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Abstract: The paper deals with the robust output feedback discrete control of continuous-time linear 

plants with arbitrary relative degree under parametric uncertainties and external bounded disturbances with 

quantized output signal. The parallel reference model (auxiliary loop) to the plant is used for obtaining the 

uncertainties acting on the plant. The proposed algorithm guarantees that the output of the plant tracks the 

reference output with the required accuracy. 
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1. INTRODUCTION 

In recent years much attention has been given to the 

investigation of constraints on a communication channel 

included in a feedback control loop. Signal quantization (via 

quantizer or encoder) is usually considered as a source of 

independent discrete random noise which additively acts on 

the system. In Widrow (1961), Gray and Neuhoff (1988) this 

assumption allows to simplify the investigation of systems 

with quantization, in particularly, for control of plants 

described by linear models. However, this assumption may 

be too rough if the value of the quantization step is 

commensurate with the range of signal variation (Delchamps 

(1989), Baillieul (2002)). 

The quantization level in a discrete closed-loop system can 

cause oscillatory processes similar to oscillations in 

continuous nonlinear systems. In addition to the analysis 

problem there are many results on control synthesis. Some of 

these results are related to minimizing errors caused by 

quantization in the control loop. Usually these problems are 

posed in terms of optimization of an integral performance 

index (loss function). The earliest works (Tou (1963), Lewis 

and Tou (1965), Larson (1967)) are dedicated to solution of 

this problem. The paper of Larson (1967) is devoted to the 

synthesis of an optimal control system for discrete linear 

plants with quantization of the input signal. From Larson 

(1967) we have for input signal the one-dimensional density 

distribution. The optimization criterion for the encoder is the 

expected value of some cost function. The solution of this 

optimization problem is based on using standard methods of 

mathematical programming. 

In Fischer (1982) the algorithm for optimal quantization is 

derived from the solution of an optimization problem for a 

closed-loop system with a linear-quadratic criterion with 

Gaussian noise (LQG-problem). Similar results are presented 

by Curry (1969) where the optimal stabilization problem of a 

linear stochastic discrete plant with a quadratic cost function 

is considered. In Curry (1969) the measuring device is 

described by a nonlinear static characteristic (which may be a 

nonlinear characteristic of the encoder at the output of the 

plant). Also in Curry (1969) an innovation (a mismatch 

between the plant output and the conditional mean value 

produced by a Kalman filter) is received by the encoder. The 

papers of Goodman and Gersho (1974), Zhang and Lockhart 

(1995), Zierhofer (2000), Aldajani and Sayed (2001), 

Venayagamoorthy and Zha (2007), Golding and Schultheiss 

(1967) are devoted to design of adaptive quantizers where the 

range of signal conversion is changed automatically. In 

Goodman and Gersho (1974) the width of the band 

quantization is changed at the encoding of each signal. Note 

that these results are only devoted to the problem of 

transmitting signals. In subsequent works (see for example 

Gomez-Estern, Canudas de Wit, Rubio and Fornes (2007), 

Andrievsky, Fradkov and Peaucelle (2007), Zheng, Duni and 

Rao (2007)) the use of adaptive quantizers in control systems 

and estimation systems is considered. 

The paper of Liberzon (2003) is concerned with global 

asymptotic stabilization of continuous-time systems subject 

to quantization. A hybrid control strategy (Brockett and 

Liberzon (2000)) relies on the possibility of making discrete 

on-line adjustments of quantizer parameters. Sharon and 

Liberzon (2012) considered the problem of achieving input-

to-state stability with respect to external disturbances for 

control systems with quantized measurements. Quantizers 

considered in that paper take finitely many values and have 

an adjustable center and zoom. 



 

 

     

 

The special interest of the present paper is control of a plant 

under parametric uncertainties and disturbances. Guo, Zhang, 

Zhao (2011) study the adaptive tracking control for systems 

with quantized output observations and one unknown 

parameter. A projection algorithm is proposed for parameter 

identification, based on which an adaptive control law is 

designed via the certainty equivalence principle. By use of 

the conditional expectation of the quantized observation with 

respect to the estimates, it is shown that the identification 

algorithm is both almost surely and mean square convergent, 

the closed-loop system is stable, and the adaptive tracking 

control is asymptotically optimal. The result by Konaka, 

Suzuki, Okuma (2002) deals with a control problem in which 

the continuous plant is controlled by a discrete logic-based 

controller, while the control requirements are specified for 

continuous variables. A new indirect adaptive control 

strategy for a line-following control of a two-wheeled vehicle 

with quantized input and output is proposed. The vehicle is 

supposed to have a low-resolution sensor and actuator. It is 

shown that some unknown parameters of the system can be 

estimated from quantized input and output by making use of 

partial information on the system. The paper by Zheng and 

Yang (2012) is concerned with the quantized output feedback 

stabilization problem for a class of uncertain systems with 

nonsmooth nonlinearities in the actuator device via sliding 

mode control schemes.  It is assumed that system signals are 

quantized before being transmitted through communication 

channels. A dynamical compensator is developed to estimate 

unmeasurable system states. Then a sliding surface, in the 

augmented space using the system output and the estimated 

state, is proposed, and an adaptive sliding mode control 

scheme with a static adjustment law of the quantization 

parameter is established. 

In the above results the problem of feedback quantized output 

control for dynamical plants with any relative degree under 

parametric uncertainties and uncontrollable disturbances is 

not studied. The present paper is dedicated to solving this 

problem. The parallel reference model (auxiliary loop) to the 

plant is used for obtaining the uncertainties acting on the 

plant. A robust algorithm was first proposed by Tsykunov 

(2007) for control of a continuous-time plant under 

parametric uncertainties and external disturbance. The idea of 

this method consists in implementing an auxiliary loop with 

desired parameters parallel to the plant. The difference 

between the output of the plant and the output of the auxiliary 

loop gives a function which depends on parametric and 

external disturbances. This function gives the control law that 

guarantees required accuracy of the control system. The 

proposed algorithm provides the tracking by the output of the 

plant of the reference output with the required accuracy. In 

Parsheva and Tsykunov (2009), Furtat (2010) this robust 

algorithm is generalized for discrete control of a continuous-

time plant. In this paper we propose a generalization of 

results by Parsheva and Tsykunov (2009) for discrete control 

of continuous-time linear plants under parametric 

uncertainties and external bounded disturbance with 

quantization of an output signal. It is assumed that only scalar 

input and output of the plant are accessible for measurement.  

The proposed algorithm guarantees that the output of the 

plant tracks the reference output with the required accuracy. 

 

2. PROBLEM STATEMENT 

Consider the equation of a plant 
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where y(t)  R is an output being quantized, u(t)  R is an 

input, f(t)  R is an uncontrollable bounded disturbance, 

Q(p) = p
n
 + qn – 1p

n – 1
 + ... + q1p + q0 and R(p) = p

m
 + rm – 1p

m –

 1
 + ... + r1p + r0 are linear differential operators with 

unknown coefficients,  = n – m  1,  is a relative degree, 

k > 0, y0i are unknown initial conditions, p = d / dt. 

We are interested in the situation where only quantized 

measurements q(y(t)) of the output are available. We also 

assume that there exist positive real number y  and 

quantization function  )(tyq  such that the following 

condition holds 
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Also assume that there exist a positive real number   such 

that if yty )(  then 

   )()( tytyq .  (3) 

Equation (3) causes the quantizer error. Assume that we are 

given a smooth reference signal ym(t) and a sequence of 

sampling times tk. The problem is to design a discrete control 

law such that the following condition holds: 

   )()( kmk tytyq  for t > T,  (4) 

where tk is a sampling time, tk  t  tk – 1,  > 0 is a small 

enough number, T > 0 is a transient time. 

Assumptions. 

1. Coefficients qn – 1, ... , q1, q0, rm – 1, ... , r1, r0, k belong to a 

known bounded set . 

2. The plant (1) is minimum phase. 

3. Only signals q(y(tk)), ym(tk) and u(tk) are available for 

measurement in a control system. 

3. ROBUST ALGORITHM 

According to Furtat (2010), Furtat (2011), Furtat, Fradkov, 

and Tsykunov (2011), Furtat, Fradkov, and Tsykunov (2013), 

Furtat (2013), represent the operators R(p) and Q(p) in the 

form 

)()()( 0 pRpRpR  , )()()( 0 pQpQpQ  .   (5) 

Here R0() and Q0() are Hurwitz polynomials of degrees n 

and m respectively, deg Q(p) < n, deg R(p) < m. The 

polynomials R0() and Q0() are chosen such that 

Q0() / R0() = Qm(), where Qm() is a Hurwitz polynomial 

of degree n – m. Taking into account (1) and (5), the equation 



 

 

     

 

for the tracking error e(t) = q(y(t)) – ym(t) can be rewritten in 

the form 

)()()()( ttkutepQm  ,  (6) 

where 
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where (t) is an exponentially decaying function which 

depends on initial conditions of (1). 

Introduce the control law 

kkk ttttvtu  1),()(  , (7) 

where  > 0 is a design parameter, v(tk) is a new control at 

time tk. 

From (6) we see that function (t) contains a parametric 

uncertainty and external disturbance of the plant (1) as well 

as quantization error. Therefore, according to Tsykunov 

(2007), Parsheva and Tsykunov (2009) consider the auxiliary 

loop 
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where  > 0 is a designed parameter, )(te  is an output of 

auxiliary loop (8). The auxiliary loop is a parallel model 

which characterizes the desired behaviour of transients in a 

closed-loop system. Therefore, taking into account (6), (7), 

and (8), the equation for the error function )()()( tetet   

can be written in the form 

),()()( ttpQm     (9) 

Where (t) = (k – )v(tk) + (t) is a new disturbance 

function. The signal (t) contains information about 

parametric and external disturbances of plant (1). According 

to the Problem Statement the control system is discrete. 

Therefore, the value (tk) satisfies the relation 

),()( T
kmk tqt      (10) 

where qm is a vector composed of coefficients of the operator 

Qm(p),  T)( )(...,),(),()( kkkk tttt   , )()( k
i t  is the i-

th derivative of the signal (t) taken at time tk. 

If the vector  T)( )(...,),(),()( kkkk tttt    were 

available for measurement, then the control could be defined 

by 
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It follows from (10) and (11) that 
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Solving the system consisting of equations (12) and 

(tk) = (k – )v(tk) + (tk) with respect to v(tk), we get 

.),(
1

)( 1 kkkk tttt
ka

tv     (13) 

Substituting (13) and (7) to (6), we obtain 

)()()()( km tttepQ   . According to Edwards and 

Neville (2002), Parsheva and Tsykunov (2009) there exist 

t0 > 0 and  > 0 such that for any sample rate t < t0 the 

inequality   )()( ktt  hold, where t = tk – tk – 1, 

 > 0. 

However, it follows from Problem Statement that derivatives 

of the function (t) are not available for measurement. 

Therefore, consider the estimate of the signal (tk) of the 

form 
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~

)(~ T
kmk tqt     (14) 

where  T1 )(...,),(),()(
~

kkkk tttt   , )( ki t  is an 

estimate of i-th derivative of the signal (tk) taken at time tk. 

The vector )(
~

kt  is obtained from the observer 
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Equation (15) is written by using the right hand differences 
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Rewrite relations (16) in the matrix form 
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with respect to )(
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kt , we obtain (15). 

Taking into account (15), write control v(tk) as 
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For implementing the auxiliary loop (8) in discrete form, 

first, transform (8) to a state space form 

),()(),()()( tLtetvBtAt kmm    (19) 

where  Rt )(  is a state vector, the matrices Am, Bm and 

L = [1 0 ... 0] are obtained according to transformation from 

(8) to (19). Further, transform equations (19) to the discrete 

form 
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For the formulation of our main result introduce the 

following notations: P = P
T
 > 0 is a solution of Lyapunov 

equation QPAPA mm T , Q = Q
T
 > 0, 
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PBPBQR mm
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Theorem. Let Assumptions 1-3 hold. Then there exist 

coefficients α > 0, β > 0 and small enough values t0 > 0, 

 > 0 such that for any sample rate 0tt   the inequality 

kkk ttttt  1,)(~)(    (21) 

holds, and for 
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the objective (4) in control system (7), (15), (18), (20) is 

achieved for any parameters of plant (1) from the set . 

The Theorem will be proved in the Appendix. 

It follows from (22) that the value  explicitly depends on , 

,   and t. Moreover, the value  in (4) can be reduced by 

decreasing the values , t,  and increasing the value . 

Let us illustrate given results on a numerical example. 

4. EXAMPLE 

Consider a plant model in the form 
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The set   is determined by the following inequalities: 

33  iq , i = 1, 2, 3, 21 0  r , 121 1  r , 30)( tf . 

Let 1y  in (2). 

The reference signal ym(t) is chosen as follows 

.7.1sin2.05.0sin5.02.0)( tttym   

Choose the equation of the auxiliary loop (8) as  
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Equation (26) with sampling time 0.01 has the following 

form 
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Introduce the observer equation (15) as follows 
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Let α = 5,  = 10. According to (7) and (18) write the control 

as 
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~

)(
~

),(
~

),(
~ T
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Let quantization interval be equal to 0.1. In Fig. 1 the 

transient of the tracking error )(te  is given by the following 

parameters in (25): 31 q , 32 q , 33 q , 10 r , 

11 r , tttf 7.1cos10sin173)(  , 

9.0)0()0()0(  yyy  . 

Let quantization interval be equal to 0.05. In Fig. 2 the 

simulation result of the tracking error )(te  is given by the 

following parameters in (25): 31 q , 12 q , 03 q , 

20 r , 121 r , tttf 8.0cos41.1sin101)(  , 

8.0)0()0()0(  yyy  . 



 

 

     

 

 

Fig.1. The transients of the tracking error )( kte . 

 

Fig.2. The transients of the tracking error )( kte . 

It follows from Fig. 1 that parametric uncertainties and 

external disturbances are compensated by control system 

(27)-(29) with the required accuracy  = 0.11 achieved after 

0.5 s. It follows from Fig. 2 the required accuracy  = 0.06 is 

achieved after 0.5 s. Simulation results show that the error 

e(t) can be reduced by decrease of the value , t,   and 

increase of the value . 

5. CONCLUSIONS 

In this paper, we have treated the problem of robust output 

feedback discrete control of continuous-time linear plants 

under parametric uncertainties and external bounded 

disturbance with quantized output signal. The parallel 

reference model (auxiliary loop) which allows obtaining a 

function containing parametric uncertainties and external 

disturbances acting on the plant was considered. We 

proposed an algorithm that provides tracking by the plant 

output of the reference output with the required accuracy. 

Relationships between the tracking accuracy and the 

quantization error, uncertainties of the plant, and parameters 

of the regulator were derived. 
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APPENDIX A. 

Proof of Theorem. Taking into account (7), (10), (12) and 

(18), rewrite equation (6) in the form 

)(~)()()( km tttepQ   .  (30) 

According to Edwards and Neville (2002), Parsheva and 

Tsykunov (2009) there exist t0 > 0 and  > 0 such that for 

any sample rate t < t0 the inequality   )(~)( ktt  

holds. 

Rewrite equation (27) in a state space form 

  ).()(,)(~)()()( tLtettBtAt kmm    (31) 

Choose Lyapunov function V(t) = V((t)) in the form 

)()()( T tPttV  .  (32) 

Taking the derivative of (32) along the trajectories of (31), 

we obtain 

 .)(~)()(2)()()( TT
km ttPBttQttV    (33) 

Consider the following bound 

 
.)()(2

)(~)()(2
TT1

T








 tPBPBt

ttPBt

mm

km   (34) 

Taking into account bound (34) rewrite (33) as follows 

  )()()( T tRttV ,  (35) 

Rewrite (35) in the form 

  )()( tVtV ,  (36) 

Solving inequality (36) with respect to V(t), we obtain 

   tt eVetV   1)0()( 1 .  (37) 

It follows from (37) that  1)(lim 


tV

t
. Taking into 

account (32) and (37), we have 

    11
min 1)0()()()(   tt eVePtte .   (38) 

It follows from (38) that relation (22) holds. Obviously, the 

value of the right hand side of (22) depends on the values , 

,   and t. Therefore, the value  in (4) can be reduced by 

decreasing the value , t,   and increasing the value . 

Consider inequality (4). Since the upper bound of y(t) is y , 

rewrite (4) as 

 )(tyy m .   (39) 

Hence, the conditions (23) and (24) follow from (39). 


