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a b s t r a c t

In this paper, the concepts of input/output-to-state stability (IOSS) and state-norm estimators are
considered for switched nonlinear systems under average dwell-time switching signals. We show that
when the average dwell-time is large enough, a switched system is IOSS if all of its constituent subsystems
are IOSS. Moreover, under the same conditions, a non-switched state-norm estimator exists for the
switched system. Furthermore, if some of the constituent subsystems are not IOSS, we show that still IOSS
can be established for the switched system, if the activation time of the non-IOSS subsystems is not too
big. Again, under the same conditions, a state-norm estimator exists for the switched system. However,
in this case, the state-norm estimator is a switched system itself, consisting of two subsystems. We show
that this state-norm estimator can be constructed such that its switching times are independent of the
switching times of the switched system it is designed for.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

State estimation plays a central role in control theory. Namely,
in many applications, the full system state cannot be measured,
but only certain outputs are available. Yet, for controlling the
system, often the full state x is needed. This problem can be
addressed by designing an observer, which yields an estimate
of the system state x, out of the observation of past inputs and
outputs. For general nonlinear systems, however, and even more
for more complex system classes like e.g. switched systems, the
design of such an observer is a challenging task, far from being
solved completely. On the other hand, for some control purposes,
it may suffice to gain an estimate of the magnitude, i.e., the
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norm |x|, of the system state x (see Sontag and Wang (1997),
Krichman, Sontag, and Wang (2001) and references therein). The
notion of such a state-norm estimator as well as the intimately
related theoretical concept of input/output-to-state stability (IOSS)
was introduced in Sontag and Wang (1997) for continuous-time
nonlinear systems. Loosely speaking, the IOSS propertymeans that
no matter what the initial state is, if the inputs and the observed
outputs are small, then eventually the state of the system will
also become small; the IOSS property can be seen as somewhat
stronger than the zero-detectability property of linear systems. In
Sontag and Wang (1997) and Krichman et al. (2001) it was shown
that for continuous-time nonlinear systems, the existence of an
appropriately defined state-norm estimator is equivalent to the
system being IOSS (and also to the existence of an IOSS-Lyapunov
function for the system). Furthermore, in Astolfi and Praly (2006)
it was shown how an estimate of the norm |x| can be exploited
in constructing an observer, which in turn can be used for output
feedback design to globally stabilize the system (Praly & Astolfi,
2005).

In this paper, we are interested in IOSS and state-norm
estimation for switched systems. The study of the class of switched
systems has attracted a lot of attention in recent years (see
e.g. Liberzon (2003) and references therein). Switched systems
arise in situations where several dynamical systems are present
together with a switching signal specifying at each time the active
system dynamics according to which the system state evolves. It is
well-known that in general, switched systems do not necessarily
inherit the properties of the subsystems they are comprised of.

http://dx.doi.org/10.1016/j.automatica.2012.06.026
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For example, a switched system consisting of asymptotically
stable subsystems might become unstable (Liberzon, 2003) if
certain switching laws are applied. Thus, when analyzing switched
systems, different concepts in constraining the switching have
been proposed, like e.g. dwell-time (Morse, 1996) or average
dwell-time switching signals (Hespanha & Morse, 1999). On the
other hand, it is also possible that a switched system exhibits some
property like asymptotic stability even if some subsystems lack
this property (Muñoz de la Peña & Christofides, 2008; Zhai, Hu,
Yasuda, & Michel, 2001). This situation often appears in practice,
e.g. in the context of networked control systems (Muñoz de la Peña
& Christofides, 2008).

Considering the above, an interesting question is under
what conditions IOSS can be established and how state-norm
estimators can be constructed for switched systems. IOSS for
switched differential inclusions (Mancilla-Aguilar, García, Sontag,
& Wang, 2005) as well as state-norm estimators for switched
systems (García & Mancilla-Aguilar, 2002) have been considered
in the setting of arbitrary switching and a common IOSS-Lyapunov
function. Furthermore, input-to-state stability (ISS), which can be
seen as a special case of IOSSwhenno outputs are present, has been
established for switched systems in Vu, Chatterjee, and Liberzon
(2007); Xie, Wen, and Li (2001) for the situation where a common
ISS-Lyapunov function does not exist, but still all of the subsystems
are ISS. This was achieved using a dwell-time (Xie et al., 2001),
respectively, average dwell-time (Vu et al., 2007) approach. In
the recent work (Sanfelice, 2010), results on IOSS and state-norm
estimators were established for a class of hybrid systems with a
Lyapunov function satisfying an IOSS relation both along the flow
and during the jumps.

In this work, we establish IOSS of switched nonlinear systems
in the setting ofmultiple IOSS-Lyapunov functions and constrained
switching. We consider both the cases where all of the constituent
subsystems are IOSS as well as where some are not. In fact, our
findings in the latter case also yield novel results on ISS (if no
outputs are present) and asymptotic stability (if neither inputs
nor outputs are present) of switched systems, when some of the
subsystems lack the considered property. Furthermore, we show
that under the same sufficient conditions under which IOSS can be
established, a state-norm estimator exists for the switched system.
For the case where all of the constituent subsystems are IOSS, we
obtain a non-switched state-norm estimator, whereas in the case
where also some non-IOSS subsystems are present, a switched
state-norm estimator can be constructed, consisting of one stable
and one unstable mode. It turns out that in the latter case, the
switched state-norm estimator can be constructed in such a way
that its switching times are independent of the switching times of
the switched system it is designed for. This is a desirable property,
as otherwise, the switching times of the switched system would
have to be known a priori, or detected instantly.

The remainder of this paper is structured as follows. Section 2
introduces the notation and basic definitions used throughout the
paper. Sections 3 and 4 contain the main results of the paper,
which deal with establishing IOSS and constructing state-norm
estimators for switched systems. Section 5 contains an illustrative
example, highlighting the degrees of freedom in the construction
and the difference between the proposed state-norm estimators.
Section 6 concludes the paper.

2. Preliminaries

Consider a family of systems

ẋ = fp(x, u)
y = hp(x)

p ∈ P (1)
where the state x ∈ Rn, the input u ∈ Rm, the output y ∈ Rl and P
is an index set. For every p ∈ P , fp(·, ·) is locally Lipschitz, hp(·) is
continuous, fp(0, 0) = 0 and hp(0) = 0. A switched system

ẋ = fσ (x, u)
y = hσ (x) (2)

is generated by the family of systems (1), an initial condition
x(t0) = x0 with initial time t0 ≥ 0, and a switching signal
σ(·), where σ : [t0, ∞) → P is a piecewise constant, right
continuous function which specifies at each time t the index of
the active system. Admissible input signals u(·) applied to the
switched system (2) are measurable and locally bounded. In order
to simplify notation, in the following we assume that the solution
of the switched system (2) exists for all times. If this is not the case,
but the solution is only defined on some finite interval [t0, tmax), all
subsequent results are still valid for this interval.

According to Hespanha and Morse (1999) we say that a
switching signal has average dwell-time τa if there exist numbers
N0, τa > 0 such that

∀T ≥ t ≥ t0 : Nσ (T , t) ≤ N0 +
T − t

τa
, (3)

where Nσ (T , t) is the number of switches occurring in the interval
(t, T ].

Denote the switching times in the interval (t0, t] by τ1, τ2, . . . ,
τNσ (t,t0) (by convention, τ0 := t0) and the index of the system that
is active in the interval [τi, τi+1) by pi.

The switched system (2) is input/output-to-state stable (IOSS)
(Sontag & Wang, 1997) if there exist functions γ1, γ2 ∈ K∞

2and
β ∈ KL3such that for each t0 ≥ 0, each x0 ∈ Rn and each input
u(·), the corresponding solution satisfies

|x(t)| ≤ β(|x0|, t − t0) + γ1(∥u∥[t0,t]) + γ2(∥y∥[t0,t]) (4)

for all t ≥ t0, where ∥ · ∥J denotes the supremum norm on an
interval J . If no outputs are considered and equation (4) holds for
γ2 ≡ 0, then the system is said to be input-to-state stable (ISS). If
also no inputs are present, then (4) reduces to global asymptotic
stability.

In the following, the notion of a state-norm estimator will
formally be introduced, which will be done in consistency
with Sontag and Wang (1997).

Definition 1. Consider a system

ż = g(z, u, y) (5)

whose inputs are the input u and the output y of the switched
system (2), and g is locally Lipschitz. Denote by z(·) the solution
trajectory of (5) starting at z0 at time t = t0. We say that (5) is a
state-norm estimator for the switched system (2) if the following
properties hold:

(1) The system (5) is ISS with respect to (u, y).
(2) There exist functions γ ∈ K∞ and β ∈ KL such that for each

t0 ≥ 0, arbitrary initial states x0 for (2) and z0 for (5) and each
input u(·),

|x(t)| ≤ β(|x0| + |z0|, t − t0) + γ (|z(t)|) (6)

for all t ≥ t0. �

2 A function α: [0, ∞) → [0, ∞) is of class K if α is continuous, strictly
increasing, and α(0) = 0. If α is also unbounded, it is of class K∞ .
3 A function β: [0, ∞) × [0, ∞) → [0, ∞) is of classKL if β(·, t) is of class K

for each fixed t ≥ 0, and β(r, t) decreases to 0 as t → ∞ for each fixed r ≥ 0.
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Definition 1 ensures that the norm of the switched system state at
time t , |x(t)|, can be bounded above by the norm of the state-norm
estimator at time t , |z(t)|, modulo a decaying term of the initial
conditions of the switched system and the state-norm estimator.
In this sense, the system (5) ‘‘estimates’’ the norm of the switched
system (2), and thus it is called a state-norm estimator.

Remark 1. Wewill later enlarge the class of state-normestimators
by allowing the state-norm estimator to be a switched system
itself. However, the properties (1) and (2) in Definition 1 such a
state-norm estimator has to fulfill remain unchanged. �

3. Input/output-to-state properties of switched systems

In this section, we show under what Lyapunov-like conditions
IOSS for the switched system (2) can be established. We start with
the situation where all of the constituent subsystems are IOSS,
before allowing some of the subsystems also to be not IOSS.

3.1. All subsystems IOSS

Theorem 1. Consider the family of systems (1). Suppose there exist
functions α1, α2, ϕ1, ϕ2 ∈ K∞, continuously differentiable functions
Vp : Rn

→ R and constants λs > 0, µ ≥ 1 such that for all x ∈ Rn

and all p, q ∈ P we have

α1(|x|) ≤ Vp(x) ≤ α2(|x|) (7)
|x| ≥ ϕ1(|u|) + ϕ2(|hp(x)|)

⇒
∂Vp

∂x
fp(x, u) ≤ −λsVp(x) (8)

Vp(x) ≤ µVq(x). (9)

If σ is a switching signal with average dwell-time

τa >
lnµ

λs
, (10)

then the switched system (2) is IOSS.

In the following, the assumptions of Theorem 1 will be
discussed shortly. First, note that conditions of the type (7)–(10)
are quite common in the literature, when average dwell-time
switching signals are considered. The existence of a function Vp
satisfying (7)–(8) is a necessary and sufficient condition for the p-
th subsystem to be IOSS (Krichman et al., 2001). Such a function
Vp is called an exponential decay IOSS-Lyapunov function for the
p-th subsystem (Krichman et al., 2001). Taking the right hand side
of (8) as some negativemultiple of Vp instead of just some negative
definite function Wp is no loss of generality (Praly & Wang, 1996;
Sontag & Wang, 1997). The most significant constraint on the set
of possible IOSS-Lyapunov functions for the subsystems is given
by condition (9). For example, this condition doesn’t hold if Vp is
quadratic and Vq is quartic for some p, q ∈ P . This conditionmight
seem to be somehow restrictive; however, it is quite common in
the literature when dealing with average dwell-time switching
signals, and it is a considerable relaxation to the case where a
common Lyapunov function is required, i.e., where (9) has to hold
for µ = 1 (cf. also Remark 3). See also Vu et al. (2007) for a more
detailed discussion and an example on how to further relax this
assumption.

Proof of Theorem 1. Let t0 ≥ 0 be arbitrary. For t ≥ t0, define
ν(t) := ϕ1(∥u∥[t0,t])+ϕ2(∥y∥[t0,t]) and ξ(t) := α−1

1 (µN0α2(ν(t))),
where N0 comes from (3). Furthermore, define the ball around the
origin Bν(t) := {x | |x| ≤ ν(t)}. Note that ν, and thus also ξ , are
non-decreasing functions of time, and therefore the ball Bν and Bξ

has non-decreasing volume.
If |x(t)| ≥ ν(t) ≥ ϕ1(|u(t)|) + ϕ2(|y(t)|) during some time
interval t ∈ [t ′, t ′′], then |x(t)| can be bounded above (Hespanha &
Morse, 1999) by

|x(t)| ≤ α−1
1 (µN0e−λ(t−t ′)α2(|x(t ′)|)) := β(|x(t ′)|, t − t ′) (11)

for some λ ∈ (0, λs). To see why this is true, consider the function
W (t) := eλstVσ(t)(x(t)). On any interval [τi, τi+1)∩[t ′, t ′′], we have
according to (8) Ẇ (t) ≤ 0. Using (9), we arrive at W (τi+1) ≤

µW (τ−

i+1) ≤ µW (τi) and thus, for any t ∈ [t ′, t ′′], we obtain
W (t) ≤ µNσ (t,t ′)W (t ′) and therefore

Vσ(t)(x(t)) ≤ eNσ (t,t ′) lnµ−λs(t−t ′)Vσ(t ′)(x(t ′))

≤ eN0 lnµe(
lnµ
τa −λs)(t−t ′)Vσ(t ′)(x(t ′)). (12)

If τa satisfies the condition (10), then Vσ(t)(x(t)) decays exponen-
tially in the time interval [t ′, t ′′], namely for every t ∈ [t ′, t ′′], it is
upper bounded by

Vσ(t)(x(t)) ≤ eN0 lnµe−λ(t−t ′)Vσ(t ′)(x(t ′))

with λ := λs − lnµ/τa ∈ (0, λs). Using (7), we arrive at (11).
Denote the first time when x(t) ∈ Bν(t) by ť1, i.e., ť1 := inf{t ≥

t0 : |x(t)| ≤ ν(t)}. For t0 ≤ t ≤ ť1, we get

|x(t)| ≤ β(|x0|, t − t0), (13)

according to (11). If ť1 = ∞, which only can happen if ν(t) ≡ 0,
i.e., both the input u as well as the output y are equivalent to zero
for all times, then (4) is established and thus the switched system
(2) is IOSS. Hence in the following we assume that ť1 < ∞.

For t > ť1, |x(t)| can be bounded above in terms of ν(t). Namely,
let t̂1 := inf{t > ť1 : |x(t)| > ν(t)}. If this is an empty set, let t̂1 :=

∞. Clearly, for all t ∈ [ť1, t̂1), it holds that |x(t)| ≤ ν(t) ≤ ξ(t). For
the case that t̂1 < ∞, due to continuity of x(·) and monotonicity
of ν(·) it holds that |x(t̂1)| = ν(t̂1). Furthermore, for all τ > t̂1, if
|x(τ )| > ν(τ) define

t̂ := sup{t < τ : |x(t)| ≤ ν(t)}, (14)

which can be interpreted as the previous exit time of the
trajectory x(·) from the ball Bν . Again, due to the same argument as
above, one obtains that |x(t̂)| = ν(t̂). But then, according to (11),
it holds that

|x(τ )| ≤ β(ν(t̂), τ − t̂) = α−1
1 (µN0e−λ(τ−t̂)α2(ν(t̂)))

≤ α−1
1 (µN0α2(ν(t̂))) = ξ(t̂) ≤ ξ(τ ), (15)

where the last inequality follows from the monotonicity of ξ(·).
Summarizing the above, for all t ≥ ť1 it holds that

|x(t)| ≤ ξ(t)
= α−1

1 (µN0α2(ϕ1(∥u∥[t0,t]) + ϕ2(∥y∥[t0,t])))

≤ α−1
1 (µN0α2(2ϕ1(∥u∥[t0,t])))

+ α−1
1 (µN0α2(2ϕ2(∥y∥[t0,t])))

=: γ1(∥u∥[t0,t]) + γ2(∥y∥[t0,t]). (16)

Combining (13) and (16) we arrive at

|x(t)| ≤ β(|x0|, t − t0) + γ1(∥u∥[t0,t]) + γ2(∥y∥[t0,t])

for all t ≥ t0. But as t0 ≥ 0 was arbitrary, this means according
to (4) that the switched system (2) is IOSS. �

Remark 2. Theorem 1 recovers as special cases results on ISS (if
no outputs are considered (Vu et al., 2007)) and global asymptotic
stability (if neither inputs nor outputs are considered (Hespanha &
Morse, 1999)) for switched systems.
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Remark 3. If (9) holds for µ = 1, then the condition (10) which
the average dwell-time has to satisfy in order that the system is
IOSS reduces to τa > 0, which means that the system is IOSS for
arbitrarily small average dwell time. Actually, µ = 1 in condition
(9) implies the existence of a common IOSS-Lyapunov function for
the switched system (2), and thus it is in fact IOSS for arbitrary
switching (see also Mancilla-Aguilar et al., 2005). �

Remark 4. In the proof of Theorem 1, one major difference
compared to thenon-switched case is the proceeding after the time
ť1. Namely, if we denote the index of the subsystem active at this
time by p∗

1 and if we define the level set Ωp(t) := {x | Vp(x) ≤

α2(ν(t))}, then the solution x(t) couldn’t leave the level set Ωp∗
1
(t)

again if no switching occurred for t > ť1, because V̇p∗
1
is negative

on its boundary. Thus in this case, we could conclude the proof by
simply noting that |x(t)| ≤ α−1

1 (α2(ν(t))) for all t > ť1. Due to
switching, however, x(t) can leave the level set Ωp∗

1
(t) again and

thus we have to proceed with the proof as shown above. �

3.2. Some subsystems not IOSS

In the following, the previous analysis will be extended to the
case where not all subsystems of the family (1) are IOSS, i.e., (8)
doesn’t hold for all p ∈ P , but only for a subset Ps of P .

Let P = Ps ∪ Pu such that Ps ∩ Pu = ∅. Denote by T u(t, τ ) the
total activation time of the systems in Pu and by T s(t, τ ) the total
activation time of the systems in Ps during the time interval [τ , t),
where t0 ≤ τ ≤ t . Clearly,

T s(t, τ ) = t − τ − T u(t, τ ). (17)

Theorem 2. Consider the family of systems (1). Suppose there exist
functions α1, α2, ϕ1, ϕ2 ∈ K∞, continuously differentiable functions
Vp : Rn

→ R and constants λs, λu > 0, µ ≥ 1 such that (7) and
(9) hold for all x ∈ Rn and all p, q ∈ P and furthermore, the following
holds:

|x| ≥ ϕ1(|u|) + ϕ2(|hp(x)|)

⇒


∂Vp

∂x
fp(x, u) ≤ −λsVp(x) ∀p ∈ Ps

∂Vp

∂x
fp(x, u) ≤ λuVp(x) ∀p ∈ Pu.

(18)

If there exist constants ρ, T0 ≥ 0 such that

ρ <
λs

λs + λu
(19)

∀t ≥ τ ≥ t0 : T u(t, τ ) ≤ T0 + ρ(t − τ) (20)

and if σ is a switching signal with average dwell-time

τa >
lnµ

λs(1 − ρ) − λuρ
, (21)

then the switched system (2) is IOSS.

Remark 5. The existence of smooth and proper functions Vp
satisfying the second part of (18), i.e., the condition for the
subsystems in Pu, is equivalent to the fact that these subsystems
exhibit the unboundedness observability property (Angeli &
Sontag, 1999), which means that any unboundedness in the state
(i.e., any finite escape time) can be detected by the output. This is
a very reasonable assumption, as one cannot expect to obtain the
IOSS property for the switched system if for some subsystems an
unbounded state cannot be ‘‘observed’’. Furthermore, note that we
impose the additional condition (7) on the functions Vp (which in
particular implies that V (0) has to be 0), which was not part of the
equivalent characterization of the unboundedness observability
property in Angeli and Sontag (1999). �
Remark 6. The conditions (19)–(20) constrain the activation time
T u of the systems in Pu in the interval [τ , t) to a certain fraction of
this interval (plus some offset T0). Note that fulfillment of (19)–(20)
with T0 = 0 implies that the systems in Pu are not active at all,
as (20) is required to hold for any interval [τ , t] and ρ < 1.

In order to prove Theorem 2, we need the following technical
lemma.

Lemma 1. Suppose the assumptions of Theorem 2 hold and on some
interval [t ′, t ′′] we have |x(t)| ≥ ϕ1(|u(t)|) + ϕ2(|y(t)|). Then the
trajectory of the switched system (2) satisfies

|x(t)| ≤ α−1
1 (µN0e(λs+λu)T0e−λ(t−t ′)α2(|x(t ′)|)). (22)

for all t ∈ [t ′, t ′′] with λ ∈ (0, λs − (λs + λu)ρ).

Proof of Lemma 1. Consider the function W (t) := eλstVσ(t)(x(t)).
On any interval [τi, τi+1) ∩ [t ′, t ′′] we have according to (18)

Ẇ (t) ≤ 0 if pi ∈ Ps

Ẇ (t) ≤ (λs + λu)W (t) if pi ∈ Pu.

Using (9), we thus arrive at

W (τi+1) ≤ µW (τ−

i+1) ≤ µW (τi)

if pi ∈ Ps and

W (τi+1) ≤ µW (τ−

i+1) ≤ µW (τi)e(λs+λu) (τi+1−τi)

if pi ∈ Pu. Thus, for any t ∈ [t ′, t ′′] we obtain

W (t) ≤ µNσ (t,t ′)W (t ′)e(λs+λu)Tu(t,t ′)

and therefore, using (20),

Vσ(t)(x(t)) ≤ eNσ (t,t ′) lnµ+(λs+λu)Tu(t,t ′)−λs(t−t ′)Vσ(t ′)(x(t ′))

≤ eN0 lnµ+(λs+λu)T0e(
lnµ
τa +(λs+λu)ρ−λs)(t−t ′)

× Vσ(t ′)(x(t ′)). (23)

We conclude that if ρ and τa satisfy the conditions (19) and (21),
respectively, then Vσ(t)(x(t)) decays exponentially, namely it is
upper bounded by

Vσ(t)(x(t)) ≤ eN0 lnµ+(λs+λu)T0e−λ(t−t ′)Vσ(t ′)(x(t ′))

with λ := λs − (λs + λu)ρ − lnµ/τa ∈ (0, λs − (λs + λu)ρ).
Finally, using (7), we arrive at (22), which completes the proof of
Lemma 1. �

Proof of Theorem 2. The proof of Theorem 2 follows the lines
of the proof of Theorem 1. Define ν(t) as well as ť1 as
in the proof of Theorem 1. Furthermore, define ξ(t) :=

α−1
1 (µN0e(λs+λu)T0α2(ν(t))).
According to Lemma 1 we obtain that for t0 ≤ t ≤ ť1,

|x(t)| ≤ α−1
1 (µN0e(λs+λu)T0e−λ(t−t0)α2(|x0|))

:= β(|x0|, t − t0) (24)

for some λ ∈ (0, λs − (λs + λu)ρ).
Analogous to Theorem 1, we obtain that for all t ≥ ť1 it holds

that |x(t)| ≤ ξ(t). Namely, for each τ > ť1 such that |x(τ )| > ν(τ),
define the previous exit time t̂ of the trajectory x(·) from the ball Bν

as in (14). Then, using Lemma 1 on the interval [t̂, τ ], we obtain the
following inequality analogous to (15):

|x(t)| ≤ α−1
1 (µN0e(λs+λu)T0e−λ(τ−t̂)α2(ν(t̂)))

≤ α−1
1 (µN0e(λs+λu)T0α2(ν(t̂))) = ξ(t̂) ≤ ξ(τ ).
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Hence we conclude that for all t ≥ t0
|x(t)| ≤ β(|x0|, t − t0) + ξ(t)

≤ β(|x0|, t − t0) + γ1(∥u∥[t0,t]) + γ2(∥y∥[t0,t]),

where

γ1(r) := α−1
1 (µN0e(λs+λu)T0α2(2ϕ1(r)))

γ2(r) := α−1
1 (µN0e(λs+λu)T0α2(2ϕ2(r))),

which means according to (4) that the switched system (2) is IOSS,
as t0 ≥ 0 was arbitrary. �

Remark 7. Theorem2 includes as special cases novel results on ISS
(if no outputs are considered) and global asymptotic stability (if
neither inputs nor outputs are considered) for switched systems
where some of the subsystems lack the considered property.
In fact, if systems with no inputs and outputs are considered,
Lemma 1 can be evoked for the interval [t0, ∞) to prove global
asymptotic stability for the switched system. �

4. State-norm estimators for switched systems

In this section, we address the question of existence and
construction of state-norm estimators for switched systems. For
continuous-time non-switched systems, it was proved in Sontag
and Wang (1997) that the existence of a state-norm estimator as
defined in Definition 1 implies that the system is IOSS. This is
also true for switched systems, as the proof works in the exact
same way as for continuous-time non-switched systems. In fact,
it was shown in Krichman et al. (2001) that for non-switched
systems, the converse is also true, i.e., that a state-norm estimator
exists if the system is IOSS. This was done by showing that the
system being IOSS implies the existence of an (exponential decay)
IOSS-Lyapunov function, which in turn implies the existence of a
state-norm estimator. In García and Mancilla-Aguilar (2002), the
equivalence between the IOSS property and the existence of a
state-norm estimator was established for switched systems for
the situation where a common IOSS-Lyapunov function exists.
On the other hand, within our setup we cannot establish such
an equivalence relationship as we consider switched systems
where no common IOSS-Lyapunov function exists, and some of the
subsystemsmight not even be IOSS at all. Nevertheless, it turns out
that under the same sufficient conditions under which IOSS could
be established in the previous section, a state-norm estimator also
exists for such a switched system. Thus what follows can be seen
as an alternative way of establishing IOSS for the switched system
(2),which yields the nice ‘‘intermediate’’ result of obtaining a state-
norm estimator for the considered switched system.

4.1. State-norm estimators: all subsystems IOSS

As in Section 3,we startwith the situationwhere all subsystems
are IOSS. For the construction of a state-norm estimator, we need
a slightly different characterization of the IOSS property than
equation (8). Namely, in Krichman et al. (2001); Sontag and Wang
(1995) it was shown that (8) is equivalent to

∂Vp

∂x
fp(x, u) ≤ −λsVp(x) + χ1(|u|) + χ2(|hp(x)|), (25)

for some χ1, χ2 ∈ K∞ and λs > 0. Furthermore, if (8) holds for
some λs > 0, then (25) holds with the same value of λs.4

We are now in a position to state the following theorem
concerning state-norm estimators for switched systems whose
subsystems are all IOSS.

4 On the other hand, when going in the other direction, i.e., from (25) to (8), in
general λs needs to be decreased. Nevertheless, with a slight abuse of notation, we
continue to use the same symbol λs in (25) as in (8) for convenience.
Theorem 3. Consider the family of systems (1). Suppose there exist
functions α1, α2, χ1, χ2 ∈ K∞, continuously differentiable functions
Vp : Rn

→ R and constants λs > 0, µ ≥ 1 such that for all
x ∈ Rn and all p, q ∈ P the conditions (7), (9) and (25) are satisfied.
Furthermore, suppose that σ is a switching signal with average dwell-
time τa satisfying (10). Then there exists a (non-switched) state-norm
estimator for the switched system (2). A possible choice for such a
state-norm estimator is

ż(t) = g(z, u, y)

= −λ∗

s z(t) + χ1(|u(t)|) + χ2(|y(t)|), z0 ≥ 0 (26)

for some λ∗
s ∈ (0, λs).5

Remark 8. In Theorem 3 (and also the following theorems), for
technical reasons in the proofs, we restrict the initial condition
of the state-norm estimator to be nonnegative, whereas in
Definition 1 we allow (in consistency with Sontag and Wang
(1997)) the initial condition of the state-norm estimator to be
arbitrary. However, as we design the state-norm estimator and
thus can choose any initial condition we want, this is not a major
restriction. �

Proof of Theorem 3. Consider as a candidate for a state-norm
estimator the system (26) with λ∗

s ∈ (0, λs). In the following, we
have to verify that (26) satisfies the two properties of Definition 1,
namely that it is ISS with respect to the inputs (u, y) and that (6)
holds. It is easy to see that (26) is ISS with respect to the inputs
(u, y), as it is a linear, exponentially stable system driven by these
inputs. Thus it remains to show that (6) holds.

Note that as χ1(|u|)+χ2(|y|) ≥ 0, we have ż(t) ≥ −λ∗
s z(t) and

thus, as z0 ≥ 0,

z(t) ≥ e−λ∗
s (t−t0)z0 ≥ 0 (27)

for all t ≥ t0. Furthermore, for all t0 ≤ τi ≤ t we get

z(τi) ≤ eλ∗
s (t−τi)z(t). (28)

Now consider the functionW (t) := Vσ(t)(x(t)) − z(t). Using (25)–
(27), we obtain that in any interval [τi, τi+1),

Ẇ = V̇pi − ż ≤ −λsVpi + λ∗

s z ≤ −λsVpi + λsz = −λsW

and thus

W (τi+1) = Vσ(τi+1)(x(τi+1)) − z(τi+1)

≤ µVσ(τi)(x(τ
−

i+1)) − z(τi+1)

= µW (τ−

i+1) + (µ − 1)z(τi+1)

≤ µW (τi)e−λs(τi+1−τi) + (µ − 1)z(τi+1). (29)

Iterating (29) from i = 0 to i = Nσ (t, t0) and using (28), we
arrive at

W (t) ≤ µNσ (t,t0)


e−λs(t−t0)W (t0)

+ (µ − 1)
Nσ (t,t0)

k=1

µ−ke−λs(t−τk)z(τk)



5 In Definition 1, we required g to be locally Lipschitz for the reason of existence
and uniqueness of solutions. However, g defined in (26) might not be locally
Lipschitz in u and y as χ1 and χ2 are not necessarily locally Lipschitz. Nevertheless,
with w := χ1(|u|) + χ2(|y|), g defined in (26) is locally Lipschitz as a function of
(z, w), and hence a unique solution to the system (26) exists on the same interval
as for the switched system (2). Similar considerations apply to the state-norm
estimators proposed in Theorems 4 and 5.
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≤ eNσ (t,t0) lnµ−λs(t−t0)W (t0)

+ (µ − 1)z(t)
Nσ (t,t0)

k=1

e(Nσ (t,t0)−k) lnµ−(λs−λ∗
s )(t−τk). (30)

Since Nσ (t, t0) − k = Nσ (t, τk), we get, using (3),

(Nσ (t, t0) − k) lnµ − (λs − λ∗

s )(t − τk)

≤ Nσ (t, τk) lnµ − (λs − λ∗

s )(t − τk)

≤


N0 +

t − τk

τa


lnµ − (λs − λ∗

s )(t − τk)

≤ N0 lnµ − λ(t − τk) (31)

with λ := λs − λ∗
s − lnµ/τa ∈ (0, λs − λ∗

s ) if the average dwell
time τa satisfies the bound

τa >
lnµ

λs − λ∗
s
. (32)

Note that as we can choose λ∗
s arbitrarily close to 0, we can choose

it small enough such that for any average dwell time τa satisfying
(10), condition (32) is also satisfied.

The average dwell-time property (3) furthermore implies that

t − τk ≥ (Nσ (t, t0) − k − N0)τa. (33)

Combining (31) and (33) we arrive at

Nσ (t,t0)
k=1

e(Nσ (t,t0)−k) lnµ−(λs−λ∗
s )(t−τk)

≤ eN0(lnµ+λτa)
Nσ (t,t0)

k=1

e−λτa(Nσ (t,t0)−k)
=: a1.

Applying the index shift i := Nσ (t, t0) − kwe obtain

a1 = eN0(lnµ+λτa)
Nσ (t,t0)−1

i=0

e−λτa i

≤ eN0(lnµ+λτa)
∞
i=0

e−λτa i

= eN0(lnµ+λτa)
1

1 − e−λτa
=: a2. (34)

Thus, by virtue of (30), we get

W (t) ≤ eNσ (t,t0) lnµ−λs(t−t0)W (t0) + (µ − 1)a2z(t)

= e(N0+
t−t0
τa ) lnµ−λs(t−t0)W (t0) + (µ − 1)a2z(t)

≤ µN0e−λ′(t−t0)W (t0) + (µ − 1)a2z(t)

with λ′
:= λs − lnµ/τa ∈ (λ∗

s , λs) if τa satisfies (32). This leads to

Vσ(t)(x(t)) ≤ (1 + a2(µ − 1))z(t)

+ µN0e−λ′(t−t0)(Vσ(t0)(x0) − z0)
≤ (1 + a2(µ − 1))|z(t)|

+ 2µN0e−λ′(t−t0)α2(|x0| + |z0|),

if we assumewithout loss of generality that α2(r) ≥ r for all r ≥ 0.
Using (7) again, we finally arrive at

|x(t)| ≤ α−1
1 (2(1 + a2(µ − 1))|z(t)|)

+ α−1
1 (4µN0e−λ′(t−t0)α2(|x0| + |z0|))

=: γ (|z(t)|) + β(|x0| + |z0|, t − t0), (35)

which means that our state-norm estimator candidate (26)
satisfies the condition (6). �
Remark 9. The construction of a state-norm estimator as shown
above might suggest designing a state-norm estimator which
exhibits a jump by a factor of µ in its state at the switching times
of the switched system. In this case, the derivation would simplify
significantly (in particular (30)–(34)). This idea was also used
in Sanfelice (2010), where the state-norm estimator is a hybrid
system which exhibits jumps at certain time instances. In this
paper, we do not consider this possibility for the following reasons:
we obtain a state-norm estimator whose trajectory is absolutely
continuous (even continuously differentiable), and furthermore,
for our state-normestimatorwedonot need to know the switching
times of σ . �

Remark 10. If a state-norm estimator is constructed as proposed
in Theorem 3, a degree of freedom in the design is the choice of
λ∗
s . The only restriction is that condition (32) has to be satisfied,

which, as stated in the proof, is always possible and gives an upper
bound for the values λ∗

s can take. Choosing λ∗
s as large as possible

would be desirable as the state-norm estimator (26) then has a
better convergence rate. However, ifλ∗

s is chosen close to its largest
possible value, i.e., such that (32) is only barely satisfied, then (31)
is only valid forλ very close to zero. According to (34), this leads to a
large value for a2, which in turn implies that the gain γ in (35), with
which |x| can be bounded in terms of |z|, also becomes large, which
is not desirable. Thus a tradeoff for a good choice of λ∗

s has to be
found. This will be illustrated in Section 5.1 with an example. �

4.2. State-norm estimators: some subsystems not IOSS

In the following, we will consider the case where some of the
subsystems of the family (1) are not IOSS. Again, we use a slightly
different but equivalent formulation of condition (18). For the
subsystems in Ps, we again use (25), which, as stated above, is an
equivalent formulation of the IOSS property (Krichman et al., 2001;
Sontag & Wang, 1995). For the subsystems in Pu, we use

∂Vp

∂x
fp(x, u) ≤ λuVp(x) + χ1(|u|) + χ2(|hp(x)|), (36)

for some χ1, χ2 ∈ K∞ and λu > 0, which is an equivalent
characterization of the unboundedness observability property
(Angeli & Sontag, 1999; Sontag & Wang, 1995). Again, if (18) is
satisfied for some λu > 0, then also (36) holdswith the same value
of λu.6

4.2.1. Known switching times
In the following theorem, we show that under the same

conditions as in Theorem 2, a state-norm estimator can be
constructed if the exact switching times between an IOSS and a
non-IOSS subsystem of (2) are known.

Theorem 4. Consider the family of systems (1). Suppose there exist
functions α1, α2, χ1, χ2 ∈ K∞, continuously differentiable functions
Vp : Rn

→ R and constants λs, λu > 0, µ ≥ 1 such that for
all x ∈ Rn, (7) and (9) hold for all p, q ∈ P , (25) for all p ∈ Ps
and (36) for all p ∈ Pu. Furthermore, suppose that σ is a switching
signal such that (19)–(21) are satisfied. Then there exists a switched
state-norm estimator ż = gζ (z, u, y) for the switched system (2),
consisting of two subsystems, where ζ : [0, ∞) → {0, 1} is a
switching signal whose switching times are those switching times of

6 Similar to the discussion for λs , when going in the other direction, i.e., from (36)
to (18), in general λu needs to be increased. Again, with a slight abuse of notation,
we continue to use the same symbol λu in (36) as in (18) for convenience.



M.A. Müller, D. Liberzon / Automatica 48 (2012) 2029–2039 2035
σ where a switch from a system in Ps to a system in Pu or vice versa
occurs. A possible choice for the two subsystems is

ż = g0(z, u, y) = −λ∗

s z(t) + χ1(|u(t)|) + χ2(|y(t)|)
ż = g1(z, u, y) = λ∗

uz(t) + χ1(|u(t)|) + χ2(|y(t)|)
(37)

with an appropriate choice of λ∗
s ∈ (0, λs) and λ∗

u ≥ λu.

Proof. See Appendix A. �

Remark 11. Similar considerations as in Remark 10 apply to the
choice of λ∗

s ∈ (0, λs) and λ∗
u ≥ λu, if a state-norm estimator is

constructed as proposed in Theorem 4. Namely, a tradeoff between
a good convergence rate of the state-norm estimator and a tighter
gain γ , with which |x| can be bounded in terms of |z|, has to be
found. �

4.2.2. Unknown switching times
The construction of the state-norm estimator in Theorem 4

requires the exact knowledge of the switching times of the
considered switched system (2), at least of those switching times
where a switch from a subsystem in Ps to a subsystem in Pu
or vice versa occurs. This is a very restrictive assumption, as the
switching signal would have to be known a priori or switches
would somehow have to be detected instantly. Thus, one would
like to have some robustness in the construction of the state-
norm estimator with respect to the knowledge of the switching
times. Even more desirable would be the case where a state-
norm estimator can be constructed with a switching signal that
is independent of the switching times of the switched system the
state-norm estimator is designed for. Then, the only knowledge
needed about the switching signal σ of the switched system
would be that it satisfies some average dwell-time condition, but
knowledge about the (exact) switching timeswould not be needed.

In the following, we show that under the same conditions as in
Theorem 4 (and thus, under the same conditions as in Theorem 2),
a state-norm estimator can be constructed whose switching times
are independent of the switching times of σ . For the proof of
this result, we exploit that a state-norm estimator as proposed in
Theorem 4, i.e., with (exact) knowledge of the switching times of
σ , exists; however, this knowledge is not needed for designing the
switching signal ζ ′ of the proposed state-norm estimator.

Theorem 5. Suppose the conditions of Theorem 4 are satisfied. Then
there exists a switched state-norm estimator

ẇ = gζ ′(t)(w, u, y), w0 ≥ 0 (38)

for the switched system (2), consisting of two subsystems, where ζ ′
:

[0, ∞) → {0, 1} is a switching signal whose switching times are
independent of the switching times of σ . As in Theorem 4, a possible
choice for the two subsystems of the state-norm estimator is given
by (37). Furthermore, a possible choice for the switching signal ζ ′ is
given by

ζ ′(t) =


0 ∀t ∈ [kτw

a , kτw
a + (1 − ρw)τw

a )

1 ∀t ∈ [kτw
a + (1 − ρw)τw

a , (k + 1)τw
a )

(39)

with k = 0, 1, 2, . . ., where the constants τw
a > 0 and ρw > 0 are

chosen such that

ρ < ρw <
λ∗
s

λ∗
s + λ∗

u
, (40)

ρwτw
a ≥ T0 + ρτw

a . (41)

Proof. See Appendix B. �
Fig. 1. Influence of λ∗
s on a2 .

Remark 12. If a state-norm estimator is constructed as proposed
in Theorem 5, a further degree of freedom lies in the choice of the
switching signal ζ ′. In particular, if the switching signal ζ ′ is chosen
to be of the form (39), this translates into a degree of freedom in
the choice of the parameters τw

a and ρw . Namely, in order to obtain
an as small as possible activation time of the unstable subsystem
of the state-norm estimator (38), according to (39), ρw should be
chosen as small as possible. On the other hand, a choice of ρw close
to its minimum possible value (i.e., close to ρ according to (40)),
which in turn implies that a larger value of τw

a is needed according
to (41), would result in a larger gain γ ′ with which |x| can be
bounded in terms of |z| (see the proof of Theorem 5 for details).
Hence, similar to the choice of λ∗

s and λ∗
u , a tradeoff for a good

choice of τw
a and ρw has to be found.

5. Example

The goal of this section is to illustrate the degrees of freedom
in the construction of a state-norm estimator and the difference
between the state-norm estimators proposed in Sections 4.2.1 and
4.2.2, respectively.

Consider the family of subsystems

ẋ = fp(x, u) =


a1px1 + b1p sin(x1 − x2) + c1pu
a2px2 + b2p sin(x2 − x1) + c2pu


hp(x) = x1 − x2 (42)

with p ∈ P := {1, 2}, subject to an average dwell-time switching
signal with N0 = 2 and τa = 1.

5.1. Choice of parameters

First, we illustrate the degrees of freedom in the choice of
the parameters of the state-norm estimator, as pointed out in
Remark 10. For clarity of presentation, we only consider the
situation where both subsystems are IOSS. Nevertheless, similar
considerations apply to the case where some subsystems are not
IOSS (cf. Remark 11).

Let a11 = a12 = a21 = a22 = −1, b11 = b12 = b22 = 1,
b21 = 0.8, c11 = c21 = 0 and c11 = c21 = 0.5. Taking
V1(x) = 1/2(x21 + 1.25x22) and V2(x) = 1/2(x21 + x22) as IOSS-
Lyapunov functions for the two subsystems, it is straightforward to
verify that (25) holdswithλs = 7/4,χ1(r) = 9/8r2 andχ2(r) = r .
Furthermore, (9) is satisfied withµ = 1.25. In order to satisfy (32),
λ∗
s has to be smaller than 1.51.
Fig. 1 illustrates the influence of the choice of λ∗

s on the value
of a2 (34), which is the tunable parameter in the gain γ (35). The
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Fig. 2. State-norm estimators with different values of λ∗
s . Dashed lines: λ∗

s = 1.03;
dashed–dotted lines: λ∗

s = 1.13; solid lines: λ∗
s = 1.23; dotted lines: λ∗

s = 1.33.

Fig. 3. Comparison of the two state-norm estimators of Theorems 4 and 5. Solid
lines: state-norm estimator with exact switching times; dashed lines: state-norm
estimator with independent switching times.

minimum is attained for λ∗
s ≈ 1.13. For larger values of λ∗

s , which
would be desirable in order to obtain a better convergence rate
of the estimator, a2 and thus the gain γ increases rapidly. Thus a
good tradeoff has to be found, which is illustrated by Fig. 2, where
simulation results for different values of λ∗

s are given. Both z (red
lines) and γ (z) (magenta lines), as well as |x| (blue line) are shown
after the transient phase. The best estimate γ (z) is obtained for
λ∗
s = 1.23, which is smaller than the largest possible value 1.51,

but larger than the 1.13, for which the minimum value of a2 is
attained.

5.2. Comparison of state-norm estimators

In this section, we compare the two state-norm estimators
proposed in Theorems 4 and 5, respectively, when not all
subsystems are IOSS. To this end, consider again the family of two
subsystems (42), and let the parameter values be as in Section 5.1,
except for a12 = a22 = 1. With these parameters, subsystem 1
is IOSS whereas subsystem 2 is not. Taking V1 and V2 as above,
it is straightforward to verify that (25) and (36) are satisfied with
λs = 7/4, λu = 13/6, χ1(r) = 3/2r2 and χ2(r) = r . Fig. 3 shows
simulation results for the two different estimators with λ∗

s = 1.3
and λ∗

u = 2.7. The switching signal σ is such that (19)–(21) is
satisfiedwithρ = 0.1 and T0 = 0.3, and the parametersρw and τw

a
are chosen as ρw

= 0.2 and τw
a = 3 and satisfy (40)–(41).

One can see that while the state-norm estimator proposed in
Theorem 5 uses less information about the switched system (no
knowledge of the switching times is needed), it also gives more
conservative estimates for |x|, due to theworst-case estimates used
in the proof. However, our simulation results show that in practice,
the state-norm estimator with independent switching times can
also be used with a significantly less conservative gain.

6. Conclusions

In this paper, we established IOSS for switched nonlinear
systems under average dwell-time switching signals, both when
all of the constituent subsystems are IOSS as well when some
of the subsystems lack this property. Furthermore, we showed
that under the same sufficient conditions, a state-norm estimator
exists for the switched system. In the case where some of the
subsystems are not IOSS, the state-norm estimator is a switched
system itself, consisting of two subsystemswith one stable and one
unstable mode. We showed that in this case, the switching times
of the state-norm estimator can be chosen independently of the
switching times of the switched system.

Appendix A. Proof of Theorem 4

Consider as a candidate for a switched state-norm estimator the
system

ż = gζ (t)(z, u, y), z0 ≥ 0, (A.1)

where the switching signal ζ (t) is defined by

ζ (t) =


0 if σ(t) ∈ Ps
1 if σ(t) ∈ Pu

(A.2)

and gi, i ∈ {0, 1} is the family of two systems (37) with λ∗
s ∈ (0, λs)

and λ∗
u ≥ λu.

This means that the system (A.1) consists of a subsystem ż =

g0, which is ISS with respect to the inputs (u, y) and which is
active whenever one of the IOSS subsystems of (2) is active, and
an unstable subsystem ż = g1, which is active whenever one of
the non-IOSS subsystems of (2) is active. Thus the switching times
of s coincide with those switching times of σ where a switch from
a system in Ps to a system in Pu or vice versa occurs, and the
activation time of g1 in any interval [τ , t), denoted by T u

z (t, τ ), is
equal to the activation time T u(t, τ ) of the non-IOSS systems of the
switched system (2) in this interval.

In the following, we have to verify that our state-norm esti-
mator candidate (A.1) satisfies the two properties of Definition 1,
namely that it is ISS with respect to the inputs (u, y) and that (6)
holds.

In order to establish the first property, we can apply Theorem 2,
i.e., we have to show that the conditions of Theorem 2 are satisfied
for the state-normestimator candidate (A.1). Choosing e.g. V0(z) =

V1(z) =: V (z) =
1
2 z

2, it is straightforward to verify that this is the

case if T u
z (t, τ ) satisfies (20) with ρ <

λ∗
s

λ∗
s +λ∗

u
, but with no further

condition on the average dwell time τ z
a of the switching signal s, as

(21) yields τ z
a > 0.

It remains to show that our state-norm estimator candidate
(A.1) satisfies the second property of Definition 1, i.e., that (6)
holds.

As χ1(|u|) + χ2(|y|) ≥ 0, we have

g0(z, u, y) ≥ −λ∗

s z(t)
g1(z, u, y) ≥ λ∗

uz(t)

and thus, as z0 ≥ 0,

z(t) ≥ e−λ∗
s T

s(t,t0)+λ∗
uT

u(t,t0)z0 ≥ 0 (A.3)
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for all t ≥ t0. Furthermore, for all t0 ≤ τi ≤ t we get

z(τi) ≤ eλ∗
s T

s(t,τi)−λ∗
uT

u(t,τi)z(t). (A.4)
Now consider the function W (t) := Vσ(t)(x(t)) − z(t). Following
the lines of the proof of Theorem 3, we get that for any interval
[τi, τi+1),

W (τi+1) ≤ µW (τi)e−λs(τi+1−τi) + (µ − 1)z(τi+1)

if ζ (t) = 0 in [τi, τi+1)

W (τi+1) ≤ µW (τi)eλu(τi+1−τi) + (µ − 1)z(τi+1)

if ζ (t) = 1 in [τi, τi+1).

Iterating this from i = 0 to i = Nσ (t, t0) and using (A.4), (20) and
(17) we arrive at

W (t) ≤ µNσ (t,t0)e−λsT s(t,t0)+λuTu(t,t0)W (t0)

+ (µ − 1)z(t)
Nσ (t,t0)

k=1

(e(Nσ (t,t0)−k) lnµ

× e−(λs−λ∗
s )T s(t,τk)−(λ∗

u−λu)Tu(t,τk))

≤ e(λs+λu)T0eNσ (t,t0) lnµ−(λs−ρ(λs+λu)) (t−t0)W (t0)

+ (µ − 1)ε1z(t)
Nσ (t,t0)

k=1

(e(Nσ (t,t0)−k) lnµ

× e−(λs−λ∗
s −ε2) (t−τk)), (A.5)

with

ε1 =


1 if λs + λu − λ∗

s − λ∗

u ≤ 0
e(λs+λu−λ∗

s −λ∗
u)T0 else

and

ε2 =


0 if λs + λu − λ∗

s − λ∗

u ≤ 0
ρ(λs + λu − λ∗

s − λ∗

u) else.

Using the average dwell-time property (3) and proceeding as in the
proof of Theorem 3, we arrive at
Nσ (t,t0)

k=1

e(Nσ (t,t0)−k) lnµ−(λs−λ∗
s −ε2) (t−τk)

≤ eN0(lnµ+λτa)
1

1 − e−λτa
=: b (A.6)

with λ := λs −λ∗
s − ε2 − lnµ/τa ∈ (0, λs −λ∗

s − ε2) if the average
dwell time τa satisfies the bound

τa >
lnµ

(λs − λ∗
s − ε2)

. (A.7)

In case of ε2 > 0, the above average dwell-time condition (A.7) is
well defined if we choose λ∗

s and λ∗
u such that

ρ <
λ∗
s

λ∗
s + λ∗

u
<

λs

λs + λu
. (A.8)

Furthermore, note that for any average dwell-time τa satisfy-
ing (21) and any ρ satisfying (19), we can choose λ∗

s ∈ (0, λs) and
λ∗
u ≥ λu such that the conditions (A.7) and (A.8) are also satisfied.
Combining (A.5) and (A.6), we get

W (t) ≤ µN0e(λs+λu)T0W (t0)e−λ′(t−t0) + b(µ − 1)ε1z(t)

=: µN0e(λs+λu)T0W (t0)e−λ′(t−t0) + b1z(t) (A.9)
with λ′

:= λs − ρ(λs + λu) − lnµ/τa ∈ (0, λs − ρ(λs + λu)) if the
average dwell-time τa satisfies the bound (21). This leads to
Vσ(t)(x(t)) ≤ (1 + b1)z(t)

+ µN0e(λs+λu)T0e−λ′(t−t0)(Vσ(t0)(x0) − z0)
≤ (1 + b1)|z(t)|

+ 2µN0e(λs+λu)T0e−λ′(t−t0)α2(|x0| + |z0|),
if we assumewithout loss of generality that α2(r) ≥ r for all r ≥ 0.
Using (7), we finally arrive at

|x(t)| ≤ α−1
1 (2(1 + b1)|z(t)|)

+ α−1
1 (4µN0e(λs+λu)T0e−λ′(t−t0)α2(|x0| + |z0|))

=: γ (|z(t)|) + β(|x0| + |z0|, t − t0), (A.10)

which means that our state-norm estimator candidate (A.1)
satisfies the condition (6). �

Appendix B. Proof of Theorem 5

Consider again the switched state-norm estimator (A.1) de-
signed in the proof of Theorem 4 and its state z(t). The idea of
this proof is that if we can design a candidate state-norm estimator
ẇ = gζ ′(t)(w, u, y) such that for all t ≥ t0

|z(t)| ≤ c|w(t)| (B.1)

for some constant c ≥ 1, then the system ẇ = gζ ′(t)(w, u, y) is also
a state-norm estimator for the switched system (2). Furthermore,
the gain γ ′ with which |x| can be bounded in terms of w is then
given by γ ′(w) = γ (cw), where γ is the gain of the state-norm
estimator (A.1), given by (A.10).

Consider the following candidate for a state-norm estimator
with switching times independent of the switching times of σ :

ẇ = gζ ′(t)(w, u, y), w0 ≥ 0 (B.2)

where gi, i ∈ {0, 1} is the family of two systems (37) and the
switching signal ζ ′(t) is defined by (39). The choice of the constants
τw
a and ρw in (40)–(41) means that in any interval of length

τw
a , the period of time during which w(t) is unstable (namely

ρwτw
a according to (39)) is greater than or equal to the maximum

unstable time of z(t) (T0 + ρτw
a according to (20)).

It is straightforward to verify that the activation time of g1 in
any interval [τ , t), denoted by T u

w(t, τ ), satisfies

T u
w(t, τ ) ≤ Tw

0 + ρw(t − τ) (B.3)

with Tw
0 = ρw(1−ρw)τw

a . Using the same argument as in the proof
of Theorem 4, we see that according to Theorem 2, the candidate
state-norm estimator (B.2) is ISS with respect to the inputs (u, y),
i.e., the first property of Definition 1 is satisfied.

In the following, we will prove by induction that (B.1) holds,
which implies that the second property of Definition 1 is also
satisfied and thus the candidate (B.2) is a state-norm estimator for
the switched system (2). Note that we can write (B.1) without the
absolute values, as z(t) as well as w(t) are greater than or equal to
zero for all t ≥ t0.

As an initial step, note that we can choose z0 and w0 such that
z0 ≤ w0. Now assume that

z(kτw
a ) ≤ w(kτw

a ) (B.4)

for some integer k ≥ 0. If we can show that also

z((k + 1)τw
a ) ≤ w((k + 1)τw

a ) (B.5)

and that

z(t) ≤ cw(t) kτw
a ≤ t ≤ (k + 1)τw

a (B.6)

for some c ≥ 1, then we can conclude that (B.1) holds.
Let t1 := kτw

a , t2 := kτw
a + (1 − ρw)τw

a , and t3 := (k + 1)τw
a .

Furthermore, let χ̄(t) := χ1(|u(t)|) + χ2(|y(t)|).
First, consider the interval [t1, t2). During this interval, w(t)

is stable, whereas z(t) might switch between its stable and its
unstable mode.
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If during some interval [t ′, t ′′), where t1 ≤ t ′ ≤ t ′′ ≤ t2, both w
and z are stable and z(t ′) ≤ εw(t ′) for some ε ≥ 1, then
d
dt

(z − w) = g0(z, u, yσ ) − g0(w, u, yσ ) = −λ∗

s (z − w)

and thus
z(t ′′) − w(t ′′) = e−λ∗

s (t ′′−t ′)(z(t ′) − w(t ′))

≤ e−λ∗
s (t ′′−t ′)(ε − 1)w(t ′) ≤ (ε − 1)w(t ′′).

Thus we obtain
z(t ′′) ≤ εw(t ′′). (B.7)
If during some interval [t ′′, t ′′′), where t1 ≤ t ′′ ≤ t ′′′ ≤ t2, w is
stable and z is unstable and z(t ′′) ≤ κw(t ′′) for some κ ≥ 1, then

w(t ′′′) = e−λ∗
s (t ′′′−t ′′)


w(t ′′) +

 t ′′′

t ′′
eλ∗

s (s−t ′′)χ̄(s)ds



≥ e−λ∗
s (t ′′′−t ′′)


w(t ′′) +

 t ′′′

t ′′
χ̄(s)ds


and

z(t ′′′) = eλ∗
u(t ′′′−t ′′)


z(t ′′) +

 t ′′′

t ′′
e−λ∗

u(s−t ′′)χ̄(s)ds



≤ eλ∗
u(t ′′′−t ′′)


κw(t ′′) +

 t ′′′

t ′′
χ̄(s)ds


= e(λ∗

u+λ∗
s ) (t ′′′−t ′′)κe−λ∗

s (t ′′′−t ′′)

×


w(t ′′) +

1
κ

 t ′′′

t ′′
χ̄(s)ds


≤ κe(λ∗

u+λ∗
s ) (t ′′′−t ′′)w(t ′′′). (B.8)

Thus, as the interval [t1, t2) consists of disjoint subintervals where
z is alternating between stable and unstable, and as according to
(B.4) z(t1) ≤ w(t1), by iterating (B.7) and (B.8) we arrive at

z(t2) ≤ e(λ∗
u+λ∗

s )Tu(t2,t1)w(t2). (B.9)
Second, consider the interval [t2, t3). During this interval, w(t) is
unstable, whereas z(t) might switch between its stable and its
unstable mode. Yet, as according to (20), T u(t3, t1) ≤ T0 + ρ(t3 −

t1) = T0 +ρτw
a , the time in the interval [t2, t3) where z is unstable

is bounded above by

T u(t3, t2) ≤ T0 + ρτw
a − T u(t2, t1) (B.10)

and thus
T s(t3, t2) = t3 − t2 − T u(t3, t2)

≥ ρwτw
a − (T0 + ρτw

a − T u(t2, t1)). (B.11)
Suppose there are l switching times of σ during the interval (t2, t3),
and assume without loss of generality that these are the switching
times τr+1, τr+2, . . . , τr+l, where r is some nonnegative integer.
Furthermore, for convenience, let τr := t2 and τr+l+1 := t3. Let
K1 := {k ∈ {0, . . . , l} : ζ (t) = 0 for t ∈ [τr+k, τr+k+1)} and
K2 := {k ∈ {0, . . . , l} : ζ (t) = 1 for t ∈ [τr+k, τr+k+1)}. Then

w(t3) = eλ∗
u(t3−t2)


w(t2) +

 t3

t2
e−λ∗

u(s−t2)χ̄(s)ds


≥ eλ∗
u(t3−t2)w(t2)

+


k∈K1

eλ∗
u(t3−τr+k+1)

 τr+k+1

τr+k

χ̄(s)ds

+


k∈K2

eλ∗
u(t3−τr+k)

 τr+k+1

τr+k

e−λ∗
u(s−τr+k)χ̄(s)ds

=: eλ∗
u(t3−t2)w(t2) + a1 + a2 (B.12)
and

z(t3) = e−λ∗
s T

s(t3,t2)+λ∗
uT

u(t3,t2)z(t2)

+


k∈K1


e−λ∗

s T
s(t3,τr+k+1)+λ∗

uT
u(t3,τr+k+1)−λ∗

s (τr+k+1−τr+k)

×

 τr+k+1

τr+k

eλ∗
s (s−τr+k)χ̄(s)ds



+


k∈K2


e−λ∗

s T
s(t3,τr+k+1)+λ∗

uT
u(t3,τr+k+1)+λ∗

u(τr+k+1−τr+k)

×

 τr+k+1

τr+k

e−λ∗
u(s−τr+k)χ̄(s)ds


≤ e−λ∗

s T
s(t3,t2)+λ∗

uT
u(t3,t2)z(t2) + a1 + a2. (B.13)

Using (B.9)–(B.13), we arrive at

w(t3) − z(t3) ≥ eλ∗
u(t3−t2)w(t2) − e−λ∗

s T
s(t3,t2)+λ∗

uT
u(t3,t2)z(t2)

≥ eλ∗
u(t3−t2)w(t2) − e−λ∗

s (ρwτw
a −(T0+ρτw

a −Tu(t2,t1)))

× eλ∗
u(T0+ρτw

a −Tu(t2,t1))z(t2)

≥ (eλ∗
uρwτw

a − e(λ∗
u+λ∗

s ) (T0+ρτw
a )−λ∗

s ρwτw
a )w(t2). (B.14)

As w(t2) ≥ 0, the right-hand side of (B.14) is nonnegative if and
only if

λ∗

uρ
wτw

a ≥ (λ∗

u + λ∗

s ) (T0 + ρτw
a ) − λ∗

s ρ
wτw

a

⇕

ρwτw
a ≥ T0 + ρτw

a

which is true according to our choice of ρw and τw
a in (40)–(41).

Thus (B.5) and (B.6) are satisfied, and the constant c in (B.6) can
be calculated from (B.9) and the fact that T u(t2, t1) ≤ T0 + ρ(t2 −

t1) = T0 + ρ(1 − ρw)τw
a as

c = e(λ∗
u+λ∗

s ) (T0+ρ(1−ρw)τw
a ). (B.15)

Note that we calculated c from (B.9) (i.e., the worst-case ratio
z/w can be calculated at time t2) as during the time interval
[t2, t3), the ratio z/w decreases. Namely, as during the time interval
[t2, t3)w(t) is unstable and z(t) switches between its stable and
unstable mode,

d
dt

(z − w) ≤ λ∗

u(z − w).

Thus, if z(t2) = εw(t2) for some ε, we obtain that for any t ∈

[t2, t3),

z(t) − w(t) = eλ∗
u(t−t2)(z(t2) − w(t2))

≤ e−λ∗
s (t−t2)(ε − 1)w(t2) ≤ (ε − 1)w(t)

and thus

z(t) ≤ εw(t),

i.e., the ratio z(t)
w(t) is smaller than or equal to the ratio z(t2)

w(t2)
.

Therefore, we conclude that the system (B.2) is also a state-
norm estimator for the switched system (2) and by construction
of the switching signal ζ ′, its switching times are independent of
the switching times of the switching signal σ . �
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