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Abstract— This paper discusses conditions for stability of
switched linear systems under arbitrary switching, formulated
in terms of smallness of appropriate commutators of the ma-
trices generating the switched system. Such conditions provide
robust variants of well-known stability conditions requiring
these commutators to vanish and leading to the existence of a
common quadratic Lyapunov function. The main contribution
of the paper is to apply the Łojasiewicz inequality to character-
ize the persistence of a common quadratic Lyapunov function
as the matrices are perturbed so that their commutators no
longer vanish but instead are sufficiently small. It is shown how
known constructions of common quadratic Lyapunov functions
for commuting matrices and for matrices generating nilpotent
or solvable Lie algebras can be used, in conjunction with the
Łojasiewicz inequality, to estimate allowable deviations of the
commutators from zero.

I. INTRODUCTION

A switched system is defined by a family of individual

systems (modes) and a piecewise constant switching signal

that determines the active mode at each time instant [1].

The fact that commutation relations between the constituent

modes play an important role in determining stability of the

switched system under arbitrary switching, as well as the

existence of a common Lyapunov function, is by now well

known. These issues were investigated for linear switched

systems in [2], [3], [4], [5], [6], [7] and for nonlinear

switched systems in [8], [9], [10], [11], [12].

Conditions requiring certain commutators to vanish are

not robust with respect to arbitrarily small perturbations to

the system data, and as such are not very useful for practical

purposes. Our recent work in [13] has focused on developing

more robust stability criteria for switched linear systems,

which require the generating matrices to be sufficiently

close to commuting or to generating a solvable or “solvable

plus compact” Lie algebra. For discrete-time switched linear

systems, we were able to derive an upper bound on the norm

of the commutators under which the system is still exponen-

tially stable. For continuous-time switched linear systems,

stability conditions were formulated as bounds on the size

of suitable components in Levi or Cartan decompositions

of the Lie algebra. Related work in [14], [15] examines

the problem of choosing state feedback matrices that yield

approximate simultaneous triangularizability in closed loop

(i.e., give closed-loop matrices whose associated Lie algebra

is approximately solvable).
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In this paper we investigate a more direct approach to

robustifying the stability conditions based on commutators

for continuous-time switched linear systems, by bringing in

an idea not previously used in this context. Given a family

of matrices whose commutators are small, we can ask the

following question: is this family of matrices necessarily

close to a family of commuting matrices? More generally, if

the Lie algebra generated by given matrices is approximately

nilpotent or solvable (in the sense that certain commutators

almost vanish), is this family of matrices necessarily close to

another family which generates a nilpotent or solvable Lie

algebra? The answer to these questions is “yes” provided

the matrices are drawn from a compact set (as we already

noted in [13, Remark 1]). The main new idea proposed

here is to gain a better understanding of this issue by using

the Łojasiewicz inequality [16]. Given a function (usually

a polynomial or a maximum of polynomials) which takes

a small value at a given point, the Łojasiewicz inequality

provides an upper bound on the distance from this point to

the set of zeros of the function. What this result allows us to

do in the present context is, given an upper bound on the size

of commutators of given matrices, estimate the distance from

this family of matrices to a family of commuting matrices.

If this distance is small enough, then standard perturbation

arguments can be used to show that a common quadratic

Lyapunov function for the latter, commuting matrix family

(which can be constructed by known tools) still serves as a

common Lyapunov function for the original matrix family.

We therefore obtain a robust stability criterion in terms of

the size of the commutators. For matrices generating almost

nilpotent or almost solvable Lie algebras, the reasoning is

very similar but involves higher-order commutators.

The above program is carried out in the paper as fol-

lows. In Section II we set up the problem and discuss the

Łojasiewicz inequality and its immediate consequences. In

Section III we conduct a perturbation analysis and establish

a sufficient condition for stability (Proposition 1) that relates

the size of the commutators to the eigenvalues of the matri-

ces provided by the common quadratic Lyapunov function

and the constants appearing in the Łojasiewicz inequality.

A more detailed analysis of these parameters follows in

Sections IV and V, where specific known constructions

of common quadratic Lyapunov functions for commuting

matrices (Section IV-A) and matrices generating a solvable

Lie algebra (Section IV-B) are utilized to obtain more explicit

estimates. A summary and discussion of open questions in

Section VI conclude the paper.
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II. PRELIMINARIES

Let {A1, A2, . . . , AN} ⊂ R
n×n be a finite set of Hurwitz

matrices generating the switched linear system

ẋ = Aσx (1)

where σ : [0,∞) → {1, . . . , N} is a piecewise constant

switching signal.

Suppose that for all i, j ∈ {1, . . . , N} the corresponding

commutator [Ai, Aj ] satisfies the bound

‖[Ai, Aj ]‖F ≤ ε (2)

where ε is a small positive number and ‖ · ‖F denotes the

Frobenius matrix norm (which is the Euclidean norm of the

corresponding vector in R
n2

, ‖A‖2F :=
∑n

k,l=1
A2

kl).

Viewed as a function on R
2n2

, the square of the commu-

tator norm ‖[·, ·]‖2F is a polynomial of degree 4. We need to

combine these squared norms for each pair (Ai, Aj) into a

single function. We can do this by defining

f(A1, A2, . . . , AN ) :=
∑

1≤i<j≤N

‖[Ai, Aj ]‖
2
F

or

f(A1, A2, . . . , AN ) := max
1≤i<j≤N

‖[Ai, Aj ]‖
2
F

The first is itself a polynomial in the elements of all the

matrices, the second is the maximum of a finite number

of polynomials. In either case, the Łojasiewicz inequality

applies to the function f (the original inequality applies to

real analytic functions on compact sets, and more specific

results have since been obtained for polynomials and for

maxima of finitely many polynomials; see [16] and the

references therein). The Łojasiewicz inequality stipulates the

existence of two positive constants1 C and α such that

Cf(A1, A2, . . . , AN ) ≥ δα (3)

where δ is the distance from the N -tuple of matrices

(A1, . . . , AN ) to the set of N -tuples of commuting matrices

(this distance being defined by stacking the matrices together,

computing the difference element-wise, and taking the Frobe-

nius norm). In view of (2), this implies that there exist

matrices Bi, i = 1, . . . , N such that for all i, j ∈ {1, . . . , N}
we have:

1) [Bi, Bj ] = 0
2) Ai = Bi +∆i with ‖∆i‖F ≤ δ := (Cℓε2)1/α

where ℓ equals either N(N−1)/2 or 1 depending on whether

f is defined as a sum or as a max. From now on we assume

the latter and drop ℓ.

Instead of (2) we can place bounds on higher-order com-

mutators, e.g.,

‖[Ai, [Aj , Ak]]‖F ≤ ε

for all i, j, k ∈ {1, . . . , N}. Then the above construction can

be adapted in the obvious way and we have the existence

1See Section V for more information about these constants.

of matrices Bi which are no longer commuting but generate

a Lie algebra that is nilpotent of the corresponding order.

More generally, a Lie algebra is solvable if appropriate (but

not all) high-order commutators vanish, and so by placing

bounds on these commutators of the form

‖[[Ai, Aj ], ..., [Ak, Aℓ]]‖F ≤ ε

for all i, j, k, ℓ ∈ {1, . . . , N}, we have the existence of

matrices Bi which generate a solvable Lie algebra.

III. PERTURBATION ANALYSIS

If ε is small enough then δ defined in item 2 above is

small enough so that the matrices Bi, i = 1, . . . , N are still

Hurwitz. Since the matrices Bi commute (or, more generally,

generate a nilpotent or solvable Lie algebra), we then know

that they possess a common quadratic Lyapunov function

and generate an exponentially stable switched linear system.

The idea then is to do perturbation analysis, to show that the

switched linear system generated by the original matrices Ai

is stable as well.

Let V (x) = xTPx be the common Lyapunov function for

the Bi’s, so that

PBi +BT
i P = −Qi < 0 ∀ i = 1, . . . , N (4)

The derivative of the same Lyapunov function V along the

flows given by the original matrices Ai is characterized by

PAi +AT
i P = P (Bi +∆i) + (Bi +∆i)

TP

= PBi +BT
i P

︸ ︷︷ ︸

=−Qi

+P∆i +∆T
i P

and this is still negative definite if ∆i is small enough in a

suitable sense. The following sufficient condition for this is

derived in [17, p. 342] and [1, p. 42]:

‖∆i‖2 <
λmin(Qi)

2λmax(P )
(5)

where ‖ · ‖2 is the matrix norm induced by the Euclidean

norm and λmin(·) and λmax(·) denote the smallest and the

largest eigenvalue of a symmetric matrix, respectively.

To express this in terms of the Frobenius norm that we

were using earlier, we utilize the following easily proved

fact [18, Lemma 4.9]:

‖∆i‖2 ≤ ‖∆i‖F

Putting this together with the bound on ‖∆i‖F from the

previous section, we obtain the bound

(Cε2)1/α <
λmin(Qi)

2λmax(P )

and can state the following result.

Proposition 1 The switched system (1) is exponentially sta-

ble, with common quadratic Lyapunov function xTPx, if

ε2 <
1

C

(
λmin(Qi)

2λmax(P )

)α

(6)
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where ε comes from (2), C and α come from (3), P and

Qi, i = 1, . . . , N come from (4), and the matrices Bi, i =
1, . . . , N satisfy conditions 1 and 2 of the previous section.

To have a constructive upper bound on ε, we need to get a

handle on the eigenvalues of the matrices P and Qi from the

Lyapunov equations (4) as well as on the constants C and

α from the Łojasiewicz inequality (3). These are discussed

next.

IV. MORE ON LYAPUNOV MATRICES

When Hurwitz matrices Bi, i = 1, . . . , N commute or

generate a nilpotent or solvable Lie algebra, a common

quadratic Lyapunov function for this family of matrices can

be constructed explicitly by using the methods of [4] or [6],

respectively. We start with the construction from [4] for the

commuting case.

A. Commuting matrices

The construction from [4] applies when our commuting

matrix family is finite, say B1, B2, . . . , BN , and it consists

in solving the following sequence of Lyapunov equations:

P1B1 +BT
1 P1 = −I

P2B2 +BT
2 P2 = −P1

...

PNBN +BT
NPN = −PN−1

(7)

Then V (x) = xTPNx is the desired common quadratic

Lyapunov function for all N linear systems. The matrices

Pi are given explicitly by the integral expressions

P1 =

∫ ∞

0

eB
T

1
teB1tdt, P2 =

∫ ∞

0

eB
T

2
tP1e

B2tdt, . . .

Let M be a common bound on the induced 2-norm of the

Bi’s:

‖Bi‖2 ≤ M, i = 1, . . . , N (8)

An estimate on this number M can be easily obtained

by slightly enlarging max1≤i≤N ‖Ai‖2. Since the Bi’s are

Hurwitz, there also exist positive constants c and λ such that

‖eBit‖2 ≤ ce−λt ∀ t ≥ 0, i = 1, . . . , N (9)

(taking c and λ to be the same for all i is always possible,

but we could also work with different ones to achieve more

precise results). This gives the lower and upper bounds

e−Mt|x| ≤ |eBitx| ≤ ce−λt|x| ∀x

(see [17, pp. 107 and 159]). Plugging these into the integral

expression for P1, we obtain the lower bound

xTP1x =

∫ ∞

0

|eB1tx|2dt

≥

∫ ∞

0

e−2Mtdt |x|2 =
1

2M
|x|2

and the upper bound

xTP1x ≤ c2
∫ ∞

0

e−2λtdt |x|2 =
c2

2λ
|x|2

valid for all x. At the next step, we can use these bounds to

obtain bounds for P2:

xTP2x ≥
1

2M

∫ ∞

0

|eB2tx|2dt

≥
1

2M

∫ ∞

0

e−2Mtdt |x|2 =
1

4M2
|x|2

and, similarly,

xTP2x ≤
c4

4λ2
|x|2

Proceeding in this way, we conclude that

λmin(Pi) ≥
1

(2M)i
, λmax(Pi) ≤

c2i

(2λ)i
(10)

for i = 1, . . . , N . Now we can use these bounds to derive a

lower bound for the stability margin λmin(Qi)/(2λmax(P ))
appearing in (6). Since the order in which the equations (7)

are solved does not matter, we can match the Lyapunov

equation (4) for each i with the last equation in (7) which

means setting P := PN and Qi := PN−1. Then (10) gives

λmin(Qi)

2λmax(P )
≥

λN

MN−1c2N

and a sufficient condition for (6) to hold is

ε2 <
1

C

(
λN

MN−1c2N

)α

(11)

For this bound to be useful, we need to have some

estimates of the overshoot constant c and the exponential

decay rate λ appearing in (9). However, the matrices Bi

are unknown, so we can realistically expect to only know

the corresponding quantities for the given matrices Ai—

let us call them c̄ and λ̄—and then need to estimate them

for the Bi’s. There are several ways to do this. One is

to look at the characteristic polynomial of Ai, check by

how much its value can change if the matrix elements are

perturbed by δ, and use the Łojasiewicz inequality again to

estimate the distance between the roots of the original and the

perturbed polynomial; this allows us to estimate λ because λ
corresponds to the least stable eigenvalue. Another way is to

connect the behavior of solutions of the two linear systems

ẋ = Aix and ẋ = Bix = (Ai − ∆i)x by using small-gain

analysis and derive time-domain convergence estimates for

the latter system from those of the former. A third way, and

perhaps the cleanest, is to use Lyapunov analysis, essentially

in the opposite way to how we proceeded from (4). Suppose

that we know positive definite matrices P̄i and Q̄i which

satisfy the Lyapunov equation

P̄iAi +AT
i P̄i = −Q̄i
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(P̄i can be different for each i, so we are not talking about a

common Lyapunov function here). From this, the overshoot

c̄ and decay rate λ̄ for Ai are given by

c̄ =
λmax(P̄i)

λmin(P̄i)
, λ̄ =

λmin(Q̄i)

λmax(P̄i)

Suppose that δ is small enough so that

2δλmax(P̄i) ≤ γλmin(Q̄i)

for some γ ∈ (0, 1). Then we have

P̄iBi +BT
i P̄i = P̄i(Ai −∆i) + (Ai −∆i)

T P̄i ≤ (1− γ)Q̄i

and it follows that the overshoot c for Bi equals c̄ and the

decay rate λ for Bi equals (1 − γ)λ̄. This, by the way,

automatically ensures that Bi is Hurwitz.

B. Nilpotent or solvable Lie algebra

For the case of higher-order nilpotency or solvability, the

above construction of a common Lyapunov function does

not apply and only the construction from [6] is available.

This construction relies on Lie’s theorem (see, e.g., [19,

§9.2]) which says that if the matrices Bi, i = 1, . . . , N
generate a solvable Lie algebra, then they have a common

invariant flag and, hence, there exists a unitary coordinate

transformation matrix that simultaneously brings them to

the upper triangular form.2 Since this unitary transformation

preserves the eigenvalues appearing in the formula (6), we

can assume that the Bi’s are already upper triangular. Note

that the Bi’s are in general complex-valued, and so will be

the Lyapunov function in the original basis, but this has no

consequence for our results. Suppose that we have, as in

the previous subsection, positive numbers M and λ such

that the bounds (8) and (9) hold, i.e., M and −λ are upper

bounds on the induced 2-norm of the Bi’s (and hence on the

absolute values of their individual elements) and on the real

parts of their eigenvalues (diagonal elements), respectively.

The result of [6] tells us that we can look for a real-valued

matrix P = PT > 0 solving PBi+B∗
i P = −Qi < 0 in the

diagonal form P = diag{p1, . . . , pn}. For concreteness, let

us say that we want Qi ≥ I for each i. This is guaranteed if

the hermitian matrices −PBi −B∗
i P − I , i = 1, . . . , N are

all positive definite, which is in turn ensured if their principal

minors are all positive. We can satisfy this property by

choosing the numbers pi iteratively, following the procedure

given in [6] (with very minor modifications). Namely, fix a

small positive number ρ > 0, choose p1 := (1 + ρ)/(2λ),
and then for k = 1, . . . , n− 1 choose

pk+1 :=
k!k2k−1Mk+1 max1≤i≤k p

k+1

i + 2ρ

2λρ

Using the same counting argument as in [6], it is not hard to

check that all principal minors of −PBi−B∗
i P−I will then

2The coordinate transformation is in general complex. The orthonormality
of the basis in which the matrices become triangular is not part of the usual
statement of Lie’s theorem, but it can always be achieved by the Gramm-
Schmidt process.

be no smaller than ρ. By construction, we have λmin(Qi) ≥ 1
and λmax(P ) = max1≤i≤n pi. Therefore, the bound (6) is

satisfied if

ε2 <
1

C(2max1≤i≤n pi)α
(12)

V. MORE ON ŁOJASIEWICZ CONSTANTS

The constants C and α depend on the compact set from

which the matrices Ai are drawn, as well as on the number

N of these matrices; once the matrices are fixed (and, in

the nilpotent or solvable case, the desired commutators are

fixed), these constants are also fixed.

As discussed in [16], for maxima of polynomial functions

of given degree some explicit bounds on the exponent α
in (3) are available. Our f is a polynomial of degree 4,

or a maximum of finitely many polynomials of degree 4,

in the elements of the matrices Ai. So, in view of the

explicit bounds given in [16] we can view the exponent α
as something that we can easily estimate in practice.

Explicit bounds on the constant C, on the other hand,

are harder to come by in the literature as one tends to

be interested in asymptotics only. Some information about

C can be obtained by following the proofs given in [16].

Basically, C is given by the product of two terms. The first

term is computed from the coefficients of the polynomials

(expressed in a suitable basis). The second term depends on

the size of the compact set to which the elements of the

matrices Ai belong, as well as on α.

VI. SUMMARY AND DISCUSSION

We derived upper bounds on commutators which guar-

antee that the switched linear system (1) is exponentially

stable and possesses a common quadratic Lyapunov function.

We first established the basic bound given by the inequal-

ity (6), and then we used particular known constructions of

a common Lyapunov function for commuting matrices and

for matrices generating a solvable Lie algebra to arrive at the

more specific bounds (11) and (12). There are three different

ways to think about these results:

Qualitative These results confirm that the switched system is

stable if the matrices “nearly” commute, or if they generate

a “nearly” nilpotent or solvable Lie algebra. Even as a

qualitative result this is of interest. The only such explicit

result in the literature that we know is the one in [13,

Section 2] given for discrete time and derived using direct

calculations. (Of course a discrete-time version of the above

analysis is also possible, based on replacing (5) by a suitable

discrete-time version.) The continuous-time results in [13,

Section 3] are different in nature and rely on the structure

of the Lie algebra.

Asymptotic The results tell us that asymptotically as the

stability margin λmin(Qi)/(2λmax(P )) shrinks to 0, the

admissible size of the commutator shrinks as this stability
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margin raised to the power of α/2. This quantitative infor-

mation is obtained from the knowledge of α only and does

not depend on C.

Quantitative As we said in Section V, specific expressions

for α in terms of the degree of the polynomials (which in the

case of first-order commutators equals 4) are available in the

literature. Getting a handle on C is a bit more problematic

but can also be done, as mentioned in Section V. As for

the matrices P and Qi, we gave some explicit estimates for

them in Section IV. So, in principle, for a given collection of

matrices Ai we can calculate whether their commutators are

small enough for our results to guarantee stability. On the

other hand, for numerical purposes one can simply check

feasibility of the LMIs

PAi +AT
i P < 0, i = 1, . . . , N

and this can almost certainly be done more efficiently than

using the estimates we discussed. So, the primary interest

of our results probably lies in the qualitative insight that

they provide rather than in their potential to be used for

calculations.

Some open avenues for future research are: comparing

the above perturbation approach with the direct approach

from [13, Section 2]; handling compact but not finite sets of

matrices; and seeing if the Łojasiewicz inequality can yield

any result for nonlinear (e.g., polynomial) switched systems.
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