
Automatica 48 (2012) 954–963
Contents lists available at SciVerse ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Switched nonlinear differential algebraic equations: Solution theory, Lyapunov
functions, and stability✩

Daniel Liberzon a,1, Stephan Trenn b

a Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
b Department of Mathematics, University of Kaiserslautern, Kaiserslautern, Germany

a r t i c l e i n f o

Article history:
Received 21 January 2010
Received in revised form
11 August 2011
Accepted 11 October 2011
Available online 22 March 2012

Keywords:
Nonlinear differential algebraic equations
Piecewise-smooth distributions
Lyapunov functions
Asymptotic stability

a b s t r a c t

We study switched nonlinear differential algebraic equations (DAEs) with respect to existence and nature
of solutions as well as stability. We utilize piecewise-smooth distributions introduced in earlier work for
linear switched DAEs to establish a solution framework for switched nonlinear DAEs. In particular, we
allow induced jumps in the solutions. To study stability, we first generalize Lyapunov’s direct method to
non-switched DAEs and afterwards obtain Lyapunov criteria for asymptotic stability of switched DAEs.
Developing appropriate generalizations of the concepts of a common Lyapunov function and multiple
Lyapunov functions for DAEs, we derive sufficient conditions for asymptotic stability under arbitrary
switching and under sufficiently slow average dwell-time switching, respectively.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

We consider switched nonlinear differential algebraic equa-
tions (DAEs) of the form

Eσ(t)(x(t))ẋ(t) = fσ(t)(x(t)), (1)

where σ : R → {1, . . . , p}, p ∈ N, is the switching signal and
Ep : Rn

→ Rn×n, fp : Rn
→ Rn, p ∈ {1, . . . , p}, are smooth

functions. In particular, we assume that each subsystem is a DAE
in quasi-linear form (Reich, 1990)

E(x)ẋ = f (x). (2)

Equations of this kind occur, for example, when modeling (non-
linear) electrical circuits (Chua & Rohrer, 1965) or coupled
mechanical systems (Schiehlen, 1990). Classical linear DAEs
(i.e. without switching) of the form Eẋ = Ax, with matrices E, A ∈

Rn×n, which are also known as singular systems or descriptor sys-
tems, naturally appear when modeling electrical circuits because
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Kirchhoff’s circuit laws add algebraic equations to the differential
equations stemming from capacitors and inductances. For more
details and further motivation for studying (non-switched) DAEs
the reader is referred to Kunkel and Mehrmann (2006). Adding,
for example, (ideal) switches to an electrical circuit or allowing for
sudden structural changes inmechanical systems yields a switched
DAE as in (1). When studying the zero dynamics of an ordinary dif-
ferential equation (ODE) one arrives at a DAE because of the addi-
tional algebraic constraint 0 = y = h(x), where h : Rn

→ Rm is the
output function. In particular, using a switched controller to stabi-
lize the zero dynamics (aswas done inNešić, Skafidas,Mareels, and
Evans (1999)) yields a switched DAE (1) even if one starts with an
ODE.

The switching signal in (1) is time-dependent and not
state-dependent. Although state-dependent switching has high
relevance for applications, we focus our attention in this paper
only on time-dependent switching. Some reasons for this are the
following: (i) we view the switching signal as an exogenous signal,
which is a natural approach for studying electrical circuits with
(physical) switches or sudden component faults in electrical and
mechanical systems, (ii) the distributional solution framework
utilized in this paper does not allow for accumulation of switching
times (Zeno behavior) which in general can occur for state-
dependent switching.

The aim of this paper is a stability analysis of (1) with the
help of Lyapunov functions. For this we first need to establish a
Lyapunov theory for non-switched DAEs in quasi-linear form (2)
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and secondly we need to define a suitable solution framework for
the switched DAE (1).

The use of Lyapunov functions is a powerful tool to study
stability of nonlinear differential equations. However, it is not
immediately clear how Lyapunov functions can be defined for
implicit differential equations such as (2). Of course, it is possible
to define a Lyapunov function in a very general setting just by
the property that it decreases along solutions, but we believe
that only a definition for a Lyapunov function which does not
refer to the individual solutions makes Lyapunov functions so
useful. The main problem is that, given a function x → V (x), its
derivative along solutions V̇ (x) = ∇V (x)ẋ cannot be expressed
directly in terms of the right-hand side f (x), because ẋ is not
explicitly given. We resolve this problem and generalize the well
known Lyapunov’s DirectMethod to implicit differential equations
of the form (2). In the linear case Eẋ = Ax there have been
generalizations of Lyapunov’s Direct Method (e.g. in Owens and
Debeljkovic (1985) and Takaba, Morihira, and Katayama (1995))
but no general definition of a Lyapunov function was given.

One major problem of studying switched DAEs of the form (1)
is the presence of jumps in the solutions induced by the presence
of so-called consistency spaces. A special case is the problem of
inconsistent initial values which has been studied extensively
(see e.g. Cobb, 1982; Frasca, Çamlıbel, Goknar, Iannelli, & Vasca,
2010; Liu, Yan, & Teo, 1995; Verghese, Levy, & Kailath, 1981)
and the references in the latter. We are using the piecewise-
smooth distributional framework from Trenn (2009a,b) to define
solutions of the switched DAE (1). In this framework ẋ is well
defined evenwhen x contains jumps, inwhich case ẋ containsDirac
impulses. It should be noted that a general distributional solution
framework (i.e. not considering the smaller space of piecewise-
smooth distributions) will not work, because (i) the nonlinear
function evaluations E(x) and f (x) are not defined for distributions
and (ii) the product E(x)ẋ is not defined even when E(x) is a
piecewise-smooth function.

All results presented here apply of course also to the linear
switched DAE

Eσ ẋ = Aσ x, (3)

where Ep, Ap ∈ Rn×n for p ∈ {1, . . . , p}. In this case some of the
results simplify significantly and we will formulate corollaries to
highlight the linear case. We have studied stability of the linear
switched DAE (3) already in Liberzon and Trenn (2009). However,
our nonlinear results presented here applied to the linear switched
DAE (3) still generalize these results. In particular, the notion of a
Lyapunov function as well as the dwell-time stability results are
significantly generalized.

Although the two research fields ‘DAEs’ and ‘switched systems’
are now relatively mature (see e.g. the textbooks Kunkel &
Mehrmann, 2006; Liberzon, 2003) the combination of both has
not been studied much even in the linear case. The existing
literature available on switched DAEs (Geerts & Schumacher,
1996a,b; Meng, 2006; Meng & Zhang, 2006; Raouf & Michalska,
2010;Wunderlich, 2008; Zhai, Kou, Imae, & Kobayashi, 2006) does
not consider stability problems in a nonlinear setup. Furthermore,
the fundamental problem that one needs distributional solutions
for a switched linear DAE (3) and at the same time Eq. (3) cannot
be evaluated for distributional x is not resolved there.

It might be possible to reformulate the switched DAE (1) as
a hybrid system in the framework of Goebel, Sanfelice, and Teel
(2009) by writing (1) as ẋ ∈ Eσ (x)−1


fσ (x)


; however, by doing so,

we lose the special structure of (1). In particular, the jumps of the
states are implicitly given by (1) and no additional jumpmap needs
to be considered. This is amajor difference between switchedDAEs
and switched ODEs with reset maps.
A system class which has similarities with switched DAEs (1)
is that of complementarity systems (see, e.g., Acary, Brogliato, &
Goeleven, 2008; Çamlıbel, Heemels, van der Schaft, & Schumacher,
2003; Heemels, Schumacher, & Weiland, 2000; van der Schaft &
Schumacher, 1996). Themain similarity is the existence of different
modes which are described by differential–algebraic equations.
Roughly speaking, the different modes in the complementarity
framework stem directly from the complementarity condition
(certain variables must be zero) and a mode change is triggered
by violation of positivity of certain variables. In particular, the
switches between the different modes are state-dependent; hence
the solution theory is rather different. Another difference of the
complementarity framework is the existence of twodifferent types
of variables: the state variable (whose derivative appears explicitly
in the system description) and complementarity variables which
have to fulfill the complementarity conditions. This distinction is
not made in our approach: in one mode a certain state-variable
could be governed by a differential equation, in another mode
this variable could be governed by a simple algebraic equation.
A further comparison of the linear switched DAE (3) with the
linear complementarity framework from Heemels et al. (2000)
reveals that the consistency projectors are (modulo a restriction to
the state variable) identical in both frameworks but the different
modes in Heemels et al. (2000) have the same E-matrix which
simplifies the analysis significantly.

The structure of the paper is as follows. In Section 2we study the
non-switched DAE (2) and generalize Lyapunov’s Direct Method to
the DAE case in Theorem 2.7. This result is based on a presumably
newdefinition of a Lyapunov function for theDAE (2) as formulated
inDefinition 2.5. In Section 3 the distributional solution framework
for switched DAEs of the form (1) is introduced. We formulate
Assumption A4which under certain regularity assumptions on the
subsystems guarantees existence and uniqueness of solutions of
the switched DAE (1), see Theorem 3.3. In Section 3.2 we consider
the linear case and observe with Corollary 3.9 that the linear
equivalent of Assumption A4 ensures the existence of impulse-free
solutions of the linear switched DAE (3). Finally, in Section 4 we
generalize thewell-known results that the existence of a ‘‘common
Lyapunov function’’ implies asymptotic stability under arbitrary
switching; the novel element is that this Lyapunov function must
take into account the consistency projectors as formulated in
Theorem 4.1. We also prove a result on stability under average
dwell time in the spirit of Hespanha andMorse (1999) for switched
nonlinear DAEs (1) in Theorem 4.2.

The following notation is used throughout the paper. N, Z, R, C
are the natural numbers, integers, real and complex numbers,
respectively. For a matrix M ∈ Rn×m, n,m ∈ N, the kernel
(null space) of M is ker M , the image (range, column space) of
M is im M , and the transpose of M is M⊤

∈ Rm×n. For a matrix
M ∈ Rn×n and a set S ⊂ Rn, the image of S under M is MS :=

{Mx ∈ Rn |x ∈ S } and the pre-image of S under M is M−1S :=

{x ∈ Rn |∃y ∈ S : Mx = y }. The identity matrix is denoted by I .
For a piecewise-continuous function f : R → R the left-sided
evaluation limε↘0 f (t − ε) at t ∈ R is denoted by f (t−). The
space of differentiable functions f : R → R is denoted by C1, the
space of piecewise-smooth functions is denoted by C∞

pw, the space
of distributions is denoted by D, the space of piecewise-smooth
distributions is denoted by DpwC∞ and δt ∈ DpwC∞ ⊆ D denotes
the Dirac impulse at t ∈ R; for details see the Appendix. The set of
switching signals considered here is

Σ :=


σ : R → {1, . . . , p}

σ is right continuous with a
locally finite number of jumps


where p ∈ N is the number of subsystems.
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2. Non-switched DAEs and Lyapunov functions

2.1. Classical solutions and consistency spaces

Consider for now the (non-switched) nonlinear DAE (2). A
(classical, local) solution of (2) is any differentiable function x :

I → Rn which fulfills (2) on some interval I ⊆ R. Due to the
time-invariant nature of (2) we can always assume that I = [0, T )
for some T ∈ (0, ∞].

Definition 2.1 (Consistency Space). The consistency space of (2) is
given by

CE,f :=


x0 ∈ Rn

∃ solution x : [0, T ) → Rn

with x(0) = x0


.

Each x0 ∈ CE,f is called a consistent initial value.

Time-invariance of (2) implies that all solutions x of (2) evolve
within CE,f , i.e. x(t) ∈ CE,f for all t ∈ [0, T ). In general, it is
not easy to characterize the solution behavior of (2) (for details
see, e.g., Rabier & Rheinboldt, 1994; Reich, 1990; Schlacher &
Zehetleitner, 2004). Herewe just assume that the solution behavior
is not drastically different from the regular linear case.

Assumption. The nonlinear DAE (2) satisfies:
A1. f (0) = 0, in particular 0 ∈ CE,f .
A2. CE,f is a closed manifold (possibly with boundary) in Rn.
A3. For each x0 ∈ CE,f there exists a unique solution x : [0, ∞) →

Rn with x(0) = x0 and x ∈ (C1
∩ C∞

pw)n.

Remark 2.2 (On A3). First note that we exclude systems which
exhibit finite escape time. Secondly, the assumption that the
differentiable solution is also piecewise-smooth is just a technical
assumptionwhichwill be needed later for studying switchedDAEs.

For the linear case

Eẋ = Ax (4)

with E, A ∈ Rn×n Assumptions A1 and A2 are fulfilled trivially
(by linearity the consistency space is a linear subspace, see also
the forthcoming Theorem 2.3), and A3 is fulfilled if and only if the
matrix pair (E, A) is regular, i.e. the polynomial det(Es−A) ∈ R[s] is
not the zero polynomial (for details see, e.g., the textbook Kunkel &
Mehrmann, 2006). Furthermore, regularity of thematrix pair (E, A)
is equivalent to the existence of invertible matrices S, T ∈ Rn×n

such that a coordinate transformation of the codomain and domain
by S and T yields the quasi-Weierstrass form

(SET , SAT ) =


I 0
0 N


,


J 0
0 I


, (5)

where J ∈ Rn1×n1 , n1 ∈ N, is some matrix and N ∈ Rn2×n2 , n2 =

n − n1, is nilpotent, i.e. Nn2 = 0. We call (5) the quasi-Weierstrass
form (following Berger, Ilchmann, & Trenn, in press) because we
do not assume that J and N are in Jordan canonical form as is
the case for the Weierstrass canonical form (Gantmacher, 1959;
Weierstraß, 1868). The smallest number ν ∈ N such that Nν

= 0 is
called the index of the corresponding linear DAE Eẋ = Ax. It is not
difficult to see that the consistency space CE,A is spanned by the
first n1 columns of T . A convenient way to calculate the matrices
S and T is the usage of the Wong sequences of subspaces (named
after Wong, 1974).2

2 These sequences can be traced back to Dieudonní (1946); however, he only
implicitly considers the second Wong sequence via a duality argument. Although
some authors use these sequences (Aplevich, 1991; Kuijper, 1994; van der Schaft &
Schumacher, 1996), the connection between them and the quasi-Weierstrass form,
as established by Theorem 2.3, seems not to be very well known.
Theorem 2.3 (Armentano, 19863). Consider a regular matrix pair
(E, A) with index ν and define the associated Wong sequences by,
i ∈ N,

V0 := Rn, Vi+1 := A−1(EVi), V∗
:=


i

Vi,

W0 := {0}, Wi+1 := E−1(AWi), W∗
:=


i

Wi.

The Wong sequences are nested and become stationary after exactly
ν steps. For any full rank matrices V ,W with im V = V∗

= Vν and
im W = W∗

= Wν the matrices T := [V W ] and S := [EV AW ]
−1

are invertible and put (E, A) into the quasi-Weierstrass form (5). In
particular

CE,A = V∗.

Remark 2.4 (Linear Index-One Case). From the quasi-Weierstrass
form (5) it can be deduced that the (classical) solutions of (4)
do not depend on N , or, in other words, the solutions remain
the same when N is set to be the zero matrix. Assuming that N
is the zero matrix is by definition equivalent to assuming that
the matrix pair (E, A) is index-one. The importance of N only
shows up when studying switched DAEs, where a non-zero N
might produce impulses in the solutions (we will study impulse-
free solutions in more detail in Section 3.2). An easy way to
exclude impulsive behaviors is an index-one assumption for all
subsystems, i.e. assuming that in each quasi-Weierstrass form (5)
the nilpotent matrix is the zero matrix. However this assumption
excludes a large class of interesting switched DAEs. For example, if
all subsystems have the same consistency space, then all solutions
of the corresponding switched systems will have neither jumps
nor impulses, independently of whether or not the subsystems are
index-one. In Section 3 we propose Assumption A4, whose linear
equivalent (13) ensures impulse-free solutions and is implied by
the above two stricter conditions (index-one or same consistency
spaces).

2.2. Stability and Lyapunov functions

We call the DAE (2) asymptotically stable when all solutions
converge to zero as t → ∞ and for every ε > 0 there exists a δ > 0
such that for each consistent initial value x0 ∈ CE,f with |x0| < δ
the corresponding solution x : [0, ∞) → CE,f fulfills |x(t)| < ε
for all t ≥ 0. The only difference with the classical definition of
asymptotic stability is the restriction to consistent initial values.
Later, in the switched case, we have to reconsider this restriction,
because due to the switching it is not guaranteed that the initial
value at a switching instant is consistent.

Definition 2.5 (Lyapunov Function). Consider the DAE (2) satisfy-
ing A1–A3. Any continuously differentiable non-negative function
V : CE,f → R≥0 fulfilling the following properties is called a Lya-
punov function for (2):

L1. V is positive definite, i.e. V (x) = 0 ⇔ x = 0, and for all
x ∈ CE,f each sublevel set V−1

[0, V (x)] ⊆ CE,f is bounded
(hence compact by A2),

L2. there exists a continuous F : Rn
×Rn

→ R such that∇V (x)z =

F(x, E(x)z) for all x ∈ CE,f , z ∈ TxCE,f , where TxCE,f is the
tangent space of CE,f at x,

L3. defining V̇ (x) := F

x, f (x)


we have V̇ (x) < 0 for all x ∈

CE,f \ {0}.

3 See also Berger et al. (in press).
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Note that in the linear case (4) the tangent space TxCE,A is identical
to the consistency space CE,A for all x ∈ CE,A, hence L2 simplifies in
this case. Furthermore, for any non-trivial solution x of (2) with a
Lyapunov function V it holds that

d
dt

V (x(t)) = ∇V

x(t)


ẋ(t) L2

= F

x(t), E(x(t))ẋ(t)


= F


x(t), f (x(t))


= V̇


x(t)

 L3
< 0, (6)

hence V is decreasing along solutions.

Remark 2.6 (Weaker Version of L2). In L2 one could also work
with ∇V (x)z ≤ F(x, E(x)z) instead of ∇V (x)z = F(x, E(x)z).
However, the definition in L3 for V̇ would then be misleading,
because F(x, f (x)) would only be an upper bound of V̇ . In order
to keep the spirit of the classical concept of a Lyapunov function
we chose to use L2 but all results here hold true also for the
weaker version. Furthermore, L2 could be formulated with z ∈

E(x)−1(f (x)) instead of z ∈ TxCE,f because z is a placeholder for ẋ
when applied later and therefore all relevant z must be solutions of
E(x)z = f (x). Depending on the specific problem it might be easier
or more difficult to characterize E(x)−1(f (x)) instead of TxCE,f .

Theorem 2.7 (Lyapunov’s Direct Method). Consider the DAE (2) sat-
isfying A1–A3. If there exists a Lyapunov function for (2) then (2) is
(globally) asymptotically stable.

Proof (Stability). For ε > 0 consider the set Bε := {x ∈ CE,f |

|x| = ε} which is empty or compact by Assumption A2. If Bε = ∅

then each solution starting within the set enclosed by Bε cannot
leave this set, hence stability follows in this case. Otherwise, let
b := minx∈Bε V (x) where positive definiteness of V implies b > 0.
Continuity of V and V (0) = 0 guarantees the existence of δ > 0
such that V (x) < b for all |x| < δ, in particular δ < ε. From (6)
it follows that t → V


x(t)


is decreasing for any solution x of (2),

hence any solution x with |x(0)| < δ fulfills V (x(t)) < b for all
t ≥ 0. Seeking a contradiction, assume there exists t > 0 such that
|x(t)| ≥ ε, then, by continuity of x together with |x(0)| < δ < ε,
there exists t1 ∈ (0, t) such that |x(t1)| = ε which leads to
b ≤ V (x(t1)) < b.

Convergence to zero

Step 1: V

x(t)


→ 0 as t → ∞.

Let x : [0, ∞) → CE,f be any non-trivial solution, then the non-
negative function t → v(t) := V


x(t)


≥ 0 is strictly decreasing

by (6). Therefore, v = limt→∞ v(t) is well defined. Seeking a
contradiction, assume v > 0. Then v(t) ∈ [v, v(0)] for all t ≥ 0.
By L1 and continuity of V , K := V−1

[v, v(0)] is a compact set,
henceM := V̇ (K) ⊆ R is also compact (since V̇ is continuous) and
0 ∉ M. This implies that m := −maxM > 0 and, in particular,
v′(t) =

d
dt V


x(t)


= V̇


x(t)


≤ −m < 0 for all t ≥ 0. Hence

v(t) ≤ v(0) − mt for all t ≥ 0, which contradicts v(t) ≥ 0 for all
t ≥ 0, hence v = 0 must hold.

Step 2: x(t) → 0 as t → ∞.
Seeking a contradiction, assume x(t) ↛ 0, then there exists

a sequence (tn)n∈N with tn → ∞ as n → ∞ and ε > 0 such
that |x(tn)| > ε. By L1 and (6), each solution x evolves within
the compact set V−1

[0, V (x(0))], hence there exists a convergent
subsequence of x(tn) with limit x∗

≠ 0. By continuity and
positive definiteness of V we arrive at the contradiction 0 =

limt→∞ V (x(t)) = V (x∗) > 0. �

Remark 2.8 (The Linear Case). In the linear, regular case it is well-
known (Owens&Debeljkovic, 1985) that Eẋ = Ax is asymptotically
stable if, and only if, there exists a solution (P,Q ) ∈ Rn×n
× Rn×n

of the generalized Lyapunov equation4

A⊤PE + E⊤PA = −Q , (7)

where P = P⊤ is positive definite and Q = Q⊤ is positive definite
on CE,A. In fact, it is easy to see that then V (x) = (Ex)⊤PEx is a
Lyapunov function in the sense of Definition 2.5 with

∇V (x)z = (Ex)⊤PEz + (Ez)⊤PEx =: F(x, Ez)

and

V̇ (x) = x⊤(E⊤PA + A⊤PE)x = −x⊤Qx < 0 on CE,A.

If the linear system Eẋ = Ax is index-one, i.e.N = 0 in the quasi-
Weierstrass form (5), it is shown in Ishihara and Terra (2002) and
Takaba et al. (1995) that asymptotic stability is also equivalent to
the existence of a solution P ∈ Rn×n of

P⊤A + A⊤P = −Q , P⊤E = E⊤P ≥ 0,

for any positive definite Q ∈ Rn×n. The corresponding
‘‘asymmetric’’ Lyapunov function5 is given by V (x) = (Ex)⊤Px,
with ∇V (x)z = (Ex)⊤Pz + (Ez)⊤Px = x⊤P⊤Ez + (Ez)⊤Px =:

F(x, Ez) and V̇ (x) = x⊤(P⊤A + A⊤P)x = −x⊤Qx < 0.

We conclude this section with an example which illustrates the
application of Theorem 2.7.

Example 2.9. Consider the nonlinear DAEsin x3 cos x3 0
0 0 0
0 0 0

ẋ1
ẋ2
ẋ3


=

−x1 sin x3 − x2 cos x3
x1 cos x3 − x2 sin x3

x3 − x21 − x22

 , (8)

which fulfills our Assumptions A1, A2 and A3. The consistency
space is given by the equations x3 = x21 + x22 and x1 cos x3 =

x2 sin x3; the projection to the x1–x2-plane is illustrated in Fig. 1.
Note that the consistency space can be parameterized by

CE,f =

(θ sin θ2, θ cos θ2, θ2)⊤ |θ ∈ R


.

The corresponding tangent space is given by, for x ≠ 0,

TxCE,f = span

(x1 + 2x2x3, x2 − 2x1x3, 2x3)⊤


(9)

and T0CE,f = span

(0, 1, 0)⊤


. We propose the following

Lyapunov function candidate:

V (x) = x3.

For all x ∈ CE,f it follows that x3 = x21 + x22, hence V fulfills L1.
Aiming for a function F : Rn

×Rn
→ R satisfying L2, i.e. for x ∈ CE,f

and z ∈ TxCE,f ,

F(x, E(x)z) = z3 = ∇V (x)z, (10)

we choose, for x ∈ CE,f and v ∈ E(x)−1(TxCE,f ),

F(x, v) :=
2x3v1

x1 sin x3 + x2 cos x3
.

4 Actually, in Owens and Debeljkovic (1985) only the complex-valued case is
studied; however, by considering the real part of the generalized Lyapunov equation
(7) we also obtain real-valued matrix pairs (P,Q ) with the desired properties.
5 We thank Emilia Fridman for making us aware of this Lyapunov function

construction.
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Fig. 1. Consistency space of Example 2.9 in the x1–x2-plane (left) and in the x2–x3-
plane (right); the dynamics within the consistency space are shown by the arrows.

Then by using (9) as well as x1 cos x3 = x2 sin x3 we indeed obtain
(10). Finally,

V̇ (x) = F(x, f (x)) = F

x1x2
x3


,

−x1 sin x3 − x2 cos x3
x1 cos x3 − x2 sin x3

x3 − x21 − x22


=

2x3(−x2 sin x3 − x2 cos x3)
x1 sin x3 + x2 cos x3

= −2x3,

hence L3 is fulfilled and V is a Lyapunov function for (8) and
Theorem 2.7 shows that (8) is globally asymptotically stable.

3. Solutions of switched DAEs

3.1. The general nonlinear case

Recall the switched nonlinear DAE (1)

Eσ (x)ẋ = fσ (x),

where each subsystem Ep(x)ẋ = fp(x), p = {1, . . . , p}, fulfills As-
sumptions A1–A3 and σ ∈ Σ is the switching signal. As an un-
derlying solution framework for (1), we will use the space DpwC∞

of piecewise smooth distributions which was introduced in Trenn
(2009a,b) for studying linear switched DAEs. For a short sum-
mary of the basic definition and the main properties of piecewise-
smooth distributions see the Appendix.

Definition 3.1 (Solution of (1)). A solution of (1) on some interval
I ⊆ R is any piecewise-smooth function x ∈ (C∞

pw)n such
that (1) restricted to I holds as an equation of piecewise-smooth
distributions, i.e.

(Eσ (x)(xD)′)I = (fσ (x)D)I.

The product E(x)(xD)′ in Definition 3.1 is well defined, since
by assumption t → E(x(t)) is piecewise smooth and (xD)′ is
a piecewise-smooth distribution. Note that this definition of a
solution does not allow for Dirac impulses in the solution. There
are two reasons for this: (i) it is not clear how a nonlinear function
of a Dirac impulse should be defined in general and (ii) for a
stability analysis the existence of Dirac impulses in the solution
can be interpreted as an undesired unstable solution. However, in
Section 3.2 we will also study solutions with impulses for linear
switched DAEs. The following assumption is essential for existence
and uniqueness of solutions of the switched DAE (1).

Assumption. The switched DAE (1) and the corresponding
consistency spaces Cp := CEp,fp , p ∈ {1, . . . , p}, satisfy

A4. ∀p, q ∈ {1, . . . , p} ∀x−

0 ∈ Cp ∃ unique x+

0 ∈ Cq : x+

0 − x−

0 ∈

ker Eq(x+

0 ).

Assumption A4 makes it possible to define nonlinear consistency
projectors Πq, q ∈ {1, . . . , p}:

Πq :


p
Cp → Cq, x−

0 → x+

0 ,
where x+

0 is the unique value given byAssumptionA4. In particular,
Πq(x) = x for all x ∈ Cq.

Remark 3.2 (Motivation of Assumption A4). For a motivation of
Assumption A4 consider the situation where the system switches
from subsystem p ∈ {1, . . . , p} to subsystem q ∈ {1, . . . , p}
at some switching time t ∈ R. Any solution x (in the sense of
Definition 3.1) fulfills x(t−) ∈ Cp and x(t+) ∈ Cq and the
impulsive part of ẋ at t is given by ẋ[t] = (x(t+) − x(t−))δt ,
where δt denotes the Dirac impulse at t . Since the right-hand side
fσ (x)D does not contain impulses it follows that Eσ (x)ẋ[t] = 0must
hold. This directly implies the existence part of Assumption A4.
Furthermore, uniqueness of x (for a given past) followswhen x(t+)
is uniquely given by x(t−), hence Assumption A4 is a necessary
condition for existence and uniqueness of a solution x of (1) in the
sense of Definition 3.1. In the ODE case, i.e. Eσ (x) ≡ I , Assumption
A4 is trivially fulfilled with x+

0 := x−

0 . In the linear case an easy
check for Assumption A4 is possible, see Section 3.2.

The following theorem shows that Assumption A4 is also
sufficient for existence and uniqueness of solutions of (1).

Theorem 3.3 (Existence and Uniqueness). Consider the switched
nonlinear DAE (1) satisfying A4 and A1–A3 for each subsystem. Then
for every switching signal σ ∈ Σ and every x0 ∈ Cσ(0−) there exists
a unique solution x ∈ (C∞

pw)n of (1) on [0, ∞) with x(0−) = x0.
Furthermore, for all t ∈ [0, ∞) and all solutions x of (1),

x(t) = Πσ(t)(x(t−)),

where Πp, p ∈ {1, . . . , p}, are the consistency projectors induced
by A4. In particular, on each interval which does not contain
a switching time, x is a classical solution of the corresponding
subsystem.

Proof. Step 1: Existence of a solution.
Let t0 = 0 and ti > 0, i = 1, 2, . . . be the ordered switching

times of σ after t0 and let pi := σ(ti). Inductively and invoking
Assumption A3 choose xi ∈ (C1

∩ C∞
pw)n, i ∈ N, such that xi is

the unique (classical) solution of Epi(x
i)ẋi = fpi(x

i) on the interval
[ti, ti+1) with xi(ti) = Πpi(x

i−1(ti−)), where x−1(t0−) := x0. We
show that any x ∈ (C∞

pw)n with x(0−) = x0 and x[ti,ti+1) = xi[ti,ti+1)

for i ∈ N solves the switched DAE (1) on [0, ∞). By definition x
solves (1) on each open interval (ti, ti+1) and it remains to check
that

(Eσ (x)(xD)′)[ti] = (fσ (x)D)[ti] = 0 for all i ∈ N,

where D[t] denotes the impulsive part of D ∈ (DpwC∞)n at t ∈ R
(see Appendix for details). Invoking the properties of piecewise-
smooth distributions, it follows that

(Eσ (x)(xD)′)[ti] = Epi(x(ti))

x(ti) − x(ti−)


δti

= Epi

Πpi


x(ti−)


Πpi


x(ti−)


− x(ti−)


δti = 0,

where the last equation follows from Assumption A4.
Hence x is a solution of (1) on [0, ∞).

Step 2: Uniqueness of the solution.
With the notation as in Step 1 it suffices to show that the

solution x as constructed above is unique on [0, t1), uniqueness on
[t1, ∞) follows then inductively. Let z ∈ (C∞

pw)n be a solution of (1)
on [0, t1) with z(0−) = x0. With a similar argument as in Step 1 it
follows that

Ep0(z(0))(z(0) − x0) = 0,

hence Assumption A4 ensures z(0) = Πp0(x0) = x(0).
Furthermore, Assumption A4 also implies that z(t) = z(t−) for
all t ∈ (0, t1), hence z is continuous on (0, t1) which together with
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Assumption A3 implies that z(0,t1) = x(0,t1). Hence uniqueness of
the solution is shown. �

Remark 3.4 (Assumption A4 for Each System). Note that Assump-
tion A4 applied to each single system, i.e. p = q, additionally re-
stricts the possible nonlinear DAEs even without switching: in A4
one can always pick x+

0 = x−

0 if p = q and the asserted uniqueness
of x+

0 implies therefore

∀x+

0 ∈ Cp : ker Ep(x+

0 ) ∩

x+

0 − x−

0

x−

0 ∈ Cp


= {0}. (11)

So in addition to A1–A3 each subsystem must also fulfill (11). In
the linear case it can be shown that A3 already implies (11), but in
the general case this is not true as the following example shows:

x2ẋ1 = 0,
ẋ2 = 1.

With initial value x2(0) = −t0 ∈ R, we get the unique solution
x2(t) = t − t0 and ẋ1(t) = 0 for all t ≠ t0. The only
classical solution of the latter is x1(t) = x01, where x01 ∈ R is the
initial value for x1. Hence A3 holds. However, condition A4 is not
fulfilled because (11) does not hold. In fact,when allowing jumps in
solutions (as in the case for switchedDAEs) uniqueness of solutions
is lost, because x can have an arbitrary jump at t = t0 without
violating the DAE (in a distributional sense).

Remark 3.5 (Index-One Systems). If the nonlinear DAE (2) can be
written as (e.g. via a (nonlinear) coordinate transformation)

ẋ1 = g(x1, x2),
0 = h(x1, x2),

where h is such that x2 can be solved in terms of x1, then (in
analogy to the linear case) (2) is said to have index one. In this case,
Assumption A4 clearly holds with consistency projector


x1
x2


→

x1
h(x1)


, where the function h is such that x2 = h(x1) is the unique

solution of h(x1, x2) = 0. However, Assumption A4 is weaker than
the index-one assumption because it could hold even when not all
subsystems are index-one; see also Remark 2.4.

3.2. The linear case

Consider the linear switched DAE (3) with switching signal
σ ∈ Σ . As already mentioned above, the Assumptions A1–A3
for each subsystem reduce to the regularity condition det(Eps −

Ap) ≢ 0 for each subsystem. Under this assumption (in
particular without assuming A4) it already follows from Trenn
(2009a,b) that existence and uniqueness of solutions of (3) is
guaranteed. However, these solutions are then elements of the
space of piecewise-smooth distributions and will therefore, in
general, containDirac impulses and their derivatives. The following
example illustrates this phenomenon.

Example 3.6. Consider (3) with subsystems given by

(E1, A1) =

1 0 0
0 1 0
0 0 1


,

0 0 0
0 0 0
0 0 0


,

(E2, A2) =

0 0 0
1 0 0
0 1 0


,

1 0 0
0 1 0
0 0 1


.

Then the switching signal σ(t) = 1 on [0, 1) and σ(t) = 2 on
[1, ∞) togetherwith the initial condition x(0) = (1, 0, 0) enforces
a jump to zero in x1 at the switching time. At the switching time the
second system is already active, in particular x2 = ẋ1 holds, hence
x2 is the derivative of a jump, i.e. x2 = −δ1 contains the Dirac
impulse at t = 1. Furthermore, also the equation x3 = ẋ2 must
hold which yields that x3 = −δ′

1, i.e. x3 contains the derivative of a
Dirac impulse.

Since the presence of impulses in solutions can be seen as
an undesired unstable behavior (see the next section), we would
like to give an easily checkable condition which ensures that for
arbitrary switching all solutions of (3) are impulse-free (but may
still exhibit jumps). It will turn out that this condition is equivalent
to Assumption A4 but is easier to check in the linear case. For
the formulation of this condition, we define the linear consistency
projector of a regular matrix pair (E, A).

Definition 3.7 (Linear Consistency Projector). Consider a regular
matrix pair (E, A) ∈ Rn×n

× Rn×n and, invoking Theorem 2.3,
choose invertible matrices S, T ∈ Rn×n such that (SET , SAT ) is
in quasi-Weierstrass form (5) with n1 × n1 and n2 × n2 the
corresponding diagonal block sizes. The linear consistency projector
is then given by

ΠE,A := T

I 0
0 0


T−1,

where I is an n1 × n1 identity matrix.

Let V∗ and W∗ be the limits of the Wong sequences as in
Theorem 2.3. Then it is easy to see that the definition of ΠE,A is
independent of the choice of T and that it is a linear projection onto
V∗

= CE,A along W∗, i.e.

Π2
E,A = ΠE,A, im ΠE,A = V∗, ker ΠE,A = W∗. (12)

With the help of the linear consistency projectors it is nowpossible
to give an easily checkable characterization of Assumption A4.

Theorem 3.8 (Linear Version of Assumption A4). Consider the
switched linear DAE (3) with regular matrix pairs (Ep, Ap) and cor-
responding consistency projectors Πp, p ∈ {1, . . . , p} as in Defini-
tion 3.7. Then Assumption A4 is equivalent to

∀p, q ∈ {1, . . . , p} : Eq(Πq − I)Πp = 0 (13)

and the linear mapping x−

0 → x+

0 := Πqx−

0 coincides with the con-
sistency projector associated with Assumption A4.

Proof. Let p, q ∈ {1, . . . , p} and x−

0 ∈ Cp := CEp,Ap be arbitrary
and fixed in the rest of the proof.
Step 1: We show (13) ⇒ A4.

Let x+

0 := Πqx−

0 ∈ Cq := CEq,Aq , then, since Πpx−

0 = x−

0 ,

Eq(x+

0 − x−

0 ) = Eq(ΠqΠpx−

0 − Πpx−

0 ) = Eq(Πq − I)Πpx−

0
(13)
= 0,

hence the existence assertion of Assumption A4 is shown. To show
uniqueness of x+

0 , let z ∈ Cq be such that

z − x−

0 ∈ ker Eq ⊆ W∗

q = ker Πq,

where W∗
q is the limit of the corresponding Wong sequence for

(Eq, Aq) as in Theorem 2.3. Together with Πqz = z this implies
z = Πqx−

0 = x+

0 .
Step 2: We show A4 ⇒ (13).

Choose x+

0 ∈ Cq such that x+

0 − x−

0 ∈ ker Eq ⊆ W∗
q = ker Πq,

hence x+

0 = Πqx+

0 = Πqx−

0 . Therefore, by Πpx−

0 = x−

0 ,

0 = Eq(x+

0 − x−

0 ) = Eq(ΠqΠpx−

0 − Πpx−

0 ) = Eq(Πq − I)Πpx−

0 .

Since x−

0 ∈ Cp = V∗
p is arbitrary it follows from V∗

p ⊕ W∗
p = Rn

together with W∗
p = ker Πp that Eq(Πq − I)Πp = 0, hence (13)

holds. �
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Combining Theorems 3.3 and 3.8 yields that for every switched
linear DAE (3) with regular matrix pairs (Ep, Ap), p = 1, . . . , p,
satisfying (13) there exists a solution x ∈ (C∞

pw)n, unique in this
class of functions. By definition, this solution also solves (3) in the
distributional framework of Trenn (2009a,b). Since the switched
DAE (3) with regular pairs (Ep, Ap), p = 1, . . . , p, has a unique
distributional solution (for a fixed initial value x(0−)) we obtain
the following result.

Corollary 3.9 (Impulse-Free Solutions for (3)). Consider the switched
DAE (3) with arbitrary switching signal σ ∈ Σ and regular matrix
pairs (Ep, Ap) with corresponding consistency projectors Πp ∈ Rn×n

given byDefinition3.7. If (13) holds, then every distributional solution
x ∈ (DpwC∞)n of (3) is impulse-free.

4. Asymptotic stability of switched DAEs

Asymptotic stability for (1), with a fixed switching signal σ , can
be defined basically in the same way as for the non-switched case,
see Section 2.2; the only difference is that the solutionsmight have
jumps, so we have to decide where to evaluate the initial value.
In view of Theorem 3.3, we consider the initial value x(0−). Note
that in the linear case Assumption A4 excludes impulses in the
solution, which is reasonable for the definition of stability, because
an impulse can be interpreted as an infinite peak which remains
infinite even when the corresponding solution is scaled so that
|x(0−)| gets arbitrarily small.

Theorem 4.1 (Arbitrary Switching). Consider the switched DAE (1)
satisfying AssumptionA4 and AssumptionsA1–A3 for each subsystem
with corresponding consistency spaces Cp := CEp,fp and consistency
projectors Πp, p ∈ {1, . . . , p} induced by A4. Assume for each
subsystem that there exists a Lyapunov function Vp : Cp → R≥0 in
the sense of Definition 2.5. If

∀p, q ∈ {1, . . . , p} ∀x ∈ Cp : Vq(Πq(x)) ≤ Vp(x), (14)

then the switched DAE (1) is asymptotically stable for any switching
signal σ ∈ Σ .

Proof. Step 1: Definition of a Lyapunov function candidate.
If x ∈ Cp ∩ Cq for some p, q ∈ {1, . . . , p} then x = Πp(x) =

Πq(x), hence (14) implies Vp(x) = Vq(x). Therefore

V :


p
Cp → R, x → Vp(x) for x ∈ Cp,

is well defined.
Step 2: V


x(t)


→ 0 as t → ∞.

Fix σ ∈ Σ and let x : [0, ∞) → Rn be a solution of (1) in
the sense of Theorem 3.3. Consider an interval I ⊆ R without
switching times, then x is also a classical (local) solution of Ep(x)ẋ =

fp(x) on I where p := σ(τ) for τ ∈ I. From x(τ ) ∈ Cp for all τ ∈ I

it follows that V (x(τ )) = Vp(x(τ )) and, by Definition 2.5 together
with (6),

d
dt

Vp

x(τ )


= V̇p


x(τ )


< 0 ∀τ ∈ I.

Let t ∈ R be a switching time of σ , then x(t) = Πσ(t)

x(t−)


and

x(t−) ∈ Cσ(t−) yield, invoking (14),

V

x(t)


= Vσ(t)


x(t)


= Vσ(t)


Πσ(t)(x(t−))


≤ Vσ(t−)


x(t−)


= V


x(t−)


.

Hence t → v(t) = V

x(t)


is monotonically decreasing and

therefore v := limt→∞ v(t) ≥ 0 is well defined. Seeking
a contradiction, assume v > 0. Analogously to the proof of
Theorem 2.7 let Kp := V−1

p [v, v(0)], Mp := V̇ (Kp) and mp :=
−maxMp > 0. Let m = minp mp > 0 then d
dt v(t) < −m < 0 for

all non-switching (hence almost all) times t ≥ 0,which contradicts
v(t) ≥ 0 and the assertion of Step 2 is shown.

Step 3: x(t) → 0 as t → ∞.
Seeking a contradiction, assume x(t) ↛ 0. Then there exist

ε > 0 and a sequence (si)i∈N ∈ RN with si → ∞ as i → ∞ such
that |x(si)| > ε for all i ∈ N. There is at least one p ∈ {1, . . . , p}
such that the set {i ∈ N |σ(si) = p } has infinitely many elements,
therefore, without loss of generality, assume that σ(si) = p for
some p and all i ∈ N. Since each x(si) is contained within the
compact set V−1

p [0, V (x(0))], the same argument as in the proof
of Theorem 2.7 shows existence of x∗

≠ 0 such that we arrive
at the contradiction 0 = limt→∞ V (x(t)) = limi→∞ Vp(x(si)) =

Vp(x∗) ≠ 0.

Step 4: Stability of the switched DAE.
We first show that for all ε > 0 there exists bε > 0 such that

for all p ∈ {1, . . . , p} and all x ∈ Cp

Vp(x) < bε ⇒ |x| < ε. (15)

Assume the contrary, then there exist ε > 0 and sequences (pn)n∈N
and (xn)n∈N such that Vpn(xn) < 1/n and |xn| ≥ ε. There exists
at least one p ∈ {1, . . . , p} which occurs infinitely often in the
sequence (pn), so we can, without loss of generality, assume that
pn = p for all n ∈ N and some p ∈ {1, . . . , p}. Then, by L1,
all xn are contained in the compact set V−1

p [0, Vp(xnmax)] where
nmax := argmaxnVp(xn) < ∞. This implies that there exists x∗

∈ Cp
which is a limit of a subsequence of (xn) and with |x∗

| ≥ ε. Hence
we arrive at the contradiction 0 = limn→∞ Vp(xn) = Vp(x∗) ≠ 0
and the claim (15) is shown.

For a given ε > 0 choose bε > 0 according to (15). Let p0 :=

σ(0−), then by continuity of Vp0 there exists δ > 0 such that
|x| < δ implies Vp0(x) < bε for all x ∈ Cp0 . In Step 2 it was
shown that t → Vσ(t−)(x(t−)) is monotonically decreasing, hence
Vσ(t−)(x(t−)) < bε for all t ≥ 0. Hence (15) yields |x(t−)| < ε for
all t ≥ 0. �

Condition (14) implies that any two Lyapunov functions Vp and
Vq coincide on the intersection Cp ∩ Cq, hence Theorem 4.1 is
a generalization of the switched ODE case where the existence
of a common Lyapunov function is sufficient to ensure stability
under arbitrary switching (Liberzon, 2003, Theorem2.1). However,
without condition (14) the existence of a common Lyapunov
function is not enough (Liberzon & Trenn, 2009) for asymptotic
stability of the switched DAE (1). Under arbitrary switching,
solutions will in general exhibit jumps; these jumps are described
by the consistency projectors, and these projectors must ‘‘fit
together’’ with the Lyapunov functions in the sense of (14) to
ensure stability of the switched DAE under arbitrary switching.
Finally, with some additional effort it can be shown that the
hypotheses of Theorem4.1 guarantee uniformity of the asymptotic
stability with respect to the switching signal.

It is well-known for switched ODEs that by restricting the class
of switching signals one can obtain asymptotic stability also in
cases where no common Lyapunov function exists. Denote by
Nσ (t, T ) the number of switchings of σ in the interval [t, T )

and define the class of average dwell time switching signals with
average dwell time τa > 0 (Hespanha & Morse, 1999)

Στa :=


σ ∈ Σ

∃N0 > 0 ∀t ∈ R ∀1t > 0 :

Nσ (t, t + 1t) < N0 +
1t
τa


.

The numberN0 > 0 is called the chatter bound of the switching sig-
nal σ ∈ Στa . Note that the subset of average dwell time switching



D. Liberzon, S. Trenn / Automatica 48 (2012) 954–963 961
signals with chatter bound N0 = 1 is precisely the class of switch-
ing signals with dwell time τa.

Theorem 4.2 (Average Dwell Time Switching). Consider the switched
DAE (1) with corresponding consistency space Cp and consistency
projectors Πp, p ∈ {1, . . . , p}. Assume that all subsystems permit
Lyapunov functions Vp, p ∈ {1, . . . , p}, which additionally fulfill

1. ∃λ > 0 : V̇p(x) ≤ −λVp(x) for all p ∈ {1, . . . , p}, x ∈ Cp and
2. ∃µ ≥ 1 : Vq(Πq(x)) ≤ µVp(x) for all p, q ∈ {1, . . . , p}, x ∈ Cp.

Then the switched DAE (1) with switching signal σ ∈ Στa is
asymptotically stable if

τa >
lnµ

λ
. (16)

Proof. With standard arguments (cf. Liberzon, 2003) it follows
that the non-negative function t → Vσ(t−)(x(t−)) is bounded
by an exponentially decreasing function and hence converges to
zero. Arguments analogous to those in Steps 3 and 4 of the proof of
Theorem 4.1 now conclude the proof. �

In the linear case the Lyapunov functions can be chosen
according to Remark 2.8; in this case it is possible to express the
inequality (16) for the average dwell time directly in terms of
eigenvalues of corresponding matrices.

Lemma 4.3 (The Linear Case). Consider the linear switched DAE (3)
with the regular matrix pairs (Ep, Ap), p ∈ {1, . . . , p}, with corre-
sponding consistency spaces Cp, and let (Pp,Qp) be the solutions of
the corresponding generalized Lyapunov equation (7). Choose a ma-
trix Op with orthonormal columns such that im Op = im Πp = Cp,
whereΠp is the linear consistency projector corresponding to the ma-
trix pair (Ep, Ap). Then, for p, q ∈ {1, . . . , p},

∀x ∈ Cp : Vq(Πqx) ≤ µp,qVp(x),

where

µp,q :=
λmax(O⊤

p Π⊤
q E⊤

q PqEqΠqOp)

λmin(O⊤
p E⊤

p PpEpOp)
≥ 0

and

∀x ∈ Cp : V̇p(x) ≤ −λpVp(x),

where

λp :=
λmin(O⊤

p QpOp)

λmax(O⊤
p E⊤

p PpEpOp)
> 0

and where λmin(·) and λmax(·) denote the minimal and maximal
eigenvalue of a symmetric matrix, respectively.

Proof. Let dp := dim Cp, i.e. Op ∈ Rn×dp , then x ∈ Cp if, and only if,
there exists a unique z ∈ Rdp with x = Opz,O⊤

p x = z and |x| = |z|.
Hence, by choosing z corresponding to x ∈ Cp as above,

Vp(x) = z⊤O⊤

p E
⊤

p PpEpOpz =: z⊤Pz
pz

≥ λmin(Pz
p)|z|

2
= λmin(Pz

p)|x|
2

Vp(x) ≤ λmax(Pz
p)|x|

2

Vq(Πqx) = z⊤O⊤

p Π⊤

q E⊤

q PqEqΠqOpz =: z⊤Mz
p,qz

≤ λmax(Mz
p,q)|x|

2

V̇p(x) = −z⊤O⊤

p QpOpz =: −z⊤Q z
p z ≤ −λmin(Q z

p )|x|2.
By assumption, the matrices Q z
p = Q z

p
⊤

∈ Cdp×dp and Pz
p = Pz

p
⊤

∈

Cdp×dp are positive definite, hence λmin(Q z
p ) > 0 and λmax(Pz

p) ≥

λmin(Pz
p) > 0. Therefore,

µp,q :=
λmax(Mz

p,q)

λmin(Pz
p)

≥ 0, λp :=
λmin(Q z

p )

λmax(Pz
p)

> 0

are well defined. Note that λmax(Mz
p,q) = 0 is possible, however

λmax(Mz
p,p) = λmax(Pz

p) ≥ λmin(Pz
p), hence µp,p ≥ 1 and

maxp,q lnµp,q ≥ 0. �

Corollary 4.4 (Average Dwell Time, Linear Case). For the switched
linear DAE (3) with asymptotically stable subsystems, let µp,q and
λp, p, q ∈ {1, . . . , p}, be given as in Lemma 4.3. Then the linear
switched DAE (3) is asymptotically stable if σ ∈ Στa with

τa >

max
p,q

lnµp,q

min
p

λp
.

Note that the obtained results cannot in general be expressed in
terms of the eigenvalues of the matrices Qp and Pp (or E⊤

p PpEp);
the consistency projectors and basis transformation must be
incorporated as formulated in Lemma4.3.We show the application
of Corollary 4.4 with a simple linear example, which is based on
Example 1 from Liberzon and Trenn (2009).

Example 4.5. Let

(E1, A1) =


0 1
0 0


,


0 −1
1 −1


,

(E2, A2) =


1 1
0 0


,


−1 −1
1 0


.

The corresponding consistency spaces and consistency projectors
are given by

C1 := CE1,A1 = im

1
1


, C2 := CE2,A2 = im


0
1


and

Π1 =


0 1
0 1


, Π2 =


0 0
1 1


.

In Liberzon and Trenn (2009) it is shown that the corresponding
switched DAE is not asymptotically stable under arbitrary switch-
ing. However, we can apply the result of Corollary 4.4. As basis ma-

trices for the consistency space choose O1 =
1
2

√
2

√
2


,O2 =


0
1


.

Consider the Lyapunov functions V1(x) =
1
2x

2
2 and V2(x) =

1
2 (x1 +

x2)2, corresponding to

P1 = P2 =
1
2


1 0
0 0


and

Q1 =


0 0
0 1


,Q2 =


1 1
1 1


.

Then

O⊤

1 E
⊤

1 P1E1O1 =
1
4
, O⊤

2 E
⊤

2 P2E2O2 =
1
2
,

O⊤

1 Π⊤

2 E⊤

2 P⊤

2 E2Π2O1 = 1, O⊤

2 Π⊤

1 E⊤

1 P⊤

1 E1Π1O2 =
1
2
,

O⊤

1 Q1O1 =
1
2
, O⊤

2 Q2O2 = 1,
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hence µ := maxp,q µp,q = 2 and λ := minp λp = 2. Therefore
the corresponding switched DAE is asymptotically stable for all
switching signals σ ∈ Στa with τa > ln 2

2 . This bound is actually
sharp in this example.

5. Conclusion

We have studied switched nonlinear DAEs with respect to
solution and stability theory. For the non-switched nonlinear
DAE subsystems we generalized the classical Lyapunov’s Direct
Method; in particular, we defined a Lyapunov function for quasi-
linear DAEs in general terms. Furthermore, we studied existence
and uniqueness of solutions of a switched nonlinear DAE, provided
the subsystems are regular in a certain sense. Finally, we were
able to generalize existing stability results on switched ODEs to
switched DAEs.

Appendix. Piecewise smooth distributions

We assume familiarity with the definitions and properties of
classical distributions as formalized by Schwartz (1950–1951). We
denote the space of test functions (i.e., smooth functionsϕ : R → R
with compact support) by C∞

0 , then the space of distributions is the
dual space of the space of test functions, i.e.
D :=


D : C∞

0 → R |D is linear and continuous

.

The main two properties of distributions are (i) that they can
be interpreted as generalized functions and (ii) that they are
arbitrarily often differentiable. To be more precise, let L1,loc be the
space of locally integrable functions, then the mapping

L1,loc → D, f → fD :=


ϕ →


R
f ϕ


is well defined (i.e. fD is indeed a distribution) and an injective
homomorphism. The simplest distribution which is not induced
by a function is the Dirac impulse given by δ(ϕ) := ϕ(0), or, in
general for t ∈ R, δt(ϕ) := ϕ(t) for ϕ ∈ C∞

0 . The derivative of
an arbitrary distribution D ∈ D is given by D′(ϕ) := −D(ϕ′) for
ϕ ∈ C∞

0 . Distributions can bemultiplied with smooth functions:
(αD)(ϕ) := D(αϕ), α ∈ C∞, D ∈ D, ϕ ∈ C∞

0 .

Let C∞
pw be the space of piecewise-smooth functions, where

α : R → R is called piecewise-smooth when there exist a locally
finite ordered set S = {si ∈ R |i ∈ Z } and smooth functions αi ∈

C∞, i ∈ Z, such that α =


i∈Z(αi)[si,si+1). Here, fI denotes the
restriction (or truncation) of a function f : R → R to the interval
I ⊆ R, i.e. fI(τ ) = f (τ ) for τ ∈ I and fI(τ ) = 0 otherwise. The
space of piecewise-smooth distributions is then given by

DpwC∞ :=


fD +


τ∈T

Dτ

f ∈ C∞

pw, T ⊆ R locally finite,
∀τ ∈ T : Dτ ∈ span{δτ , δ

′

τ , δ
′′

τ , . . .}


.

The properties of DpwC∞ and corresponding definitions are
summarized in the following, where D = fD +


τ∈T Dτ ∈ DpwC∞

and t ∈ R:
1. Closed under differentiation: D′

∈ DpwC∞ .
2. Left- and right-evaluation: D(t+) := f (t),D(t−) := f (t−).
3. Impulsive part: D[t] := Dt if t ∈ T ,D[t] = 0 otherwise.
4. Restriction to interval: DI := (fI)D +


τ∈T∩I Dt , where I ⊆ R is

some interval.
5. Multiplicationwith piecewise-smooth function:αD :=


i∈Z αi

D[si,si+1), where α =


i∈Z(αi)[si,si+1) as above; in particular,
αδt = α(t)δt .

For more details see Trenn (2009a,b). In the proof of Theorem 3.3
we actually need the fact that for any α ∈ C∞

pw, (αD)[t] = αD[t]
and
(αD)′ =


i∈Z

(α′

i)[si,si+1) +


i∈Z

(αi(si) − αi−1(si))δsi ,

where α =


i∈N(αi)[si,si+1) as above.
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