and such that χ1 ◦ χ̄2(s) <
s ∀s > 0; such a χ̄2 always exists since the inequality (45)
is strict. Then, we have that for (x, e) ∈ C the following is
vacuously true: V2(e) ≥ χ̄2(V1(x)) ⇒ 〈∇V2(e),−f(x, k(x+
e))〉 ≤ −R(e), where R(·) can be arbitrary and, in particular,
we can take R(e) = α1(|e|). Moreover, for all e we have
V2(e

+) = V2(0) = 0. Hence, the conditions (16) and (18) of
Assumption III.2 hold (with arbitrary λ2). By construction, the
small-gain condition (item 4 of Assumption III.2) holds, and
the result follows from Theorem III.3. �

To apply Corollary III.6, we need to check complete so-
lutions that are either purely continuous or purely discrete
(ignoring of course the trivial solution at the origin). Here
we know that after a jump we must flow, since jumps reset
e to 0. Thus, the only solutions that we need to analyze are
purely continuous ones. However, in view of the ISS condition
(44), the definition of C, and the small-gain condition (45),
purely continuous behavior is possible only when both x and
e converge to 0. Hence, V cannot stay constant and positive
along any such solution. Finally, all solutions are complete
because the properties of V in Theorem III.3 guarantee their
boundedness and we have C ∪D = R

n by construction. We
have arrived at the following result.

Corollary V.10: The closed-loop hybrid system (46) is GAS
(with respect to the origin).

D. Quantized Feedback Control

This example is in some sense more specialized than the
previous ones, because we will only work with linear dynamics.
On the other hand, this additional structure will permit us to
explicitly construct the Lyapunov functions V1, V2 (which will
be quadratic) and derive expressions for the gain functions
χ1, χ2 (which will be linear gains), instead of just assuming
their existence.

Consider the linear time-invariant system ẋ = Ax+Bu,
where x ∈ R

n, u ∈ R
m, and A is a non-Hurwitz matrix. We

assume that this system is stabilizable, so that there exist
matrices P = PT > 0 and K such that

(A+BK)TP + P (A+BK) ≤ −I. (47)

We denote by λmin(·) and λmax(·) the smallest and the largest
eigenvalue of a symmetric matrix, respectively. By a quantizer
we mean a piecewise constant function q : Rn → Q, where Q
is a finite or countable subset of Rn. Following [23], we assume
the existence of positive numbers M (the range of q, which can
be a finite number or ∞ depending on whether Q is finite or
countable) and Δ (the quantization error bound) satisfying

|z| ≤ M ⇒ |q(z)− z| ≤ Δ. (48)

We assume that q(x) = 0 for x in some neighborhood of 0 (in
order that the equilibrium at 0 be preserved under quantized
control). It is well known that quantization errors in general
destroy asymptotic stability, in the sense that the quantized
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feedback law u = Kq(x) is no longer stabilizing. To overcome
this problem, we will use quantized measurements of the form
qμ(x) := μq(x/μ) for μ > 0, as in [23]. The quantizer qμ
has range Mμ and quantization error bound Δμ. The “zoom”
variable μ will be the discrete variable of the hybrid closed-
loop system, initialized at some fixed value. The feedback law
will be u = Kqμ(x). We consider the following scheme for
updating μ, which we refer to as the “quantization protocol”:

μ̇ = 0, (x, μ) ∈ C; μ+ = Ωμ, (x, μ) ∈ D

where C := {(x, μ) : |qμ(x)| ≥ (Θ +Δ)μ}, D := {(x, μ) :
|qμ(x)| ≤ (Θ +Δ)μ}, Ω ∈ (0, 1), and Θ is a number sat-
isfying Θ >

√
λmax(P )2‖PBK‖Δ/

√
λmin(P ). The overall

closed-loop hybrid system then looks like (cf. the “natural
decomposition” in Section V-A)

ẋ = Ax+BKqμ(x), μ̇ = 0, (x, μ) ∈ C
x+ = x, μ+ = Ωμ, (x, μ) ∈ D.

(49)

The idea behind achieving asymptotic stability is to “zoom
in”, i.e., decrease μ to 0 in a suitable discrete fashion. To
simplify the exposition, we will assume that the condition |x| ≤
Mμ always holds, i.e., x always remains within the range of qμ.
This is automatically true if M is infinite, and can be guaranteed
by a proper initialization of μ if a bound on the initial state
x(0) is available. For finite M and completely unknown x(0),
this can be achieved by incorporating an initial “zooming-out”
scheme and subsequently ensuring that the condition is never
violated (see [23] for details). For a Lyapunov-based small-gain
analysis of a quantization scheme that includes zoom-outs, see
the recent work [40].

Lemma V.11: Consider the hybrid system (49). Let V1(x) :=
xTPx, with P and K from (47). Let V2(μ) := μ2. Pick two
numbers ε1 and ε2 satisfying 0 < ε1 < ε2 and

Θ ≥
√
λmax(P )λmin(P )2‖PBK‖Δ(1 + ε2)/

√
λmin(P ).

(50)
Then:

1) For all (x, μ) ∈ C we have

V1(x) ≥χ1V2(μ)

⇒〈∇V1(x), Ax+BKqμ(x)〉≤−c1V1(x), (51)

V2(μ) ≥χ2V1(x) ⇒ 〈∇V2(μ), 0〉 ≤ −c2V2 (52)

where χ1 := 4λmax(P )‖PBK‖2Δ2(1+ε1)
2, c1 := ε1/

((1+ε1)λmax(P )), χ2 := 1/(4λmax(P )‖PBK‖2Δ2(1+
ε2)

2), and c2 > 0 is arbitrary.
2) For all (x, μ) ∈ D we have V1(x

+) = V1(x) and
V2(Ωμ) = Ω2V2(μ) < V2(μ).

Proof: Rewrite the right-hand side of the first equation
in (49) as Ax+BKqμ(x) = (A+BK)x+BKμ(q(x/μ)−
(x/μ)). Using (47) and (48), we obtain 〈∇V1(x), Ax+
BKqμ(x)〉 ≤ −|x|2 + 2|x|‖PBK‖Δμ, which is easily seen to
imply |x|≥2‖PBK‖Δμ(1+ε1)⇒〈∇V1(x), Ax+BKqμ(x)〉≤
−ε1|x|2/(1 + ε1). In view of the bounds λmin(P )|x|2 ≤
V1(x) ≤ λmax(P )|x|2 and the definitions of χ1 and c1 this

yields (51). Next, use the same bounds again together with
(50) and the definition of χ2 to note that the condition V2(μ) ≥
χ2V1(x) implies μ ≥ |x|/Θ and hence |qμ(x)| = |μq(x/μ)| ≤
|μ(q(x/μ)− (x/μ))|+ |x| ≤ Δμ+Θμ, which means that
(x, μ) ∈ D by the definition of D. Thus, (52) is vacuously true
for (x, μ) ∈ C, and item 1 is established. Item 2 is obvious. �

The above lemma leads immediately to the following result.
Proposition V.12: All conditions of Assumption III.2 hold11

for the system (49) and, hence, the conclusion of Theorem III.3
holds.

To conclude asymptotic stability, we can apply Corollary
III.6. If x(0) = 0 then, since μ(0) > 0, we will have a purely
discrete solution along which μ → 0, hence V does not stay
constant. It is not difficult to see that every x(0) �= 0 and every
μ(0) > 0 give a solution that is neither purely continuous nor
purely discrete. Indeed, after finitely many jumps μ becomes
small enough so that (x, μ) ∈ C and flow must occur, and
then due to (51) x will eventually become small enough so
that (x, μ) ∈ D and a jump must occur. In fact, [1], [23], [25]
contain results along these lines (see in particular Lemma IV.3
in [25]). Finally, it is clear that all solutions are complete
because the dynamics are linear and C ∪D = R

n. We have
shown the following.

Corollary V.13: The closed-loop hybrid system (49) is
GAS12 (with respect to the origin).

The above quantization protocol has a clear geometric inter-
pretation. We zoom in if the quantized measurements show that
|x| ≤ (Θ + 2Δ)μ, which is guaranteed to happen whenever
|x| ≤ Θμ. The condition (50) means that for each μ, the ball
of radius Θμ around the origin contains the level set of V1

superscribed around the ball of radius 2‖PBK‖Δμ, outside of
which V1 is known to decay (thus ensuring that the zoom-in will
be triggered). Similar constructions were utilized in [1], [23],
but previous analyses did not employ the small-gain argument.

VI. CONCLUSIONS

We proposed several constructions of strong and weak Lya-
punov functions for feedback connections of hybrid systems
satisfying a small-gain condition. A novel LaSalle theorem pro-
vided sufficient conditions that can be used in conjunction with
the obtained weak Lyapunov functions to conclude GAS. We
also presented constructions of ADT and RADT clocks that can
be used to ensure that our assumptions hold. We illustrated our
results in several design-oriented contexts: networked control,
event-triggered control, and quantized feedback control.

11The vectors x and μ here play the roles of x1 and x2, respectively, in
Assumption III.1.

12Recall that we required the condition |x| ≤ Mμ to hold for all times.
When M is finite, this actually restricts the admissible initial conditions
(x(0), μ(0)). However, as shown in [23], if M large enough compared to Δ
then an initial “zooming-out” scheme can be used to guarantee that the above
requirement is fulfilled from some time onwards. Together with our analysis,
this can be used to show global asymptotic stability of the resulting system.
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[25] D. Liberzon and D. Nešić, “Input-to-state stabilization of linear systems
with quantized state measurements,” IEEE Trans. Autom. Control, vol. 52,
pp. 767–781, 2007.
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