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Abstract
The problem of input-to-state stability (ISS) and its integral version (iISS) are con-
sidered for switched nonlinear systems with inputs, resets and possibly unstable
subsystems. For the dissipation inequalities associated with the Lyapunov function
of each subsystem, it is assumed that the supply functions, which characterize the
decay rate and ISS/iISS gains of the subsystems, are nonlinear. The change in the
value of Lyapunov functions at switching instants is described by a sum of growth
and gain functions, which are also nonlinear. Using the notion of average dwell-time
(ADT) to limit the number of switching instants on an interval, and the notion of aver-
age activation time (AAT) to limit the activation time for unstable systems, a formula
relating ADT and AAT is derived to guarantee ISS/iISS of the switched system. Case
studies of switched systems with saturating dynamics and switched bilinear systems
are included for illustration of the results.
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1 Introduction

Switched systems—comprising a family of dynamical subsystems orchestrated by a
piecewise constant switching signal—provide a mathematical framework for model-
ing systems where the state trajectories exhibit sudden transitions, either due to instant
change in the vector field or due to jumps in some of the state variables [16,17]. A
canonical approach for stability analysis of such systems is to develop characteriza-
tions based on the stability properties of the individual subsystems, and the effects
observed at switching times. When all subsystems are stable, the undesired instabil-
ity effects may occur at switching times. In such cases, if one restricts the frequency
of switching times over an interval, then the decay in the norm of state trajectories
can overcome the growth at switching times. Such slow switching results are usually
obtained by imposing lower bounds on the dwell-time or average dwell-time (ADT)
between switching instances [13]. In the case when some subsystems are unstable, one
needs to restrict the activation time or average activation time (AAT) of these unsta-
ble subsystems in order for the resulting switched system to be stable, and this has
been studied in [21,34,35]. For switched linear systems, stability conditions based on
matrix measure can also be used to determine stability when the switching signals are
periodic [23], and this criterion is later extended to switching signals satisfying asymp-
totic AAT constraints [33]. Meanwhile, it is also possible to consider cases where the
continuous dynamics of all the individual subsystems are unstable, but the impulsive
effects from switching between these subsystems stabilize the system [30]. Conditions
describing how fast such stabilizing impulsive effects must occur are captured under
the notion of reverse average dwell-time (r-ADT), introduced in [12].

An additional important element that we incorporate in our stability analysis of
switched systems is the presence of inputs or disturbances. For nonlinear systems,
in general, quantitative relationships between the norm of the state trajectories and
the magnitude of the inputs are appropriately captured by the notion of input-to-state
stability (ISS), or its integral variant, integral input-to-state stability (iISS). These
notions have been pioneered in [26] and [28], and since their inception, these tools
have been used for analysis and design purposes in many control-related problems. In
the context of switched systems under arbitrary switching, converse results regarding
the existence of ISS and iISS Lyapunov functions first appeared in [19], and some
implications relating ISS and iISS for switched systems have been developed in [8].
Switching dynamics with reset maps can also be captured by the framework of hybrid
systems [7], and ISS characterizations via Lyapunov functions for hybrid systems
have been developed in [3,4]. Relaxing certain assumptions in these works, along with
some developments based on converse results, iISS characterizations via Lyapunov
functions for hybrid systems appear in [22]. However, these results do not explicitly
work out the stability conditions for switched systems in terms of the data associated
with individual subsystems.

Combining the aforementioned two directions of research, it is rather natural to ask
whether the Lyapunov characterizations for individual subsystems can be combined
with ADT and AAT notions to obtain sufficient conditions for ISS/iISS of switched
systems with inputs. This question has indeed been addressed in the literature in dif-
ferent settings. When a switched system has only one mode, it becomes an impulsive
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system, for which the ISS and iISS properties are studied in [12,20]. While the result
[12, Theorem 6] provides conditions for the impulsive system to be iISS under arbi-
trary switching even if the decay rate is nonlinear, growth in the Lyapunov function
when impulses occur is not allowed in that result. On the other hand, the work [20]
relaxes both the decay and growth rates to be nonlinear, and concludes sufficient con-
ditions on the impulse sequence so that the time-varying impulsive system is ISS. For
switched systems with multiple modes, the paper [31] provides a lower bound on the
dwell-time and the paper [29] provides a lower bound on the ADT in terms of the
data associated with individual ISS subsystems so that the switched system is ISS.
Later the paper [21] relaxes the assumption of all ISS subsystems and allows possi-
ble unstable subsystems. A result on ISS switched system is concluded in that work
when the switching signal satisfies both ADT and AAT conditions. Nevertheless, a
major restriction of these works on switched systems is that the results require the
assumption that both the decay rates in the inequalities associated with the derivative
of Lyapunov functions and the growth rate in the value of the Lyapunov functions at
switching instants are linear. This assumption becomes overly restrictive when study-
ing iISS.

Compared to the aforementioned references, the major contribution of this work
is to study ISS and iISS of switched systems with nonlinear decay rate in the dissi-
pation inequalities associated with the Lyapunov functions of individual subsystems.
In other words, using the terminology from [27], we consider Lyapunov functions
for each subsystem with nonlinear supply functions. Moreover, the change in the
value of Lyapunov function at switching times is also described by nonlinear growth
function. This setup was, in particular, adopted in the conference version of this
paper [18], and the previous independent work of the authors [25,36]. While [36]
provides the construction of an ISS Lyapunov function to find the lower bounds
on ADT for stability of cascade interconnections, the present work uses a concep-
tually similar approach for a broader class of switched systems and extends the
study to iISS. In contrast to [25], where the analysis is carried out using trajectory-
based methods with nested comparison functions, this paper makes transition from
dwell-time conditions to a more quantitative ADT estimate. In our conference paper
[18], we only study switched systems whose subsystems are all (i)ISS and the
growth of the Lyapunov functions at the switching times is not allowed to depend
on the input. Such assumptions have been relaxed in this work and consequently,
a generalization of the results in [21] is obtained with a Lyapunov-function-based
approach that allows us to handle additional nonlinearities in the supply func-
tions.

The rest of the paper is organized as follows. After some necessary preliminaries
about switched systems given in Sect. 2, our main result is stated in Sect. 3 with some
discussions about the validity of its assumptions. Section 4 contains the technical
tools used to prove our main result. Case studies of switched systems with saturating
dynamics and switched bilinear systems are provided in Sect. 5 for illustration of the
results, followed by the conclusion in Sect. 6.
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2 Preliminaries

In this section, we introduce the basic notation of comparison functions, the definition
of switched systems and switching signals, and the definitions of ISS and iISS of
switched systems.

Comparison functions A function α : R≥0 → R≥0 is said to be positive definite if it
is continuous, α(0) = 0 and α(s) > 0 for all s > 0. If α is also strictly increasing,
then it is said to be of class K. In addition if α is also unbounded, then it is said to be
of class K∞. A function β : R≥0 × R≥0 → R≥0 is said to be of class KL if β(·, t)
is of class K for each t ∈ R≥0, β(s, ·) is continuously decreasing and β(s, t) → 0 as
t → ∞ for each fixed s ∈ R≥0; see [14, Chapter 4] for their use in formulation of
common stability notions. In addition, we require class KLL functions: A function
β : R≥0 × R≥0 × R≥0 → R≥0 is a class KLL function if β(·, ·, j) is a class KL
function for each j ≥ 0 and β(·, t, ·) is a class KL function for each s ≥ 0.

Switched systems LetP ⊂ N. For each p ∈ P , there is a vector field f p : Rn ×R
m →

R
n , bluewhich is jointly locally Lipschitz in its arguments. The differential equations

ẋ = f p(x, ω), p ∈ P (1)

are the dynamics of the subsystems or modes of the switched system with input ω :
R≥0 → R

m . For each pair (p, q) ∈ P × P , there is also a continuous jump map
gp,q : Rn × R

m → R
n . It is assumed that for each p ∈ P , x ∈ R

n and ω ∈ R
d ,

the set Gp(x, ω) := {gp,q(x, ω) : q ∈ P} ⊂ R
n is closed. Let Σ be the set of all

right-continuous, piecewise constant mappings from R≥0 to P with a locally finite
number of discontinuities, called switching signals. For each switching signal σ ∈ Σ ,
define

T (σ ) := {t > 0 : σ(t) �= σ(t−)} (2)

In other words, T (σ ) is the collection of switching instants. With these data, we
consider switched dynamical systems with inputs and resets, described by

ẋ(t) = fσ(t)(x(t), ω(t)) if t /∈ T (σ ), (3a)

x(t) = gσ(t−),σ (t)(x(t
−), ω(t)) if t ∈ T (σ ), (3b)

where ω : R≥0 → R
m is locally essentially bounded on R≥0 and bounded on T (σ ).

We note that, over an interval [t0, t1) where σ is constant, (3a) is seen as a time-
varying differential equation with possible discontinuities due to inputs. The solution
of (3a) is, therefore, interpreted in Carathéodory sense over such an interval [t0, t1),
see [10, Sect. I.5]. With f p(·, ·) locally Lipschitz in both arguments, the conditions
for existence of Carathéodory solutions hold [10, Theorem 5.1, Page 28]. We call (3a)
the continuous flow and (3b) the discrete jumps. We denote the solution of (3) with
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initial state x0, input ω and switching signal σ by x(·; x0, ω, σ ). When x0, ω, σ are
clear from the context, the solution is also abbreviated by x(·).
Switching signals We now specify the class of switching signals for which we study
the stability of the system (3). We write the set P as a disjoint union P = Ps ∪ Pu,
and introduce two different notions which constrain the class of switching signals.
Conceptually, the class of switching signals with ADT constraints puts an upper bound
on the average number of switches over any time interval. According to [13], we say
that a switching signalσ satisfies average dwell-time (ADT) conditionwith parameters
τa > 0 (average dwell-time) and N0 ≥ 1 if

∀t2 ≥ t1 ≥ 0 : Nσ (t1, t2) ≤ N0 + t2 − t1
τa

, (4)

where Nσ (t1, t2) is the number of switches occurring in the interval (t1, t2]:
Nσ (t1, t2) := |(t1, t2] ∩ T (σ )|. We denote ΣADT(τa, N0) to be the collection of all
ADT switching signals with parameters τa, N0.

The second constraint provides a bound on the activation time for the modes con-
tained inPu. Following the definition in [21], we say that a switching signal σ satisfies
average activation time (AAT) condition with parameters η ∈ [0, 1] (percentage acti-
vation time), T0 ≥ 0, if

∀t2 ≥ t1 ≥ 0 : Tσ,Pu(t1, t2) ≤ T0 + η(t2 − t1), (5)

where Tσ,Pu(t1, t2) is the activation time of modes inPu over the interval (t1, t2]. More
precisely, if we consider the function 1Pu : P → {0, 1}, defined as

1Pu(σ ) =
{
1, if σ ∈ Pu,

0, otherwise,
(6)

then Tσ,Pu(t1, t2) := ∫ t2
t1
1Pu(σ (τ ))dτ . We denote ΣAAT(Pu, η, T0) to be the collec-

tion of all AAT switching signals of modes in Pu with parameters η, T0. Notice that
the AAT condition is always with respect to the set Pu, which we later associate with
the collection of subsystems with not necessarily stable dynamics. In addition, in the
special case when η = 1, (5) imposes no constraints on the activation time and hence
the switching signal can be arbitrary. On the other hand, when T0 = 0 and η < 1, (5)
implies that modes in Pu are not activated at all.

Stability definitions Let Σ ⊂ Σ be a set of switching signals. In this paper, we will
focus on the following two uniform external stability properties of switched systems
with respect to all switching signals in Σ . In what follows, the essential supremum
norm of ω over a set I (that is, the supremum of ω on I except for a set of measure
zero) is denoted by ess sups∈I |ω(s)|.
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Definition 1 A switched system (3) is uniformly input-to-state stable (ISS) over Σ if
there exist β ∈ KL, γ1, γ2 ∈ K such that

|x(t; x0, ω, σ )| ≤ β(|x0|, t)

+γ1(ess sups∈[0,t]\T (σ ) |ω(s)|) + γ2

(
sup

s∈[0,t]∩T (σ )

|ω(s)|
)

(7)

for all t ≥ 0, x0 ∈ R
n and σ ∈ Σ .

Definition 2 A switched system (3) is uniformly integral input-to-state stable (iISS)
over Σ if there exist α0 ∈ K∞, β ∈ KL, γ1, γ2 ∈ K such that

α0(|x(t; x0, ω, σ )|) ≤ β(|x0|, t) +
∫ t

0
γ1(|ω(s)|)ds +

∑
s∈[0,t]∩T (σ )

γ2(|ω(s)|) (8)

for all t ≥ 0, x0 ∈ R
n , and σ ∈ Σ .

Our definitions of ISS and iISS are adopted from [3] and [22]. Notice that the last terms
in (7), and in (8) do not appear in standard definitions of ISS and iISS for non-switched
systems; these additional terms are needed in our framework to capture the growth
of state trajectories at switching instants due to the presence of inputs in the jump
dynamics (3b). We also remark here that both ISS and iISS can be defined in an even
stronger way that the magnitude of the solution is in addition required to decrease with
respect to the total number of switches so far. However, such stronger definitions are
not necessary for the development of our results. Some discussion around this issue
appears later in Remark 5.

3 Assumptions andmain results

We now state some assumptions on the data of system (3) required for the statement
of the main result.

Assumption 1 There exist C1 Lyapunov functions Vp : Rn → R≥0, p ∈ P , satisfying
the conditions:

(L1) There exist α, α ∈ K∞ such that

α(|x |) ≤ Vp(x) ≤ α(|x |), ∀x ∈ R
n, p ∈ P. (9)

(L2) There exist a disjoint partition P = Ps ∪ Pu, two positive definite functions
αs, αu, and γ ∈ K such that

〈 ∂

∂x
Vp(x), f p(x, ω)

〉
≤ −αs(Vp(x)) + γ (|ω|) ∀x ∈ R

n, ω ∈ R
m, p ∈ Ps,

(10a)
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and

〈 ∂

∂x
Vp(x), f p(x, ω)

〉
≤ αu(Vp(x)) + γ (|ω|) ∀x ∈ R

n, ω ∈ R
m, p ∈ Pu.

(10b)

(L3) There exist χ ∈ K∞, ρ ∈ K such that

Vq(gp,q(x, ω)) ≤ χ(Vp(x)) + ρ(|ω|) ∀x ∈ R
n, ω ∈ R

m, p, q ∈ P. (11)

Remark 1 For each subsystem in Ps, (L1) and the condition (10a) in (L2) provide a
necessary and sufficient condition for it to be iISS [2]. In addition, if it is assumed that
αs in (10a) is K∞, then each subsystem in Ps is ISS.

Remark 2 The partition Ps,Pu is not necessarily an indicator whether a subsystem is
iISS or not. Indeed, when a subsystem is not iISS, (10a) will not hold for any choice
of Vp but (10b) may still hold. However, even if a subsystem is iISS, it may still lead
to the inequality (10b) due to the improper choice of Vp. In this case this subsystem
needs to be categorized to the set Pu.

Based on Assumption 1, we introduce the function ψ : R≥0 → R≥0 as

ψ(t) := min
r∈[0,t]{αs(r) + c(t − r)} (12)

where c > 0 is some constant. The next assumption bounds the divergence rate for
the subsystems in Pu:

Assumption 2 The supremum

κ := sup
r>0

αu(r)

ψ(r)
(13)

is finite, where αu comes from (L2) in Assumption 1 and ψ is defined in (12).

Our last assumption will be instrumental in deriving a lower bound for ADT in a
similar fashion as in [36]:

Assumption 3 The supremum

ζ ∗ := sup
s>0

∫ χ(s)

s

1

ψ(r)
dr (14)

is finite, where χ comes from (L3) in Assumption 1 and ψ is defined in (12).

We are now ready to state the main theorem of this paper:
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Theorem 1 Consider the switched system (3) and suppose that Assumptions 1, 2, and
3 hold with the function ψ constructed via (12) for some c > 0. If τa > ζ ∗, then for
every η ∈ [0, 1] satisfying the inequality

(1 + κ)η + ζ ∗

τa
< 1, (15)

the system (3) is uniformly iISS overΣADT(τa, N0)∩ΣAAT(Pu, η, T0) for any N0 ≥ 1
and T0 ≥ 0. Moreover, if in (L2) αs ∈ K∞, and τa > ζ ∗, then system (3) is uniformly
ISS over ΣADT(τa, N0) ∩ ΣAAT(Pu, η, T0) for every η ∈ [0, 1] satisfying (15) and
any N0 ≥ 1, T0 ≥ 0.

To provide some insight about Theorem 1, let us consider its application to some
special types of switched systems. We first consider the case when all the subsystems
are ISS/iISS. In this case, we can always find Vp satisfying (10a) in (L2) for all p ∈ P
so that Pu = ∅. Hence, the AAT condition vanishes and we could simply set η = 0.
As a result, (15) reduces to τa > ζ ∗. In other words, in this case the switched system
(3) is uniformly ISS/iISS over ΣADT(τa, N0) for any τa > ζ ∗, N0 ≥ 1.

We next consider the case when the switching does not introduce jumps in the
Lyapunov functions evaluated along the solutions of the unforced system, so that
χ = id.We then conclude from (14) that ζ ∗ = 0, so byTheorem1, the switched system
is ISS/iISS with arbitrarily small values of the average dwell-time τa . In addition,
(15) results in η < 1

1+κ
and the switched system (3) is uniformly ISS/iISS over( ∪τa>0 ΣADT(τa, N0)

) ∩ ΣAAT(Pu, η, T0).
Lastly, we consider the case when the decaying rates and growth rates in (L2), (L3)

of Assumption 1 are all linear; that is, there exist λs, λu, μ > 0 such that αs(r) =
λsr , αu(r) = λur , χ(r) = μr for all r ≥ 0. In this case, the formula (14) yields

ζ ∗ =
∫ μs

s

1

λsr
dr = lnμ

λs

and consequently the inequality (15) becomes

(
1 + λu

λs

)
η + lnμ

λsτa
< 1.

After rearranging the terms, we recover the conditions on τa and η which guarantee
ISS switched system as stated in [21, Theorem 2]. Thus, our work turns out to be a
generalization from linear to nonlinear setting of the known results in the literature.

Discussion of the assumptionsOnce we impose some characterizations of the stability
or instability of individual subsystems and the reset maps in Assumption 1, it is seen
that the stability condition in (15) primarily depends on finiteness of κ in Assumption 2
and ζ ∗ in Assumption 3. In both the assumptions, the function ψ constructed in (12)
plays a key role.

1. Note that (12) immediately implies that ψ(t) ≤ ψ(t) := min{αs(t), ct}. In [18],
we proposed stability conditions using the function ψ while assuming that it is
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globally one-sided Lipschitz. That assumption is necessary in [18]; for example,
take αs(r) = re−r + 1 − cos(r2), then ψ(t) is not one-sided Lipschitz for any
c > 0. In this work, the Lipschitzness assumption is no longer required because
the function ψ in (12) has this property by construction, which will be shown later
by Lemma 7.

2. The function ψ is essentially a global one-sided Lipschitz modification of αs. In
case αs is already globally Lipschitz, ψ can be chosen equal to αs by setting c
larger than its Lipschitz constant. Functions like αs(r) = r , αs(r) = ln(1+ r) and
αs(r) = re−r are examples of such a case.

3. Combining (12) and (13), we conclude from (10b) that for all p ∈ Pu,〈
∂
∂x Vp(x), f p(x, ω)

〉
≤ κcVp(x) + γ (|ω|). According to [1, Theorem 1], this

property in turn implies that these subsystems are forward complete, which is a
very reasonable assumption on the subsystems as one cannot expect the switched
system to be ISS/iISS if an active subsystem has finite escape time.

4. In order to get a qualitative answer to the question of when the switched system is
ISS/iISS under slow switching, we need to better understand Assumption 3. The
next lemma states that in order to show that ζ ∗ is finite, we only need to examine
the values of ψ(s), χ(s) for small and large s without computing the integral in
(14). To this end, we say a positive definite function α : R≥0 → R≥0 is initially
increasing if there exists r > 0 such that α(s) ≤ α(t) for all 0 ≤ s ≤ t ≤ r , and
eventually increasing (resp. eventually decreasing) if there exists R > 0 such that
α(s) ≤ α(t) (resp. α(s) ≥ α(t)) for all R ≤ s ≤ t .

Lemma 2 The value ζ ∗ defined in (14) is finite when both conditions (a) and (b) hold:

(a) ψ is initially increasing and lim sups→0+ χ(s)−s
ψ(s) < ∞, and

(b) ψ is eventually increasing and lim sups→∞
χ(s)−s
ψ(s) < ∞, or

ψ is eventually decreasing and lim sups→∞
χ(s)−s
ψ(χ(s)) < ∞.

Proof We only study the non-trivial case when χ(s) > s for all s > 0. By inspecting
the definition of ζ ∗ in (14), we see that it suffices to show that lim sups

∫ χ(s)
s

1
ψ(r)dr

is finite when s approaches both 0+ and infinity in order for ζ ∗ to be finite. When ψ

is initially increasing, we have r > 0 such that for all s > 0 with χ(s) ≤ r ,

∫ χ(s)

s

1

ψ(r)
dr ≤

∫ χ(s)

s

1

ψ(s)
dr = χ(s) − s

ψ(s)
.

Take the limit as s → 0+, and it follows from the first condition in Lemma 2
that lim sups→0+

∫ χ(s)
s

1
ψ(r)dr is bounded. Similarly, the second condition results in

lim sups→∞
∫ χ(s)
s

1
ψ(r)dr being bounded. ��

It is not hard to see that ζ ∗ is finite for the linear functionswhenψ(s) = λs, χ(s) = μs.
In addition, using Lemma 2, it is straightforward to verify that the nonlinear pairs such
as (ψ(s), χ(s)) = (1−e−s, s+1−e−s), (e−s(1−e−s), ln(es +1)) also ensure finite
ζ ∗.
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4 Technical tools and proofs

Our proof of Theorem 1 relies on rewriting the switched system into a hybrid system in
the framework of [7] and then showing ISS/iISS of that hybrid system. In this section,
we provide a brief description of hybrid systems, followed by some supporting lemmas
and the proof of Theorem 1.

4.1 Hybrid systems with inputs

Consider the hybrid dynamical system with inputs, which is described as:

{
ξ̇ ∈ F(ξ, d), (ξ, d) ∈ C,

ξ+ ∈ G(ξ, d), (ξ, d) ∈ D,
(16)

where the state trajectory ξ evolves in X ⊂ R
n , and the disturbance d takes values in

R
m . The setsC,D are subsets ofX×R

m and are called flowand jump sets, respectively.
The evolution of the state is thus described by F (during flows) and by G (at jump
instants), which are set-valued mappings from X × R

m to X . The solutions of the
hybrid system (16) are defined on hybrid time domains. A set I ⊂ R≥0×Z≥0 is called
a compact hybrid time domain if I = ∪J−1

j=0 ([t j , t j+1], j) for some finite sequence
of times 0 = t0 ≤ t1 · · · ≤ tJ ; and I is a hybrid time domain if for all (T , J ) ∈ I ,
I∩([0, T ]×{0, 1, . . . , J }) is a compact hybrid time domain. The domain of the hybrid
input d in (16) is a hybrid time domain, and d : dom d → R

m is such that d(·, j) is
Lebesgue measurable and locally essentially bounded for each j ∈ Z≥0. When the
system data (F ,G, C,D) satisfies certain basic assumptions [7, Assumption 6.5], [3,
Page 48], it holds that, for each input d : dom d → R

m , the system (16) admits a
local solution, called hybrid arc, ξ : dom ξ → X . A hybrid arc ξ : dom ξ → X and
a hybrid input d : dom d → R

m are a solution pair to the hybrid model (16) if:

– dom ξ = dom d;
– for all j ∈ Z≥0 and almost all t ∈ R≥0 such that (t, j) ∈ dom ξ , we have

(ξ(t, j), d(t, j)) ∈ C and ξ̇ (t, j) ∈ F(ξ(t, j), d(t, j)); and
– for (t, j) ∈ dom ξ such that (t, j + 1) ∈ dom ξ we have (ξ(t, j), d(t, j)) ∈ D
and x(t, j + 1) ∈ G(ξ(t, j), d(t, j)).

For an initial state ξ0 and an input d, a hybrid arc of (16) is denoted by ξ(·, ·; ξ0, d).
In what follows, we denote the distance between a vector ξ ∈ X and a com-
pact set A ⊂ X by |ξ |A, that is, |ξ | := infζ∈A |ξ − ζ |. Following [3], for a
hybrid signal d, we use the notation ‖d‖(t, j) to denote the maximum between
ess sup

(t̂, ĵ+1)/∈dom d,t̂+ ĵ≤t+ j |d(t̂, ĵ)| and sup
(t̂, ĵ+1)∈dom d,t̂+ ĵ≤t+ j |d(t̂, ĵ)|.

Definition 3 A hybrid system (16) is said to be input-to-state stable (ISS) with respect
to A if there exist βh ∈ KLL and γh ∈ K such that for all ξ0 ∈ X and all (t, j) ∈
dom ξ , each solution pair (ξ, d) satisfies

|ξ(t, j; ξ0, d)|A ≤ βh(|ξ0|A, t, j) + γh(‖d‖(t, j)). (17)

123



Mathematics of Control, Signals, and Systems (2022) 34:297–327 307

Definition 4 A hybrid system (16) is said to be integral input-to-state stable (iISS)
with respect to A if there exist αh ∈ K∞, βh ∈ KLL and γh ∈ K such that for all
ξ0 ∈ X and all (t, j) ∈ dom ξ , each solution pair (ξ, d) satisfies

αh(|ξ(t, j; ξ0, d)|A) ≤ βh(|ξ0|A, t, j) +
∫ t

0
γh(|d(s, jd,s)|)ds

+
∑

(t̂, ĵ+1)∈dom d
t̂+ ĵ≤t+ j

γh(|d(t̂, ĵ)|) (18)

where jd,s := max{i ∈ N | (s, i) ∈ dom d}.

We can also characterize ISS and iISS using Lyapunov functions. The following
result provides sufficient conditions in terms of existence of Lyapunov functions with
certain properties which guarantee ISS/iISS.

Lemma 3 [3,22] A hybrid system (16) is iISS with respect toA if there exists a smooth
function V : X → R≥0, positive definite functions αc, αd , functions α1, α2 ∈ K∞
and γc, γd ∈ K such that

α1(|ξ |A) ≤ V (ξ) ≤ α2(|ξ |A) (19)

for all ξ ∈ X ,

〈
∂

∂ξ
V (ξ), f

〉
≤ −αc(|ξ |A) + γc(|d|) (20)

for all (ξ, d) ∈ C, f ∈ F(ξ, d), and

V (g) − V (ξ) ≤ −αd(|ξ |A) + γd(|d|) (21)

for all (ξ, d) ∈ D, g ∈ G(ξ, d). In addition if αc, αd ∈ K∞, then the hybrid system
(16) is ISS with respect to A.

We call a function V satisfying the inequalities in Lemma 3 with positive definite
functions αc, αd (resp. αc, αd ∈ K∞) a hybrid iISS (resp. ISS) Lyapunov function.

Remark 3 In papers [3,22], the authors work with a single-valued version of (16),
that is, F(ξ, d) = f (ξ, d) and G(ξ, d) = g(ξ, d). The statements in Lemma 3 are
obvious extensions of those results. Additionally, we see a condition on system data
in the results of [3,22], which says that, for each ξ ∈ X and each ε ≥ 0, the set
{ f (ξ, d) | d ∈ R

m ∩ εB} is convex. However, this condition is only required for
proving the converse implication that ISS/iISS implies the existence of an appropriate
Lyapunov function, and is not needed for our purposes.
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4.2 Hybridmodels for ADT and AAT

We now model the switched systems with ADT and AAT constraints as a hybrid
system (16). It is assumed that P = Pu ∪Ps, and we recall that 1Pu(·), defined in (6),
is the indicator function associated with unstable modes indexed byPu. Recall that the
definitions of ADT and AAT constrained switching signals in (4) and (5) depend on
the positive integer N0 and the scalar T0. We consider an autonomous hybrid system
evolving onX := P×[0, N0]×[0, T0]with state denoted by (p, τ, τu). The dynamics
of this hybrid system is given by

⎧⎪⎨
⎪⎩
ṗ = 0,

τ̇ ∈ [0, 1
τa

],
τ̇u ∈ [1Pu(p) − η, 1Pu(p)],

ξ ∈ C, (22a)

⎧⎪⎨
⎪⎩
p+ ∈ P,

τ+ = τ − 1,

τ+
u = τu,

ξ ∈ D (22b)

where the parameters τa, η come from (4), (5) and the flow and jump sets are given by
C := P × [0, N0] × [0, T0], D := P × [1, N0] × [0, T0], respectively. Essentially, in
our model (22), we are introducing two timers: τ and τu . This idea of using two timers
can be found in the work [24], where it is shown that while the timer τ confines the
switching signalswithADTconstraint, the timer τu confines the switching signalswith
AAT constraint. Recall the definition of T (σ ) in (2) and denote T (σ ) =: {t1, t2, · · · }
with t1 < t2 < · · · and denote t0 := 0. In addition we abuse the notation that when
|T (σ )| < ∞, [t|T (σ )|, t|T (σ )+1|] := [t|T (σ )|,∞). The next proposition formalizes the
relation between the complete solutions of the hybrid system (22) and the switching
signals satisfying both ADT and AAT conditions.

Proposition 4 For every switching signal σ ∈ ΣADT(τa, N0)∩ΣAAT(Pu, η, T0), there
exists a complete solution ξ = (p, τ, τu) to the hybrid system (22) with the hybrid
domain dom ξ = ∪|T (σ )|

j=0 [t j , t j+1] × { j} and it satisfies that

p(t, j) = σ(t j ) ∀(t, j) ∈ dom ξ. (23)

On the other hand, for every complete solution ξ = (p, τ, τu) to the hybrid system
(22), denote its hybrid domain by dom ξ := ∪J

j=0[t j , t j+1] × { j}, where [tJ , tJ+1] =
[tJ ,∞) if J < ∞. Define a switching signal

σ(t) := p(t, j) ∀ t ∈ [t j , t j+1), j = 1, · · · , J (24)

then σ ∈ ΣADT(τa, N0) ∩ ΣAAT(Pu, η, T0).

Proof As shown in [7, Example 2.15], the dynamics of p and τ guarantees the equiv-
alence between complete solutions of the hybrid system (22) and switching signals
σ ∈ ΣADT(τa, N0) such that p(t, j) = σ(t). It remains to show that the dynamics
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on τu confines p(t, j) to be equivalent to an AAT switching signal, which is given by
[24, Lemma 7]. ��
Remark 4 We make a comparison between our model with two independent timers
and the one proposed in [32], where a single timer is developed in the context of a
small-gain theorem in [32]which imitates a switching signal under bothADTandAAT
constraints.We acknowledge here that although themodels are different, Proposition 1
in [32] is analogous to Proposition 4 in our paper. It turns out that for our purpose
(see Sect. 4.4), using two individual timers makes the argument fairly intuitive and
straightforward.

Using the result of Proposition 4, one can write the switched system (3), along with
the ADT and AAT constraints on the switching signal, more naturally in the form of
(16). To do so, we let

ξ :=

⎛
⎜⎜⎝

y
p
τ

τu

⎞
⎟⎟⎠ ∈ R

n × P × [0, N0] × [0, T0] =: X . (25)

The hybrid model capturing the dynamics of the switched system, driven by an R
m-

valued disturbance d and a switching signal σ ∈ ΣADT(τa, N0) ∩ ΣAAT(Pu, η, T0),
is compactly written as:

ξ̇ ∈ F(ξ, d) :

⎧⎪⎪⎨
⎪⎪⎩

ẏ = f p(y, d),

ṗ = 0,
τ̇ ∈ [0, 1

τa
],

τ̇u ∈ [1Pu(p) − η, 1Pu(p)],
(ξ, d) ∈ C, (26a)

ξ+ ∈ G(ξ, d) :

⎧⎪⎪⎨
⎪⎪⎩

y+ ∈ Gp(y, d),

p+ ∈ P,

τ+ = τ − 1,
τ+
u = τu,

(ξ, d) ∈ D, (26b)

where C := X × R
m,D := R

n × P × [1, N0] × [0, T0] × R
m , and Gp(y, d) =⋃

q∈P gp,q(y, d). For the system (26), it is of interest to study whether the compact
set

A := {0}n × P × [0, N0] × [0, T0] (27)

is an attractor. We observe that system (26) satisfies basic assumptions listed in [7,
Assumption 6.5]:

– The sets C and D are closed.
– The mappingF(·, ·) is outer semi-continuous, convex-valued and locally bounded
relative to C, and C ⊆ dom(F). Here, we used the fact that, for each p ∈ P , the
mapping (y, d) �→ f p(y, d) is locally Lipschitz continuous by assumption, and
as already noted in (22), the set-valued dynamics for (p, τ, τu) are outer semi-
continuous.
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– The mapping G(·, ·) is outer semi-continuous and locally bounded relative to D.
This is because, for each p ∈ P , y ∈ R

n , d ∈ R
m , we assumed that Gp(y, d)

is closed and hence, the mapping (y, d) �→ Gp(y, d) is outer semi-continuous.
Because of the discrete topology of the set P , it then follows that (p, y, d) �→
Gp(y, d), as a subset of P × R

n × R
m , is closed, and outer semi-continuity of

G(·, ·) follows by checking that its graph is closed.

Comparing (17) and (18) with (7) and (8), respectively, we have the following
straightforward result, which shows that studying ISS (resp. iISS) for system (3) is
equivalent to studying ISS (resp. iISS) for system (26).

Corollary 5 The switched system (3) is uniformly ISS (resp. iISS) over the class of
switching signals ΣADT(τa, N0) ∩ ΣAAT(Pu, η, T0) if the hybrid system (26), with
augmented state variable defined in (25), is ISS (resp. iISS) with respect to A.

Proof We show that a solution of the switched system (3) satisfies the estimate (7) if
the hybrid system (26) is ISS with respect toA. The proof for iISS follows by similar
arguments. Let x(·; x0, ω, σ ) be a solution of the switched system. FromProposition 4,
we see that x is equivalent to a complete solution of the hybrid system (26) with a
hybrid input signal d defined by d(0, 0) := ω(0), d(t, j) := ω(t) for t ∈ [t j , t j+1),
where we recall that {t1, t2, · · · } = T (σ ) is the set of switching instants, in the sense
that (23) holds and y(0, 0) = x0, y(t, j) = x(t; x0, ω, σ ) for all t ∈ [t j , t j+1). With
the hybrid system (26) being ISS, dom ξ = dom d and the pair (ξ, d) satisfies the
estimate (17). Therefore, by observing that |x(t; x0, ω, σ )| = |y(t, j)| = |ξ(t, j)|A
for all t ∈ [t j , t j+1), and

‖d‖(t, j) = max

{
ess sups∈[0,t]\T (σ ) |ω(s)|, sup

s∈[0,t]∩T (σ )

|ω(s)|
}

,

the estimate in (7) is now obtained by taking β(s, t) = βh(s, t, 0) and γ1 = γ2 = γh .
��

Remark 5 Towards the end of the proof of Corollary 5, if we define a class KLL
function β̃(s, t, j) := βh(s, t, j) instead of taking the class KL function β, then we
can actually conclude

|x(t; x0, ω, σ )| ≤ β̃(|x0|, t, Nσ (0, t)) + γ1(ess sups∈[0,t]\T (σ ) |ω(s)|)

+γ2

(
sup

s∈[0,t]∩T (σ )

|ω(s)|
)

. (28)

Compared to (7), in (28) not only the magnitude of the solution decreases with respect
to t , but it also decreases with respect to the total number of switches up to t . We can
also conclude a similar stronger estimate on the solution for iISS. Such properties are
termed as strong ISS/iISS, which appeared in [9,12]. Nevertheless, we do not work
with the strong ISS/iISS notions in this paper. This is because it is inferred from [9,
Proposition 2.3] that strong ISS/iISS and ISS/iISS are equivalent for switched systems
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with switching signals satisfying the ADT condition, which is the class of switching
signals addressed in our results.

4.3 Supporting lemmas

In this subsection, we provide a couple of supporting lemmas which will be used in
our proof of Theorem 1. We start with an observation on ψ :

Lemma 6 The functionψ constructed in (12) is positive definite. It is also of classK∞
if αs is of class K∞.

Proof By construction it is clear that ψ is positive definite. To show that ψ ∈ K∞
when αs ∈ K∞, notice that ψ is continuous, ψ(0) = 0 so we are left to show that ψ is
strictly increasing and unbounded. To show ψ is strictly increasing, we take arbitrary
t2 > t1 ≥ 0. Suppose that αs(r) + c(t2 − r) achieves minimum at some t∗ ∈ [0, t2],
that is, ψ(t2) = αs(t∗) + c(t2 − t∗). We consider two cases by comparing t∗ and t1.
If t∗ ≤ t1, then

ψ(t2) = αs(t
∗) + c(t1 − t∗) + c(t2 − t1) > αs(t

∗) + c(t1 − t∗)
≥ min

r∈[0,t1]
{αs(r) + c(t1 − r)} = ψ(t1).

Otherwise, if t∗ > t1, then

ψ(t2) = αs(t1) + (αs(t
∗) − αs(t1)) + c(t2 − t∗) > αs(t1)

≥ min
r∈[0,t1]

{αs(r) + c(t1 − r)} = ψ(t1).

Therefore, we conclude that ψ(t2) > ψ(t1). Next we show that limt→∞ ψ(t) = ∞.
If this is not true, there exists K > 0 such that ψ(t) ≤ K for all t ≥ 0. Because
αs ∈ K∞, there exists r > 0 such that αs(r) = 2K . Then, for any r ′ ∈ [0, r + 2K

c ],
either r ′ ∈ [0, r ] so that c(r+ 2K

c −r ′) ≥ 2K , or r ′ ∈ (r , r+ 2K
c ] so that αs(r ′) > 2K .

Thus,

ψ

(
r + 2K

c

)
= min

r ′∈[0,r+ 2K
c ]

{
αs(r

′) + c

(
r + 2K

c
− r ′

)}
≥ 2K > K ,

which is a contradiction. This completes the proof. ��
The next lemma shows thatψ is globally one-sidedLipschitz. One-sidedLipschitzness
often appears in the study of differential inclusions (see, e.g., [6]).

Lemma 7 The functionψ constructed in (12) is a globally one-sided Lipschitz function
on R≥0 with constant c; that is, for any t2 ≥ t1 ≥ 0, ψ(t2) − ψ(t1) ≤ c(t2 − t1).

Proof For any t2 ≥ t1 ≥ 0,

ψ(t2) = min
r∈[0,t2]

{αs(r) + c(t2 − r)}
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≤ min
r∈[0,t1]

{αs(r) + c(t2 − r)}
= min

r∈[0,t1]
{αs(r) + c(t1 − r)} + c(t2 − t1)

= ψ(t1) + c(t2 − t1)

which is the desired inequality. ��
Next we define a function which will be used in the construction of the (i)ISS

Lyapunov function for the hybrid system. Define the function ϕ : R≥0 → R≥0 by

ϕ(s) :=
{
exp

(∫ s
1

2c
ψ(r)dr

)
, if s > 0,

0, if s = 0.
(29)

where we recall c and ψ are introduced in (12). We state two properties associated
with ϕ.

Lemma 8 It holds that ϕ ∈ K∞.

Proof By definition, ϕ(s) is strictly increasing and continuous for all s > 0. It remains
to show that ϕ is continuous at 0 and lims→∞ ϕ(s) = ∞. It follows from (12) that
ψ(r) ≤ cr for all r ≥ 0 so 2c

ψ(r) ≥ 2
r . Therefore, when s > 1,

∫ s
1

2c
ψ(r)dr ≥ ∫ s

1
2c
cr dr =

2 ln s so lims→∞ ϕ(s) = ∞. On the other hand, when s < 1,
∫ s
1

2c
ψ(r)dr ≤ ∫ s

1
2c
cr dr =

2 ln s so lims→0+ ϕ(s) = 0 and thus ϕ is continuous at 0. ��
Lemma 9 Let c0 > 0 and s ≥ t > 0 such that ϕ(s) ≤ c0ϕ(t). It follows that
ψ(s)
ψ(t) ≤ √

c0.

Proof Fix s ≥ t > 0. Then, the inequality ϕ(s) ≤ c0ϕ(t) implies that

exp

(∫ s

1

2c

ψ(r)
dr

)
≤ c0 exp

(∫ t

1

2c

ψ(r)
dr

)
.

Take logarithm on both sides and subtract the integral on the right from the left, to get

∫ s

t

2c

ψ(r)
dr ≤ ln(c0). (30)

Define ψ̃t : [t,∞) → R+ by ψ̃t (r) := ψ(t) + c(r − t). Recall from Lemma 7 that c
is also the global one-sided Lipschitz constant of ψ , so we have ψ̃t (r) ≥ ψ(r) for all
r ≥ t . Hence, continuing from (30), we have

ln(c0) ≥
∫ s

t

2c

ψ(r)
dr ≥

∫ s

t

2c

ψ̃t (r)
dr =

∫ s

t

2c

ψ(t) + c(r − t)
dr

= 2 ln
(
ψ(t) + c(r − t)

)∣∣r=s
r=t = 2 ln

ψ(t) + c(s − t)

ψ(t)
≥ 2 ln

ψ(s)

ψ(t)
,

which results in ψ(s)
ψ(t) ≤ √

c0. ��

123



Mathematics of Control, Signals, and Systems (2022) 34:297–327 313

The next lemma tells that a special transformation of function ϕ inherits the global
one-sided Lipschitzness from ψ .

Lemma 10 The function θ : R≥0 → R≥0 defined by θ(s) := ϕ−1(c0ϕ(s)) with any
c0 ≥ 1 is globally one-sided Lipschitz with constant

√
c0, where ϕ is defined by (29).

Proof Before we start the proof, we note that ϕ−1 in the definition of θ is well defined
because ϕ ∈ K∞, stated by Lemma 8. To show θ is globally one-sided Lipschitz with
constant

√
c0, it suffices to show that

θ(t2) − θ(t1) ≤ √
c0(t2 − t1)

for all t2 ≥ t1 ≥ 0; in otherwords, we need to show that θ(t)−t
√
c0 is a non-increasing

function on R≥0. To this end, we first observe that it follows from the definition of ϕ

in (29) that the derivatives

ϕ′(s) = 2cϕ(s)

ψ(s)
(31)

and

(ϕ−1)′(s) = 1

ϕ′(ϕ−1(s))
= ψ(ϕ−1(s))

2cs
. (32)

Hence, we conclude that for any t ∈ R≥0,

d

dt
θ(t) = d

dt

(
ϕ−1(c0ϕ(t)

)) = ψ
(
ϕ−1(c0ϕ(t))

)
2cc0ϕ(t)

2cc0ϕ(t)

ψ(t)
= ψ(θ(t))

ψ(t)
.

Let s := θ(t), so that ϕ(s) = c0ϕ(t). Since c0 ≥ 1, s ≥ t ≥ 0, Lemma 9 yields
ψ(s)
ψ(t) ≤ √

c0, and

d

dt

(
θ(t) − t

√
c0
) = ψ(s)

ψ(t)
− √

c0 ≤ 0.

Therefore, θ(t) − t
√
c0 is non-increasing and this completes the proof. ��

4.4 Proof of themain result

Wenowuse the developments carried out in Sects. 4.1, 4.2, and 4.3 to proveTheorem1.

Proof of Theorem 1 Since τa > ζ ∗ and (15) holds, we pick ζ ∈ (ζ ∗, τa) which is
sufficiently close to ζ ∗ so that

(κ + 1)η + ζ

τa
< 1. (33)
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We prove the theorem by showing that

V (ξ) := ϕ−1
(
e2c

(
ζ τ+(κ+1)(T0−τu)

)
ϕ
(
Vp(x)

))
(34)

is an (i)ISSLyapunov function for the hybrid system (26) corresponding to the switched
system (3) with ADT and AAT constrained switching signals.

Firstly, to verify the condition (19), we set

α1(s) = α(s), and α2(s) = ϕ−1
(
e2c

(
ζN0+(κ+1)T0

)
ϕ
(
α(s)

))
and the bounds in (19) clearly hold.

We next verify the conditions (20) and (21) .We recall from the proof of [2, Theorem
1] that the inequality (20) holds for some positive definite function αc if there exists a
positive definite function α̃c such that

〈
∂

∂ξ
V (ξ), f

〉
≤ −α̃c(V (ξ)) + γc(|d|). (35)

Moreover, αc ∈ K∞ if α̃c ∈ K∞, by setting αc := α̃c ◦ α1. Similarly (21) holds for
some positive definite function αd if there exists a positive definite function α̃d such
that

V (g) − V (ξ) ≤ −α̃d(V (ξ)) + γd(|d|) (36)

and αd ∈ K∞ if α̃d ∈ K∞. To verify the condition (35) (and therefore (20)) for the
continuous flow, we define

W (ξ) := e2c
(
ζ τ+(κ+1)(T0−τu)

)
ϕ
(
Vp(x)

)
. (37)

Picking (ξ, d) ∈ C and f ∈ F(ξ, d), we have

〈
∂

∂ξ
W (ξ), f

〉
= 2cζW (ξ)τ̇ − 2c(κ + 1)W (ξ)τ̇u

+
〈
e2c(ζ τ+(κ+1)(T0−τu))ϕ′(Vp(x))

∂

∂x
Vp(x), f p(x, d)

〉

= 2c

(
ζ τ̇ − (κ + 1)τ̇u + 1

ψ(Vp(x))

〈
∂

∂x
Vp(x), f p(x, d)

〉)
W (ξ)

where we have used (31) for ϕ′. When p ∈ Ps, it follows from (10a) and (12) that〈
∂
∂x Vp(x), f p(x, d)

〉 ≤ −ψ(Vp(x))+γ (|d|). In addition τ̇ ∈ [0, 1
τa

] and τ̇u ∈ [−η, 0],
so 〈

∂

∂ξ
W (ξ), f

〉
≤ 2c

(
ζ

τa
+ (κ + 1)η − 1

)
W (ξ) + 2cW (ξ)

ψ(Vp(x))
γ (|d|).
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When p ∈ Pu, it follows from (10b) and (13) that
〈

∂
∂x Vp(x), f p

〉 ≤ κψ(Vp(x)) +
γ (|d|). In addition τ̇ ∈ [0, 1

τa
] and τ̇u ∈ [1 − η, 1], so

〈
∂

∂ξ
W (ξ), f

〉
≤ 2c

(
ζ

τa
+ (κ + 1)(η − 1) + κ

)
W (ξ) + 2cW (ξ)

ψ(Vp(x))
γ (|d|)

and we reach the same upper bound as in the first case. Appealing to (33), we conclude
that

〈
∂

∂ξ
W (ξ), f

〉
≤ −2caW (ξ) + 2cW (ξ)

ψ(Vp(x))
γ (|d|)

where

a := 1 − ζ

τa
− (κ + 1)η > 0. (38)

Consequently, it can be computed that along the differential inclusion (26a),

〈
∂

∂ξ
V (ξ), f

〉
= (ϕ−1)′(W (ξ))

〈
∂

∂ξ
W (ξ), f

〉

≤
(

ψ
(
ϕ−1(W (ξ))

)
2cW (ξ)

)(
−2caW (ξ) + 2cW (ξ)

ψ(Vp(x))
γ (|d|)

)

= −aψ
(
ϕ−1(W (ξ))

) + ψ(ϕ−1(W (ξ)))

ψ(Vp(x))
γ (|d|)

= −aψ(V (ξ)) + ψ(V (ξ))

ψ(Vp(x))
γ (|d|).

To further simplify the right-hand side, let v := Vp(x),w := V (ξ). Then,we havew ≥
v ≥ 0 and ϕ(w) = W (ξ) = e2c

(
ζ τ+(κ+1)(T0−τu)

)
ϕ(Vp(x)) ≤ e2c

(
ζN0+(κ+1)T0

)
ϕ(v).

Hence, from Lemma 9,

〈
∂

∂ξ
V (ξ), f

〉
≤ −aψ(V (ξ)) + ec

(
ζN0+(κ+1)T0

)
γ (|d|)

and (35) holds with

α̃c(s) := aψ(s) (39a)

γc(s) := ec
(
ζN0+(κ+1)T0

)
γ (s). (39b)

It follows from Lemma 6 that if αs is positive definite (resp. αs ∈ K∞), then α̃c is also
positive definite (resp. αc ∈ K∞) and so is αc. In addition, γc ∈ K.
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Lastly, to verify the condition (36) (and therefore (21)) for the discrete jumps, we
pick (ξ, d) ∈ D and ḡ ∈ G(ξ, d). Notice that

ϕ
(
χ(Vp(x))

) = exp
( ∫ χ(Vp(x))

1

2c

ψ(r)
dr
)

= exp
( ∫ χ(Vp(x))

Vp(x)

2c

ψ(r)
dr
)
exp

( ∫ Vp(x)

1

2c

ψ(r)
dr
)

≤ e2cζ
∗
ϕ(Vp(x))

where we recall that ζ ∗ is defined in (14). Hence, if we define

θ(s) := ϕ−1
(
e2c(ζ(τ−1)+(κ+1)(T0−τu))ϕ(s)

)
,

and recall the definition of W from (37), we have the estimate that θ
(
χ(Vp(x))

) ≤
ϕ−1

(
e2c(ζ(τ−1)+(κ+1)(T0−τu))+2cζ ∗

ϕ
(
Vp(x)

)) = ϕ−1
(
e2c(ζ

∗−ζ )W (ξ)
)
. Therefore,

using the assumption (L3) and Lemma 10, we get

V (g) = ϕ−1
(
e2c(ζ τ++(κ+1)(T0−τ+

u ))ϕ(Vp+(x+))
)

= ϕ−1
(
e2c(ζ(τ−1)+(κ+1)(T0−τu))ϕ

(
Vq(gp,q(x, d))

))
≤ ϕ−1

(
e2c(ζ(τ−1)+(κ+1)(T0−τu))ϕ

(
χ(Vp(x)) + ρ(|d|)))

= θ
(
χ(Vp(x)) + ρ(|d|))

≤ θ
(
χ(Vp(x)

) + ec(ζ(τ−1)+(κ+1)(T0−τu))ρ(|d|)
≤ ϕ−1

(
e2c(ζ

∗−ζ )W (ξ)
)

+ ec(ζ(N0−1)+(κ+1)T0)ρ(|d|)
= ϕ−1

(
e2c(ζ

∗−ζ )ϕ(V (ξ))
)

+ ec(ζ(N0−1)+(κ+1)T0)ρ(|d|).

Thus, the inequality (36) is seen to hold with

α̃d(s) := s − ϕ−1
(
e2c(ζ

∗−ζ )ϕ(s)
)

(40a)

γd(s) := ec(ζ(N0−1)+(κ+1)T0)ρ(s). (40b)

Recall that ζ > ζ ∗ and ϕ ∈ K∞; thus by construction α̃d is positive definite. In
addition, γd ∈ K. Lastly, we show that α̃d ∈ K∞ when αs ∈ K∞. It follows from
(40a) that ϕ

(
(s− α̃d(s)

) = e2c(ζ
∗−ζ )ϕ(s). Using the definition of ϕ in (29), and taking

logarithm, it follows that

∫ s−α̃d (s)

1

2c

ψ(r)
dr = 2c(ζ ∗ − ζ ) +

∫ s

1

2c

ψ(r)
dr .
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Hence, we have

∫ s

s−α̃d (s)

1

ψ(r)
dr = ζ − ζ ∗ > 0. (41)

By Lemma 6, when αs ∈ K∞, ψ ∈ K∞ as well and thus 1
ψ(r) decreases to 0 as r

increases to infinity. Therefore, (41) holds for all s > 0 only when the length of the
interval of integration grows to infinity as s → ∞. In other words, we conclude that
α̃d ∈ K∞.

With all the three conditions (19), (20) and (21) verified, we appeal to Lemma 3
and conclude that the hybrid system (26) is ISS (resp. iISS) when αs ∈ K∞ (resp. αs

is only positive definite). Then, by Corollary 5, the switched system (3) is uniformly
ISS (resp. uniformly iISS) over the set of signals ΣADT(τa, N0)∩ΣAAT(Pu, η, T0). ��
Remark 6 It is observed that the formulas for γc, γd in (39b), (40b) only depend on
the parameters N0, T0 but not τa, η. Since it is known in [3,22] that the (i)ISS gain
is related to γc, γd , we conclude that the average dwell-time or percentage activation
time of the unstable modes do not affect the (i)ISS gain. On the other hand, it is seen
that the functions α̃c, α̃d depend on τa, η. Thus, we conclude that the convergence rate
of the unforced switched system depends on the average dwell-time and percentage
activation time of the unstable modes. In particular, when the left-hand side of (15)
is close to 1, the convergence rate of the unforced switched system may become
extremely slow andwhen it is larger than 1, the unforced switched systemmay become
unstable and thus the switched system with inputs is not (i)ISS. This observation is
consistent with the known results in [11].

5 Case studies

In this section, we will demonstrate how our results can be applied to determining
stability of several switched nonlinear systems. The subsystems of these switched
systems will be constructed using the matrices:

A1 =
(−0.1 −1

2 −0.1

)
, A2 =

(−0.1 −2
1 −0.1

)
, A3 =

(
0.1 −1
2 0.1

)
. (42)

Notice that A1 and A2 are both Hurwitz and they have the same eigenvalues; A3 is not
Hurwitz. In addition, it is discussed in [16, Sect. 3.2] that the switched linear system
with modes P = {1, 2}

ẋ = Aσ x if t /∈ T (σ ), (43a)

x = x− if t ∈ T (σ ). (43b)

has no common Lyapunov function and for some particular switching signals the
solution will diverge.
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5.1 Switched systemwith saturation-like scaling

Consider the switched system with modes P = {1, 2}

ẋ = 1

1 + |x | Aσ x + ω if t /∈ T (σ ), (44a)

x = x− if t ∈ T (σ ) (44b)

where ω ∈ R
2 is the input. The coefficient 1

1+|x | mimics the effect of saturation such
that ẋ ≈ Aσ x + ω when |x | is small and ẋ ≈ Aσ

x
|x | + ω when |x | is large. The

subsystems of (44) are both iISS, which can be verified by picking the iISS-Lyapunov
functions

Vp(x) =
√
1 + x�Mpx − 1 (45)

where Mp are the solutions to the Lyapunov equations

MpAp + A�
p Mp + I = 0. (46)

However, this switched system is not iISS under slow switching. To see this, notice that
when u ≡ 0, the solutions of the switched system (44) are the same as the solutions of
(43) after a time re-parameterization. By similar arguments as discussed in [25], for
any τa > 0 and N0 ≥ 1,we can pick an initial state far away enough from the origin and
a switching signal from ΣADT(τa, N0), yet the solution diverges. Hence, the switched
system (44) is not uniformly iISS over ΣADT(τa, N0) for any τa > 0. Nevertheless,
we show that the switched system (44) is iISS over AAT switching signals. To do
this, let V1 be defined as in (45) with p = 1 and set V2 = V1. We first see that (9)
is verified with α(s) := √

1 + σ(M1)s2 − 1 and ᾱ(s) := √
1 + σ̄ (M1)s2 − 1, where

σ̄ (·), σ (·) denote the largest and smallest singular values, respectively. We further
denote Q1 := −I , Q2 := M1A2 + A�

2 M1. Notice that because V2 is not a Lyapunov
function for the subsystem p = 2, Q2 defined in this way is sign indefinite. It can be
computed that

〈 ∂

∂x
Vp(x), f p(x, ω)

〉
= 1√

1 + x�M1x

(
ẋ�M1x + x�M1 ẋ

)

=
x�

(
A�
p M1 + M1Ap

)
x

(1 + |x |)
√
1 + x�M1x

+ 2x�Mp√
1 + x�Mpx

ω

= x�Qpx

(1 + |x |)
√
1 + x�M1x

+ 2x�M1√
1 + x�M1x

ω

= x�Qpx

(1 + |x |)(Vp(x) + 1)
+ 2x�M1√

1 + x�M1x
ω.
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It is observed that the function h(s) = s2
1+s is increasing on R≥0; in addition, from

(45) we have

√
V 2
p+2Vp

σ̄ (M1)
≤ |x | ≤

√
V 2
p+2Vp

σ(M1)
. Hence, we conclude that

〈 ∂

∂x
V1(x), f1(x, ω)

〉
≤ − V 2

1 + 2V1(
σ̄ (M1) +

√
σ̄ (M1)(V 2

1 + 2V1)

)
(V1 + 1)

+ 2σ̄ (M1)√
σ(M1)

|ω|,

which fits the form (10a) with αs(s) := s2+2s(
σ̄ (M1)+

√
σ̄ (M1)(s2+2s)

)
(s+1)

and γ (s) :=
2σ̄ (M1)√

σ(M1)
s. It can be verified that αs is globally Lipschitz so as discussed in Sect. 3, we

can set ψ = αs. For p = 2,

〈 ∂

∂x
V2(x), f2(x, ω)

〉
≤ σ̄ (Q2)(V 2

2 + 2V2)(
σ(M1) +

√
σ(M1)(V 2

2 + 2V2)

)
(V2 + 1)

+ 2σ̄ (M1)√
σ(M1)

|ω|,

which fits the form (10b) with αu(s) := σ̄ (Q2)(s2+2s)(
σ(M1)+

√
σ(M1)(s2+2s)

)
(s+1)

. The above

computations imply that Assumption 1 holds. Plugging the numerical values (42)
for A1, A2 into the formulas for ψ, αu, it is computed that κ = sups≥0

αu(s)
ψ(s) =

σ̄ (Q2)
σ̄ (M1)
σ (M1)

= 24.9436 and 1
1+κ

= 0.0385. Hence, Assumption 2 also holds. In
addition, because we have chosen V1 = V2 and the switched system has no resets at
switches, ζ ∗ = 0 and Assumption 3 holds as well. Therefore, by Theorem 1 and the
discussion after the theorem statement, we conclude that the switched system (44) is
uniformly ISS over ΣADT(τa, N0) ∩ ΣAAT({2}, η, T0) for any τa > 0, N0 ≥ 1, η <

0.0385, T0 ≥ 0.

5.2 Switched bilinear systemwith resets and stable modes

Consider the switched system with modes P = {1, 2}

ẋ = Aσ x + ωBx if t /∈ T (σ ), (47a)

x = Dx− + ωEx− if t ∈ T (σ ), (47b)

where ω ∈ R is the input, Ap are given in (42) and B, D, E ∈ R
2×2. Each subsystem

is shown to be iISS (see, e.g., [5]) by picking the iISS-Lyapunov function Vp as

Vp(x) := ln(1 + x�Mpx) (48)

where again Mp are the solutions of (46). We have

α(|x |) := ln

(
1 + min

p∈P
σ(Mp)|x |2

)
≤ Vp(x)
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≤ ln

(
1 + max

p∈P
σ̄ (Mp)|x |2

)
=: ᾱ(|x |). (49)

For the continuous flow, it can be computed that

〈 ∂

∂x
Vp(x), f p(x, ω)

〉
= 1

1 + x�Mpx

(
ẋ�Mpx + x�Mpẋ

)

= 1

1 + x�Mpx
x�(A�

p Mp + MpAp)x + 2x�MpBx

1 + x�Mpx
ω

= − |x |2
1 + x�Mpx

+ 2x�MpBx

1 + x�Mpx
ω

≤ − (eVp − 1)

σ̄ (Mp)eVp
+ σ̄ (MpB)

σ (Mp)
|ω|

Hence, (10a) is satisfied for all p ∈ Ps = P with αs(s) := 1−e−s

σmax
, γ (s) := c1s where

σmax := maxp∈P σ̄ (Mp), c1 := maxp∈P
σ̄ (MpB)

σ (Mp)
. Now consider the discrete jumps

and denote g(x, ω) := Dx +ωEx . Letμ > 0 be such that x�D�MpDx ≤ μx�Mqx
for all x ∈ R

n and p, q ∈ P , then we have the inequality that

1 + g(x, ω)�Mg(x, ω) = 1 + (Dx + uEx)�Mp(Dx + uEx)

= 1 + x�D�MpDx + x�(2uE�MpD + ω2E�MpE)x

≤ 1 + μx�Mqx + x�(2uE�MpD + ω2E�MpE)x

= (1 + μx�Mqx)

(
1 + x�(2uE�MpD + ω2E�MpE)x

1 + μx�Mqx

)

≤ (1 + μx�Mqx)

(
1 + 2σ̄ (E�MpD)|ω| + σ̄ (E�MpE)|ω|2

μσ(Mq)

)

Hence, when a switch occurs,

Vp(g(x, ω)) = ln(1 + g(x, ω)�Mg(x, ω))

≤ ln

(
(1 + μx�Mqx)

(
1 + 2σ̄ (E�MpD)|ω| + σ̄ (E�MpE)|ω|2

μσ(Mq )

))

= ln(1 + μx�Mqx) + ln

(
1 + 2σ̄ (E�MpD)|ω| + σ̄ (E�MpE)|ω|2

μσ(Mq )

)

= ln
(
1 + μ

(
eVq (x) − 1

)) + ln

(
1 + 2σ̄ (E�MpD)|ω| + σ̄ (E�MpE)|ω|2

μσ(Mq )

)

Hence, (11) is satisfied with χ(s) := ln
(
1 + μ

(
es − 1

))
and ρ(s) := ln(1 +

c2s + c3s2), where c2 := 2maxp∈P σ̄ (E�MpD)

μminq∈P σ(Mq )
, c3 := 2maxp∈P σ̄ (E�MpE)

μminq∈P σ(Mp)
. Therefore,
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Assumption 1 is verified and since both modes are stable, Assumption 2 is omitted.
Again because αs is globally Lipschitz, we let ψ = αs and it can be computed that

ζ ∗ = sup
s>0

∫ χ(s)

s

1

ψ(r)
dr = sup

s>0

∫ χ(s)

s

σmaxer

(er − 1)
dr

= σmax sup
s>0

ln(er − 1)
∣∣∣ln(μ(es−1)+1)

s

= σmax sup
s>0

ln
(μ(es − 1) + 1) − 1

es − 1

= σmax lnμ

and Assumption 3 is verified. Hence, we conclude from the special case of Theo-
rem 1 that the switched system (47) with modes P = {1, 2} is uniformly iISS over
ΣADT(τa, N0) for all τa > σmax lnμ, N0 ≥ 1. In particular, if D = I , it can be
numerically computed that σmax lnμ = 5.1804.

The same arguments also work for switched bilinear systems with resets and stable
modes in general, in the form

ẋ = Aσ x +
mc∑
j=1

Bσ, j xω j + Cσ ω, if t ∈ T (σ ), (50a)

x = D(σ−,σ )x
− +

md∑
k=1

E(σ−,σ ),k x
−ωk + F(σ−,σ )ω if t ∈ T (σ ), (50b)

where x ∈ R
n is the state,ω ∈ R

m is the input and Ap, Bp, j , D(p,q), E(p,q),k ∈ R
n×n ,

Cp, F(p,q) ∈ R
n×m for all p, q ∈ P, j = 1, · · ·mc, k = 1, · · ·md .

Proposition 11 Consider the switched system (50) with finitely many modes and
assume that Ap areHurwitz for all p ∈ P so that there exist positive definite symmetric
matrices Mp, Qp ∈ R

n×n forwhich A�
p Mp+MpAp+Qp = 0 hold. Letλ > 0 be such

that x�Qpx ≥ λx�Mpx and μ > 0 be such that x�D�
(p,q)MqD(p,q)x ≤ μx�Mpx

for all x ∈ R
n and p, q ∈ P . Then, (50) is uniformly iISS over ΣADT(τa, N0) for all

τa >
lnμ
λ

and N0 ≥ 1.

The proof is similar to the one carried out for system (47) and is provided in Appendix.

Remark 7 Notice that λ,μ defined in Proposition 11 are exactly the linear decay rate
in the continuous flow and linear growth rate in the discrete jumps, respectively, for the
unforced switched system (50). It is known that in this case, lnμ

λ
is the lower bound

on ADT such that the unforced switched linear system is globally asymptotically
stable (see [13]). It follows that the bilinear input does not affect the inheritance of
the stability properties from the subsystems to the switched system when it is under
slow switching. In addition, when there exists a common Lyapunov function, all Mp’s
are the same and further when D = I , we conclude ζ ∗ = 0 so τa can be as small as
possible. This is indeed the case because such a switched system is iISS with arbitrary
switching [19].
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5.3 Switched bilinear systemwith unstable modes

For the last example we still consider the switched systemwith dynamics given by (47)
but now the set of modes isP = {1, 3}. Recall that A3 given in (42) is non-Hurwitz so
this switched system is not uniformly iISS overΣADT(τa, N0) for any τa > 0.We also
let D = 2I , that is, whenever a switch occurs the state is scaled by 2 and hence this
switched system is also not uniformly iISS over ΣAAT(Pu, η, T0) for any η ∈ [0, 1].
However, if we pick V3 = V1 = ln(1 + x�M1x), it can be computed that

〈 ∂

∂x
V3(x), f3(x, ω)

〉
= 1

1 + x�M1x
x�(A�

3 M1 + M1A3)x + 2x�M1Bx

1 + x�M1x
ω

≤ σ̄ (A�
3 M1 + M1A3)|x |2
1 + x�M1x

+ 2x�M1Bx

1 + x�M1x
ω

≤ σ̄ (A�
3 M1 + M1A3)

σ (M1)

(
1 − eVp(x)

) + σ̄ (M1B)

σ (M1)
ω

So we have Pu = {3} with αu(s) := σ̄ (A�
3 M1+M1A3)

σ (M1)

(
1 − es

)
. Thus, Assumption 2

holds with κ = αu
ψ

= σ̄ (A�
3 M1 + M1A3)

σ̄ (M1)
σ (M1)

= 3.9868. On the other hand, Vp

being the same and D = 2I imply μ = 4. Thus, Assumption 3 holds with ζ ∗ =
σmax lnμ = 10.3857. Therefore, by Theorem 1 we conclude that (47) is uniformly
iISS over ΣADT(τa, N0) ∩ ΣAAT({3}, η, T0) for any N0 ≥ 1, T0 ≥ 0 and all τa >

0, η ∈ [0, 1] satisfying 3.9868η + 10.3857
τa

< 1.

6 Conclusion

Within the context of literature on stability of switched systems, this paper provided
conditions on the switching signals such that a switched nonlinear system with inputs,
resets and unstable modes is ISS or iISS. In particular, we considered the case where
the decay or growth rates of all subsystems are allowed to be nonlinear, and the changes
of Lyapunov function values at switching instants are also assumed to be nonlinear.
Under some mild assumptions on the switched system, and using the hybrid system
framework, we derived a mixed ADT and AAT condition which guarantees ISS or
iISS of the switched system. Using the main result of our work, switched systems
with saturating dynamics and switched bilinear systems were shown to be uniformly
iISS over switching signals satisfying this mixed ADT and AAT condition.

From a broader viewpoint, in this paper, we restricted ourselves to a certain class
of switching signals, and we proposed techniques which relate the parameterization
of these switching signals with the nonlinear rates associated with the Lyapunov func-
tions of individual subsystems. There are other classes of switching signals which
can be studied. For example, in [15], the notion of ADT is generalized by replac-
ing the affine function of time in the definition of ADT by a more generic function.
Similar generalization is also seen in the recent work [9]. Meanwhile, in [20], the
authors propose impulse sequences whose impulse frequencies are eventually uni-
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formly bounded, but iISS-related questions have not been investigated for such a class
of signals. Thus, a natural question that originates from these works is to find condi-
tions for ISS/iISS of switched systems in the nonlinear setting with different classes
of switching signals, and whether the tools proposed in this paper could be used in
making such generalizations.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
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Appendix

Proof of Proposition 11 First of all, each subsystem is shown to be iISS (see, e.g., [5])
by picking the iISS-Lyapunov function Vp as

Vp(x) := ln(1 + x�Mpx). (51)

We have

α(|x |) := ln

(
1 + min

p∈P
σ(Mp)|x |2

)
≤ Vp(x) ≤ ln

(
1 + max

p∈P
σ̄ (Mp)|x |2

)
=: ᾱ(|x |).

(52)

So the condition (L1) is verified. For the continuous flow, it can be computed that

〈 ∂

∂x
Vp(x), f p(x, ω)

〉
= 1

1 + x�Mpx

(
ẋ�Mpx + x�Mpẋ

)

= 1

1 + x�Mpx
x�(A�

p Mp + MpAp)x +
mc∑
j=1

2x�MpBp, j x

1 + x�Mpx
ω j + 2x�MpCp

1 + x�Mpx
ω

≤ − x�Qpx

1 + x�Mpx
+
√√√√ mc∑

j=1

(
2x�MpBp, j x

1 + x�Mpx

)2

|ω| + 2|x�MpCp|
1 + x�Mpx

|ω|

≤ − λx�Mpx

1 + x�Mpx
+ 2

√
n
max j σ̄ (MpBp, j )

σ (Mp)
|ω| + σ̄ (MpCp)√

σ(Mp)
|ω|

= −λ(1 − e−Vp(x)) +
(
2
√
n
max j σ̄ (MpBp, j )

σ (Mp)
+ σ̄ (MpCp)√

σ(Mp)

)
|ω|.
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Hence, (10a) is satisfied for all p ∈ Ps = P with

αs(r) := λ(1 − e−r ), γ (r) :=
(
max
p

(
2
√
n
max j σ̄ (MpBp, j )

σ (Mp)
+ σ̄ (MpCp)√

σ(Mp)

))
r .

Now consider the discrete jumps. We start by defining the terms:

KDD := (
D(p,q)x

−)� MqD(p,q)x
−,

KEE :=
( md∑
k=1

E(p,q),k x
−ωk

)�
Mq

( md∑
k=1

E(p,q),k x
−ωk

)
,

KFF := (
F(p,q)ω

)�
Mq(F(p,q)ω),

KDE := (D(p,q)x
−)�Mq

( md∑
k=1

E(p,q),k x
−ωk

)
,

KDF := (D(p,q)x
−)�Mq(F(p,q)ω),

KEF :=
( md∑
k=1

E(p,q),k x
−ωk

)�
Mq(F(p,q)ω).

These are the terms when expanding the product

(
D(p,q)x

− +
md∑
k=1

E(p,q),k x
−ωk + F(p,q)ω

)�
Mq

(
D(p,q)x

− +
md∑
k=1

E(p,q),k x
−ωk + F(p,q)ω

)
.

From the hypothesis of Proposition (11), we have KDD ≤ μ(x−)�Mpx−.Meanwhile,
use the fact that y�My ≤ σ̄ (M)|y|2 for anymatrixM ∈ R

n×n and any vectors y ∈ R
y ,

in addition to the inequality that

∣∣∣∣∣
md∑
k=1

E(p,q),k xωk

∣∣∣∣∣ ≤
∣∣∣∣∣
md∑
k=1

ωk E(p,q),k

∣∣∣∣∣ |x | ≤
√√√√ md∑

k=1

σ̄ (E(p,q),k)2|ω||x |,

we conclude that KEE ≤ kEE |x−|2|ω|2, KFF ≤ kFF |ω|2, KDE ≤ kDE |x−|2|ω|,
KDF ≤ kDF |x−||ω| and KEF ≤ kEF |x−||ω|2, where

kEE := σ̄ (Mq)

md∑
k=1

σ̄ (E(p,q),k)
2, kFF := σ̄ (F�

(p,q)MqF(p,q)),

123



Mathematics of Control, Signals, and Systems (2022) 34:297–327 325

kDE := σ̄ (MqD(p,q))

( md∑
k=1

σ̄ (E(p,q),k)
2

) 1
2

, kDF := σ̄ (D�
(p,q)MqF(p,q)),

kEF := σ̄ (MqF(p,q))

( md∑
k=1

σ̄ (E(p,q),k)
2

) 1
2

.

Therefore, when a switch occurs,

Vq (x) = ln
(
1 + KDD + KEE + KFF + 2KDE + 2KDF + 2KEF

)
≤ ln

(
1 + μ(x−)�Mpx

− + (2kDE |ω| + kEE |ω|2)|x−|2
+ (2kDF |ω| + 2kEF |ω|2)|x−| + kFF |ω|2)

= ln
(
(1 + μ(x−)�Mpx

−)

× (
1 + (2kDE |ω| + kEE |ω|2)|x−|2 + (2kDF |ω| + 2kEF |ω|2)|x−| + kFF |ω|2

1 + μ(x−)�Mpx−
))

= ln(1 + μ(x−)�Mpx
−)

+ ln
(
1 + (2kDE |ω| + kEE |ω|2)|x−|2 + (2kDF |ω| + 2kEF |ω|2)|x−| + kFF |ω|2

1 + μ(x−)�Mpx−
)

≤ ln(1 + μ(x−)�Mpx
−)

+ ln
(
1 + (2kDE |ω| + kEE |ω|2)|x−|2

μ(x−)�Mpx− + (2kDF |ω| + 2kEF |ω|2)|x−|
1 + μ(x−)�Mpx− + kFF |ω|2

)
≤ ln(1 + μ(eVp(x−) − 1))

+ ln
(
1 + 2kDE |ω| + kEE |ω|2

μσ(Mp)
+ kDF |ω| + kEF |ω|2√

μσ(Mp)
+ kFF |ω|2

)

Hence, (11) is satisfied with χ(s) := ln
(
1 + μ

(
es − 1

))
and ρ(s) := ln

(
1 +( 2kDE

μσ(Mp)
+ kDF√

μσ(Mp)

)
s + ( kEE

μσ(Mp)
+ kEF√

μσ(Mp)
+ kFF

)
s2
)
. Therefore, Assumption 1

is verified. Because αs is globally Lipschitz, we let ψ = αs and it can be computed
that

ζ ∗ = sup
s>0

∫ χ(s)

s

1

ψ(r)
dr = sup

s>0

∫ χ(s)

s

er

λ(er − 1)
dr

= 1

λ
sup
s>0

ln(er − 1)
∣∣∣ln(μ(es−1)+1)

s

= 1

λ
sup
s>0

ln
(μ(es − 1) + 1) − 1

es − 1

= lnμ

λ
.

Thus, Assumption 3 is verified and Proposition 11 is proven by Theorem 1. ��
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