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Abstract— In this paper we study the alternative method for
determining the stability of dynamical systems by inspecting the
higher order derivatives of a Lyapunov function. The system
can be time invariant or time varying; in both cases we define
the higher order derivatives when there are inputs. We then
claim and prove that if there exists a linear combination of
those higher order derivatives with non-negative coefficients
(except that the coefficient of the 0-th order term needs to
be positive) which is negative semi-definite, then the system
is globally uniformly asymptotically stable. The proof involves
repeated applications of comparison principle for first order
differential relations. We also show that a system with inputs
whose auxiliary system admits a Lyapunov function satisfying
the aforementioned conditions is input-to-state stable.

I. INTRODUCTION

For general nonlinear systems, asymptotic stability is
typically shown through Lyapunov’s direct method (see, e.g.,
[1]), which involves constructing a positive definite Lya-
punov function V whose time derivative V' along solutions
is negative definite. Because of the opposite sign definite
constraints and the fact that V is coupled to V via the
system’s dynamics, although the classical Lyapunov results
are theoretically elegant, they have lots of difficulties in the
application. In most cases, 1% might be positive somewhere
and V' as a function of time when it is evaluated along a so-
lution of the system becomes non-monotonic. Nevertheless,
there is still a chance that the system is asymptotically stable
as long as V converges to 0 asymptotically with bounded
overshoots.

The motivation for the study of non-monotonic V is
behind the simple idea that “if over any long enough period
V' decreases more than it increases, then V' is asymptotically
decreasing”. One way to ensure that V' does not increase
too much is to restrict the length of time it can continuously
increase, as studied in [2],[3]. This also leads to our previous
work on “almost” Lyapunov functions with small V>0
regions in [4],[5]. Another way is to force “V”, the rate of
the change of V, to be negative enough so that V will become
negative again soon enough. This idea leads to the study of
higher order derivatives of V', which takes its roots in the
paper [6] by Butz, where a linear combination of higher order
derivatives of V up to order 3 was studied. The collection
of higher order derivatives is also called vector Lyapunov
function in [7],[8], which can be used to analysis the stability
of a system. A similar idea of higher order derivatives of
V' for analyzing discrete time systems is studied in [9] and
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then this technique is practiced for fuzzy systems in [10].
Much later after Butz’s work, in [11] a general result was
concluded for time varying systems that under some mild
assumptions, as long as there exists a negative definite linear
combination of the higher order derivatives of V' and the
coefficients form a Hurwitz polynomial, then the system
is globally uniformly asymptotically stable. The result is
derived by repeatedly applying the comparison principle for
first order differential relations. In [12] the same authors
argued that in fact Hurwitzness is not needed; as long as
the coefficients are non-negative, the same results can be
concluded.

All the aforementioned literature only deals with systems
without inputs. In this work we extend the concept of higher
order derivatives of Lyapunov functions to systems with
inputs. For such systems, input-to-state stability is an impor-
tant and widely used concept for characterizing a system’s
response to inputs and is the target property that we would
like our systems to have. However, higher order derivatives
of Lyapunov functions are not well defined because of the
presence of inputs. Inspired by the work in [11], we realize
that a generalized, upper-bounding higher order derivatives
can be used in our case and this construction is valid whether
the system is time invariant or time varying. As a result, by
repeated applications of comparison principle for first order
differential relations, we are able to show that whenever V'
along a solution goes beyond a positive value, it has to drop
back to the same value in finite time. The system can then
be shown to be globally uniformly asymptotically stable.
Deploying the equivalences of stability definitions between
a system with inputs and its auxiliary system as in [13], we
are eventually able to conclude a sufficient condition based
on higher order derivatives of V' for showing input-to-state
stability.

This paper is divided into 6 sections. Section II provides
the necessary preliminaries for the later part of the paper,
with our main theorem results stated in the end. Section III
is the detailed proof for our main theorem. Section IV gives
two examples where our techniques can be used for showing
the stability of systems. Section V is the discussion and
eventually Section VI concludes this paper.

II. PRELIMINARIES AND RESULTS

A. Stability definitions and sign definite functions

Consider a nonlinear time varying system with inputs

&= f(t,2,u) (1



where f : R>g x R" x U — R" is continuous in ¢ and
locally Lipschitz in  and w. U C R™ is the input value
set and the input function u(-) € L2 (R>o — U) =: My;
that is, u(-) is a locally essentially bounded function. For a
specific initial condition x( at time fy; and input u, denote
the solution state of (1) at time ¢ by z(t, zq, u).

A system (1) is said to be input-to-state stable (ISS) [14]
if there exist v € Ko, 3 € KL such that for all 2o € R,u €
MU and t Z t(),

|z (t, w0, w)| < B(lzol t —to) +([[ullpy.)- ()

When the input has negligible effects on the stablity of the
system, we also say that the system (1) is globally uniformly
asymptotically stable (GUAS) if there exists 8 € KL such
that

|$(t,.’L'O7U)‘ §6(|$0|,t—t0) (3)

for all zg € R,u € My and t > tg. GUAS coincides with
the same classical definition of GUAS for systems without
inputs

&= f(t, z) “4)
by taking U = {0}. ISS and GUAS are connected via

auxiliary system as discussed in the celebrated work [13]:

Lemma 1 The system (1) is ISS if and only if its auxiliary
system

&= f(t,z, p(|x])d) =: f'(t,z,d),
is GUAS for some p € Koo.

<1 (5

For a function P(x) : R™ — R, we say P is positive
definite (P > 0) if P(0) = 0 and P(z) > 0 when = #
0. We say P is positive semi-definite (P = 0) if P(0) =
0 and P(x) > 0 when x # 0. P is said to be negative
definite (P < 0) or negative semi-definite (P < 0), if —P
is positive definite or positive semi-definite, respectively. We
say P is sign indefinite if P is neither positive semi-definite
nor negative semi-definite. For a function V (¢, z) : R>¢ X
R™ — R, we abuse the same terminologies and say V (¢, )
being positive/negative (semi)-definite or sign indefinite if
this property holds for the function V (-, ¢) for all ¢t > ¢y. In
addition, we write P > @ if P—() > 0 and similar notations
for the other sign definite relations.

B. Construction of higher order derivatives of V

We start from the discussion on the system without inputs.

It is well-known in [1] that the system (4) is GUAS if there

exists a differentiable function V (¢, z) and o, s, a3 € Ko
such that

ag(z|) < V(t,x) < ag(lz|) VE>tg,z € R®  (6)

ly € Koo if ¥(s) : R>g — R is a continuous, strictly increasing

function and y(0) = 0, lims— 00 Y(s) = c0. B € KL if B(s,t) : R>g X

R>¢ — R is a continuous function such that 3(-, t) is increasing, 5(s, -)

is decreasing and £(0,t) = 0 for all t > tq, lim¢— 00 B(s,t) = 0 for all
s> 0.

V(e = 28 3 O ) <y )

The second condition (7) can be replaced by the following
one

V(t,x)+aV(t,z) <0 (8)
for some a > 0 (so a3 = aap) and still show GUAS. When
extending this idea to systems with inputs (1) and higher
order derivatives of V, there are two technical issues that
need to be resolved. First, if we use the same definition in (7)
for “V”, it will become input dependent and hence undesired
for our study because our GUAS property is uniform with
respect to input. A good way to get rid of the dependence
on wu is to take the supremum of those “V” with respect to

_OV(t,x)

u:
v (t,
Vi(t,x) = SrTER + 51618 (3(x x)f(t,x,u)) .

This V; seems to be a good candidate for our first order
derivative of V for the system (1). The second technical
issue is that we cannot directly differentiate V' twice along
a solution in order to get an expression for the second order
derivative because it involves the derivative of u with respect
to ¢, which may not even exist as u is not assumed to be dif-
ferentiable. On the other hand, we cannot differentiate V; to
get the second order derivative either because differentiability
of Vj is unclear due the sup function used in its definition.
Note that we only needs upper bounds for the derivatives;
they do not need to be tight and thus a solution to this
technical issue is by finding a smooth upper bound v; > V;.
This v, will be the actual first order derivative of V" used for
our analysis. An advantage of using smooth functions is that
they can be used to generate the subsequent higher order

derivatives. In other words, we define vy(t,z) = V (¢, z),
and for all = 1,2, - -, iteratively define and construct
8’[}1‘_1(t,$) 6’Ui_1(t,l‘)
‘/i t) :: A, - a_ t7 b b
(t, ) o Tew et AGEAL)

vi(t,z) € C'(Rsp x R™) s.t. v; = V.
©))
We call those v; functions the higher order derivatives of V/
if they exist. We say the higher order derivatives of V' up
to order m are globally decrescent if there exists ¢’ € Ko
such that

vi(t,z) < ¢'(|z)

Because of the assumption (6) on V, it is equivalent to write
the above requirements in a compact form:

v; 2 (V)

YVt > tg,z € R",i=0,---m.

Vi=0,---m (10)

for some ¢ € K. Now suppose for some m € N, there
exist

ap>0,a;,>20 Vi=1,---'m (11

such that m
Zaivi j O, (12)

i=0



we want to conclude stability properties for the system. They
are summarized as our main theorem in the next subsection.

C. Main results

Theorem 1 Given a system (1) and a positive definite
Sfunction V (t,x) satisfying (6), generate the higher order
derivatives v; via (9) by f and V. If the global decrescent
condition (10) is satisfied and (12) holds for some m € N
with a;’s satisfying (11), then the system (1) is GUAS.

Inspired by Lemma 1, we also conclude a result on
showing ISS of the system (1) via higher order derivatives
of V:

Corollary 1 Given a system (1) and a positive definite
Sunction V (t,x) satisfying (6), generate the higher order
derivatives v; via (9) by f' and V where f' is defined in
(5) with some p € K. If all the hypotheses in Theorem 1
are satisfied, then the system (1) is ISS.

In the case when both V' and f are smooth enough and
there are no inputs, v;’s reduce to the usual higher order
derivatives of V. When the equality in (12) is achieved
everywhere, it becomes a linear differential equation

o™ + -+ a1® + ag =0, (13)
which is associated with a characteristic polynomial
ams™ + - +ay1s+ag=0. (14)

Recall that (11) is only a necessary condition for the above
polynomial to be Hurwitz. This means that it is possible
that there exist some a;’s satisfying (11) but a solution v(t)
of (13) diverges as ¢ increases. Since v(t) also satisfies the
differential relation (12), at a first glance it contradicts the
result in Theorem 1 that the system is GUAS. However,
we argue that this v cannot be a positive definite Lyapunov
function and hence Theorem 1 is not conflicted. Note that
(14) has no non-negative real roots when the coefficients
satisfy (11). It then must have positive complex roots if the
solution of (13) diverges. Hence v(t) will oscillate stronger
and stronger in order to diverge so v(t) will become negative
for some t large enough. In other words,

Corollary 2 If the characteristic polynomial (14) of the
linear differential equation (13) is not Hurwitz but the
coefficients a;’s satisfy the condition (11), then the solution
of (13) with any initial condition v(0) > 0 has to be negative
for some t > 0.

III. PROOF OF MAIN THEOREM

Without loss of generality we can always assume v, is
the highest order term in (12) with non-zero coefficient a,,.
By scaling we can also assume that a,, = 1. Consider a
solution z(t, xo, ) with arbitrary initial condition zy € R
and v € My. Simplify the notation with z(t) = x(t, zo, u),

representing the state of the system at time ¢. By the
construction (9) we see that for all ¢ > tp,7 € N,

b1 (t,(t)) = Lzt 2®)

ot
Ov;—1(t, x(t
4 IO () ue) < it 2@ (5
which can be written as ¥;—; = wv; in short. Interesting
results can be developed based on this sequence of first order

differential relations.

Lemma 2 Let x(t) be an arbitrary solution of system (1)
with tog = 0. Under assumptions (11) and (12), for any b > 0
if vo(t,x(t)) > b for all t € [0,T] for some T > 0, then

Amp+i— ij(O l'())

volt,2(t) < b am—;

(16)
forall t €10,T).

Proof: This proof is inspired by the work in [11]. We

claim that for any £k =0,1,---m — 1,
m—k k+1
Z aiprvi—1(t, x(t)) < bZ Afy1—j 7
i=1
mfkflJrj tj

ﬁai+k7j+lvi(07x()) )

Recall we have safely assumed a,,, = 1 so (16) is simply the
incidence when k£ = m — 1. We use mathematical induction
to prove the claim (17). First, for £ = 0, we need to show
that

Za,vz 1(t, x(
To show that, we plug (15) into (12):

—I—Zalvl 1(t,2(t)) < Zaivi(t,x(t)) <0
=0

Shift the vg term to the right, integrate both sides from O to
t and recall that ag > 0,vo(7, z(7)) >,

i (Uz 1(t, z(1)) —vi_l(O,mo))

t
< —ao/ vo (7, 2(7))dT < —bagt
0

m—1

< ba0t+ Z QZ+1UZ O CC())
=0

(18)

aovo t x

Shift the initial terms v;_1(0, o) to the right and increase
their indices by 1 and we have proven (18).

Second, suppose (17) holds for some £k =0,1,...,m—2.
We show that (17) also holds for the incidence k + 1. To do



that, we plug (15) into (17):

m—k

)_|_ Z a1+k1}i—2(t;$(t))

=2

a1yrvo(t, (1)

m—
k+1 . k m—k—1+j

< bZakH j !—I-Z Z ;lai+k7j+lvi(07x0)

Shift the vy term to the right, integrate both sides from 0 to
t and recall that ayy > 0,v(7,z(7)) > b,

@iy rvi—1(t, z(t))

Tgawk (Uz'—2(t, x(t)) — vi—2(0, x0)>

t
< *al+k/ vo(T,
0

—1+j

k+1

J
dT*bZak—H J/ ;dT

i
/ 7 dTaH_k +10:(0, o)
0

k

m—

VR

<
I
o

+
i=0
k+1 ;

i+l
< —aj bt —b Afpg]—i ————
< 14k jz::l k+1—j G+1)
m—k—14j Hi+
+

-

<
I
o

————— Qi k—i+10;(0, zg).
- (]+1)' i+k—j+1 z( B 0)
=0
Notice that the first term —a; bt can be combined into the
first summation with an index j = 0. In addition, shift the
initial terms v;_2(0,x¢) to the right and we have

m—k k+1 t]+1
Zai+kvi—2(tax ) < bzak+1 J 1!
i=2
k m—k—14j
t]+1
+ Z Qi k—j+10; (0, z0)
| J
j=0 =0 (7 +1)!
m—k
+ @i+x0i—2(0, z0)
=2

Rearrange the summation indices; namely, let the summation
on the left side start with ¢ = 1, the first summation on the
right start with j = 1, the outer summation of the second
term start with 7 = 1 and the last summation start with ¢ = 0,
we have

k—1 k+2
E Aiplr1vi—1(t, z(t)) < b§ ag— j+2 7l
=1
k+1m—Fk+j— 2t
+ E E —i+k—j+20i (0, 7o)
j=1  i=0 J:

m—k—2

+ Z @iy k203 (0, 20)
i=0

m—

Notice that the last term can be combined into the nested
summations with an index 5 = 0. As a result, we have

m—(k+1)
Z iy (k+1)Vi-1(t, 2(t))
i=1
(k+1)+1
—b Z A(k+1)— J+1
k+1m— (k+1) 1+

ti
+ Z Z i it (k+1)—j+10i (0, Zo)-

Compared with (17), the above inequality is exactly the
incidence of £+ 1 and hence we have proven the lemma. W

Lemma 3 Suppose all the hypotheses in Lemma 2 hold. For
any 6 > 0,€ > 0, there exist a function v(0) € K, a set
D = {(6,e) e R? : § > 0,0 < € < 9(6)} and a function
T(6,€) : D — Rxq with the following properties:

1) T(6,¢) is increasing in § when ¢ is fixed, and decreas-

ing in € when ¢ is fixed,

2) T(8,9(8)) = 0 and limeﬁm T(6,¢) =
such that if vy(0,z9) =

1) wolt,z(t)) <o(d )for all t > 0;

2) wo(t,z(t)) < eforallt>T(6¢).

Proof: We pick b € (0,4] and Let t > 0 be the maximal
time such that vy (¢, z(t)) > 6 for all ¢ € [0,T]. Then by
Lemma 2 we have (16) for all ¢ € [0,7T]. Split the second
summation term in (16) into two parts so that one of them
involves vy terms only:

) < —bzam—jﬁ
m—1 J

. y
+Zamj' (0, x0) +Z Jamﬂjvl()xo)

j=1 i=1

oo forall § >0

(19)

By global decrescent condition (10) we have ¢ € K, such
that forall 2 =1, ---m — 1,

vi(0,20) < @(V(0,20)) =

Substitute the above uniform bounds on v;’s
m )
i
z(t)) < beam_jﬁ
=

m—1 j
+0) amy |+¢
7=0

¢(v0(0,0)) = ¢(6).
into (19),

m—1 J

Z Z EJ Qmti—j (20)

Jj=1 i=1

To find the ¥ function, we consider the case b = §. Thus
we have

m—1 7 .
tm ti
vo(t, z(t)) < —0ag— +0 + $(0) ; ; SjOmticg

=:ps(t) (21



Notice that ps(t) is an m-th degree polynomial in ¢, whose
coefficients depend on 4. In addition, the coefficient of the
highest degree term is negative so ps(t) is bounded from
above for all ¢ > ty. By simple computation, ps(0) = 4,
4ps(0) = ¢(6) > 0 so it can be concluded that the
maximum value of ps(t) is achieved somewhere at t* >
0 and ps(t*) > 0; in addition since po(f) = 0 so the
maximum value of ps(t) approaches to 0 as 0 decreases
to 0. Consequently it can be concluded that there exists
U € Ky so that ps(t) < ©(9) for all ¢ > ty3. We claim
this © is the desired upper bound for vy (¢, x(t)). Indeed
if this is not true, then it means there exists s* > 0 such
that vo(s*, z(s*)) > ©(d). As vo(to,z0) = I, there exists
s0 € [0,5*) such that vo(so, z(sg)) = d and wvg(t, z(t)) > §
for all ¢ € [so, s*]. We shift sy to be the initial time 0 and
the assumptions in Lemma 2 are satisfied with 7" = s*. Note
that semi-definite relation (12) and the global decrescent
condition (10) still hold for all ¢ > sy so by same analysis
we will still have the inequality (21). Hence we must have
vo(s*, x(s*)) < ps(s*—s¢) < ©(4), which is a contradiction.

To find the T function, we let b = v~ 1(¢). In this way
because ¢ < ©(J), indeed we have b < ¢, which does not
conflict with our previous choice of b € (0,d]. Thus (20)
becomes:

vo(t, (1)) < —v

m tj m—1 tj
O Ay H8 )ty
j=1 J: j=0 J:

m— 121 1 tJ
+ ¢(9) mi—j
j=1 :
m—1 ;
_ 1 t 5 ——1 t
= -7 (e)aom—k( -7 (e)) . am_jﬁ
j=1
m—1 j 4
+§+¢(6) Zaersz |
j=1 i=1
— -1 t )
=-7 (e)aoﬁ +
m—1 + 7
Y5 <¢><5>Zam+” (- v-1<e>>amj)
j=1 i=1
— pé,e(t)

Again ps(t) is an m-th degree polynomial in ¢. Define
T(d,€) := argming>,{pse(t) < v *(e)}, which is finite
since the highest degree term in the polynomial ps.(t)
has negative coefficient and thus decreases to —oo when ¢
increases, and is positive when ps(0) = § > o7 !(e). We
claim this is the 7" function that we are looking for.

To show the first property of 7'(6,¢) in Lemma 3, We see
that when € is fixed, &, > dy implies ps, (t) — v~ '(e) >
Py .(t)—071(€) forall t > to and hence T'(61,€) > T(J2, €);
when § is fixed, € > e implies ps, (t) — 07 (e1) <
Do, (1)1 (e2) forall t > 0 and hence T'(6, €1) < T'(6, €2).
To show the second property, we see that ps 5(5)(0) = § =
71 (9(0)) so T(5,9(0)) = 0. In addition, pso(t) = § > 0
for all ¢ > to and because ps . (t) is continuous in €, we must

Fig. 1. A graphical view of T function. The red curve is e = ¥(5) and
the surface is the value of T'(d, €). Swapping € and ¢ we can get a class
KL function which bounds V (¢, §).

have lim,_,o+ T(5,€) = oo.

Eventually, to show vo(t,z(t)) < e for all t+ > T(6,¢),
recall vo(t, z(t)) > b= v~ 1(e) and it is bounded from above
by ps.(t) for t € [0,T]. By the definition of 7" we must
have T < T. In other words there exists f < T such that

v(t, z(t)) = v~ 1(e). Hence by the first conclusion on ¥ we
have vg(t, z(t)) < e for all t > T(J,¢) > . [ |

Proof: [Proof of Theorem 1:] Briefly speaking, the
first property in Lemma 3 implies global stability and the
second property implies uniform attractivity and hence the
system is GUAS. We present an alternative proof here via
the construction of a class KL function as required by (3).

Without loss of generality and by majorization, we can
always assume 7 form Lemma 3 is a continuous function
over D while preserving its properties. A graphical view of
T function is illustrated in the Figure 1. For each § > 0,
define W;(e) = T(6, €). By the properties of T' in Lemma 3,
we see that its inverse function W' : [0,00) — (0,9(d)]
exists and is a decreasing function such that W, *(0) = 9(9),
limy_s oo W5_1(t) = 0. In addition, from the second conclu-
sion on vy (t, z(t)) after T we see that when v (to, zo) = 0,
vo(t, (1)) < Wyt (t — to).

Define

1
B(5,1) ;{ We (@) >0

We claim that § € KL. We are left to show ((d,t) is
increasing in § and it is continuous at § = 0. Let 61 > do > 0
and t > to. Since ¢ is in the range of the function T'(6, €) for
any § > 0, t = T(01,¢;) = T(d2, €3) for some €1, e5. Then
we must have €; > e, because T'(, €) is increasing in § and
decreasing in e. In other words,

W{ll(t) = €1 > €3 = W{l(t)

5(517 ) 26(627t)

o (d,t) is increasing in 6. In addition, we have 3(6,t) <
(6, O):TJ()—>Oas§—>0sohm5%05(6t) 0=
(0,t) and the function is continuous at § = 0.

Q\Q\ %



At last, from the earlier analysis we have vo(t,z(t)) <
ﬂ(’l)()(t()7l'()),t — t()) for any xg € R™ u € MU,t > ty. As
v9 = V by definition, combine this result with (6) and we
have

lz(t)] < afl(VEt,x(t))) < ay ' o B(V(to,xo),t —to)
Yo Blaz(|zol), t —to) = B(|lz(0)],t —to).

By construction 8 € KL and hence the system (1) is
GUAS.

Sap

|
IV. EXAMPLES
A. Linear system with unaligned V
Consider a 2-dimensional linear system given by
z = f(z,u) = Az +u (22)

where A = . It is not hard to check that A

0.1 1

2 —0.1)
is Hurwitz so the system (22) is ISS. This can be verified by
picking a proper quadratic Lyapunov function V := z T Pz
where P satisfies the Lyapunov equation:

AP+ PAT = —Q (23)

for some positive definite ). Consider the canonical Lya-
punov function V = |x|? so that P is the identity matrix. By

0.2 -1
(23) we find Q = 1 02)

Hence such V is not a Lyapunov function for system (22);
in other words, even in the case when u = 0, we have

which is not positive definite.

V = —0.22% + 22125 — 0.20% = —0.2(z; — 5xo)? + 4.822

which may be positive when z; = 5xo # 0. Nevertheless,
in spite of the sign indefiniteness of V, we look at its higher
order derivatives and we still want to show that (22) is ISS.
Pick p(s) = ZiO and consider the auxiliary system

= f'(z,u)
with |u| < 1. As usual vy =

811,‘
Ox

— Az + plle])u

V' and notice that

|V, ||

! =Vu; |4 21} < A
fi(z,u) Vvl( m+20u < Vv;Ax + 20

When v; is quadratic in z,
and hence according to (9) we can recursively define

R;
vi+1 = Vv Az + —|x\2

which is also quadratic in z. According to this rule the first
few v;’s can be generated:

vy = —0.12% + 2z129 — 0.123,
vy = 4.1327 — 0.62129 — 18723,
v3 = —1.590727 — 15.62x122 + 1.409323.

It is observed that (10) is satisfied since all v;’s are quadratic.
Let ag = 0.1,a; = 8,a2 = 0.5,a3 = 1, we have

3
v = —0.225727 + 0.0811 29 — 0.225723

_ T (02257 —0.04)
=T 004 02257)F

hence according to our Corollary 1 the system (22) is ISS.

B. Slowly varying between two stable modes

Consider the following 2-dimensional, time varying sys-
tem

&= f(t,z,u) = sin®(kt) Az + cos? (kt) Asx 4+ u
= Ak, )z +u (24)

where

-01 -1 -01 -2
A1< 2 —o.1>’ A2< 1 —0.1>

and k is a sufficiently small positive number, representing a
slow enough variation of the system (24) between the two
linear sub-systems © = Ajx + v and © = Asx + u. The
two sub-systems are taken from Chapter 2.1 of [15]. Both
sub-systems are stable when there are no inputs; however,
as discussed in the cited book, the trajectory of a switched
system may diverge for some particular sequence of switches
between the two sub-systems. Hence the switched system
is not stable under arbitrary switches; there is no common
Lyapunov functions between the two sub-systems so there
exist no time-independent Lyapunov functions for (24). Nev-
ertheless we want to show that the canonical positive definite
function V(z) = |z|> when applied on (24) satisfies (12)
hence it proves ISS of the system when k is sufficiently
small.

Again pick p(s) = 55 and the auxiliary system is & =
flt,x,d) = Alk, )z + |x|d It can be inductively shown
that the higher order denvatlves of v; are of quadratic form

vi(t,z) = " My(k,t)z

because
8(‘91;2 + gz: - f'(t,z,d)
T () (s )
<o Bla o (Mo MT) Aw ot oo |M; + M fof?

= Vi+1.
Hence we also have the recursive relations
dM;
dt
In addition, if M;(k,t) =

M = + (M; +MT)A+—||M + M || Lo

Bi(k,t) + o(k)Qi(k

o(k) converges to 0 as k converges to 0 and
bounded uniformly with respect to all k£ € R,

,t) such that
IIQ ( t)ll is

, then



the sign definiteness of Y. | a;M; is the same as Y ;" ; a; P;
when £ is sufficiently small. Hence we only need to compute
those P;’s. Because we use V(x) = |z|?, Py = My = I>x»
as a start. The other matrices can be generated accordingly:

-01 -C
b= (—C —0.1) )
P, — C?—-3C+0.13

2= 0.3C

P —0.5C? + 1.5C +0.224
5= —C® +881C

0.3C
C?+3C+0.13)°
—C? 4+ 8.81C
—0.5C% — 1.5C + 0.224

where C' = cos(2kt). Use the same coefficients as in the
previous example; that is, ag = 0.1,a; = 8,a2 = 0.5,a3 =1
and we have

3
—0.411
; ;P = <—C3 +0.96C

Note max; |cos® 2kt — 0.96 cos 2kt| = 0.2561/2 < 0.411
so the above matrix is negative definite. Thus when £ is
sufficiently small,

3 3
~ T
E a;v; & g a;x Pz <0
i=0 i=0

and the system (24) is ISS by Corollary 1.

—C% 4 0.96C
—0.411

V. DISCUSSION

It is appreciated that stability of a system can be shown
either by finding a standard Lyapunov function, or via the
analysis of higher order derivatives of V' as we studied in
this work; each method has its own pros and cons. Finding
a standard Lyapunov function is not trivial in general; in
addition, we point out that for a time varying system, such a
standard Lyapunov function may also need to be time varying
and hence difficult to find. As shown in our second example,
no standard time-independent Lyapunov function exists for
this time varying system (24); on the contrary, starting from a
simple V(z) = |z|? and using our techniques on the higher
order derivatives, we are able to show that the system is
GUES.

On the other hand, while our method for checking stability
of the systems via higher order derivatives gives freedom
in the choice of the candidate positive definite function V,
as a trade off the negative semi-definite linear combination
condition is analytically difficult to check. Nevertheless, very
often when all the higher order derivatives are polynomials,
our negative semi-definite linear combination condition is re-
lated to the sum-of-squares (SOS) techniques in semi-definite
programming (SDP) (i.e., [16]). It is worth devoting more
efforts to the study of numerical SOS SDP implementation
and there is a high chance that such problems can be solved
efficiently.

The connection between higher order derivatives and the
standard Lyapunov function is observed in the work [17]. For
an asymptotically stable system with no inputs, if there exists
a function V€ C*°(R" — R) with V(0) = 0 and some
coefficients ag,aq,--- ,a,, such that the negative definite

linear combination condition > . a; V' < 0 holds where
V(@) is the i-th time derivative of V, then

W(x) =Y a; Vi () (25)
1=1

is a standard positive definite Lyapunov function with nega-
tive definite time derivative. Note that there is no assumption
of positive definiteness on V, nor any sign requirements like
(11) on the coefficients a;. Compared with our theorem, the
result in [17] seems to be much less conservative. However,
we point out that because of the presence of inputs in the
system, W constructed via a formula similar to (25) may
not be a standard Lyapunov function in our case. To be more
precise, because of the inputs, we only have inequality in the
relations (15) between higher order derivatives, rather than
equality as we have for the case when there are no inputs.
Thus as long as there are some negative a;’s, we will not be
able to compare W with -7 | a;V (") and hence the negative
definite time derivative of W cannot be concluded.

As a comparison to the classical Lyapunov function
theorem, another interesting question to study is whether
there also exists a converse theorem with respect to the
higher order derivatives? That is, given a positive definite
V and a stable system, whether there always exist some
non-negative coefficients such that the negative semi-definite
linear combination condition of the higher order derivatives
of V with these coefficients is satisfied. If starting with
any arbitrary V' seems too optimistic, we then can consider
those “almost” Lyapunov functions whose time derivative
is negative everywhere except at small regions in the state
space, as studied in our earlier work [5]. It is very likely
that such V' can be adjusted to be negative definite by
adding some higher order derivatives to it. This remains as
an interesting future research direction.

VI. CONCLUSION

In this paper we have studied the alternative method for
determining the stability of dynamical systems by inspecting
the higher order derivatives of a positive definite function.
We have first defined the higher order derivatives for time
varying systems with inputs. We then claimed and proved
that if there exists a linear combination of those higher
order derivatives with non-negative coefficients (except that
the coefficient of the O-th order term needs to be positive)
which is negative semi-definite, then the system is GUAS.
Consequently if a system whose auxiliary system admits a
positive definite function which satisfies the aforementioned
conditions, this system is ISS.
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