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a b s t r a c t

Westudy synchronization of nonlinear systemswith robustness to disturbances that arisewhenmeasure-
ments sent from the master system to the slave system are affected by quantization and time sampling.
Viewing the synchronization problem as an observer design problem, we invoke a recently developed
theory of nonlinear observers robust to output measurement disturbances and formulate a sufficient
condition for robust synchronization. The approach is illustrated by a detailed analysis of the Pecora–
Carroll synchronization scheme for the Lorenz system, forwhich an explicit bound on the synchronization
error depending on the quantizer range and sampling period is derived.
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1. Introduction

The synchronization problem has attracted tremendous atten-
tion from several scientific communities after the publication of
the seminal paper by Pecora & Carroll [1] over a quarter of century
ago. In mid-2017 the paper [1] had more than 6000 citations.1
Quite a number of monographs, special issues of journals, and
surveys on synchronization have been published, see [2–12] and
the references therein. The history of the ideas introduced in [1]
can be found in the recent survey [13].

In most of the aforementioned works the authors study only
idealized, disturbance-free versions of the synchronization prob-
lem. However, taking into account disturbances is important both
for theoretical study and for practical implementation of the pro-
posed methods. In particular, the issue of robustness to distur-
bances arises when the slave system has to rely on imprecise
measurements of the master system’s behavior. This can be due,
for example, to time sampling and signal quantization. Robust
synchronization in the presence of such effects is the subject of this
paper.

The problem of synchronization under communication con-
straints and bounded disturbances has been considered in [14–16]
for passifiable systems. These papers treated control systems in
Lurie form satisfying a hyper-minimum-phase assumption on the
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linear part. The synchronization error was characterized in terms
of the transmission rate and upper bounds on the disturbances.
Among recent papers devoted to controlled synchronization of
nonlinear systems under disturbances one can also mention [17],
where an adaptive H∞ solution is sought, and [18], where sliding
mode control is proposed. However, very few rigorous quantitative
results on robustness of the Pecora–Carroll scheme under bounded
disturbances seem to be available. (As discussed in [19], most
known synchronization schemes are quite sensitive to even small
random noise.) Perhaps the closest existing work is [20] which
establishes robustness to uncertainties satisfying inequality con-
straints and relies, like we do here, on Lyapunov-based observer
design.

In this paper we study synchronization under information con-
straintswhichmanifest themselves as errors corrupting the output
measurements. The robust synchronization problem is formulated
as that of obtaining a bounded (nonlinear) gain from this output
measurement error to the synchronization error. Our approach is
to cast the synchronization problem as an observer design problem
and invoke recent results from [21] on nonlinear observers robust
to output measurement disturbances in an input-to-state stability
(ISS) sense [22]. This allows us to move beyond the passification
method of [14–16] and potentially treat amore general class of sys-
tems.While the general idea of relating (robust) synchronization to
observer design is not new (see, e.g., [20,23]), it appears that this
link has not been previously explored with robustness defined in
an ISS sense; the new results on ISS observer design from [21] now
make this possible, as we demonstrate here.
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As an illustration of our method, we study the Pecora–Carroll
synchronization scheme for the Lorenz system with time sam-
pling and quantization. We are able to work out explicit bounds
on the ISS gain and the synchronization error for this example.
Providing suchprecise quantitative characterizations of robustness
constitutes themain contribution of this work.We also expect that
the framework presented here will be useful for analyzing other
examples as well.

As explained inmore detail below, in the Pecora–Carroll scheme
the slave system acts as a reduced-order observer for the master
system. For this reason, we focus our discussion on reduced-order
observers in this paper. However, full-order observers can also be
considered; for example, the linearized error dynamics observer
from [24]was shown in [21] to be robust in an ISS sense, and in fact
this robustness property of this observer was already recognized
and used in [25] to achieve robust synchronization under commu-
nication constraints similar to the ones treated in this paper.

2. Robust synchronization and qDES observers

We consider the well-known Pecora–Carroll synchronization
scheme [1]. The master system (also known as the leader or drive
system) has the form

ẋ = F (x, y)

ẏ = G(x, y)
(1)

where y represents the measured variables and x the rest of the
state variables. The slave system (also known as the follower or
response system) nominally has the form

˙̂x = F (x̂, y). (2)

As discussed, e.g., in [26], (2) can be viewed as the limiting case of
the system
˙̂x = F (x̂, ŷ)

˙̂y = G(x̂, ŷ) − k(ŷ − y)
(3)

which is a copy of (1) under the action of high-gain feedback
control. Indeed, for large k > 0 this controlled system can be
viewed as a singularly perturbed system, and its reduced system as
k → ∞ is precisely (2). We choose not to include y-dynamics and
work with (2) rather than (3) because the y-variables are directly
measured.

In this paper we are interested in the situation where the
output measurements received by the slave system are corrupted
by additive disturbances. Such disturbances arise from communi-
cation constraints; specifically, they can be caused by quantization
effects, time sampling, time delays, or combinations thereof. As a
result, the slave system becomes

˙̂x = F (x̂, y + d). (4)

The ŷ dynamics are still not necessary, since y + d can serve as a
static estimate of y.

To define the synchronization objective, let us introduce the
synchronization error

e := x̂ − x. (5)

In the absence of disturbances, when the slave system (2) is used, it
is desired that e(t) → 0 as t → ∞. In the presence of disturbances,
when the slave system (4) is used, this objective is no longer
realistic. It is more reasonable to require that the interconnection
of (1) and (4) have an ISS property from d to e; we refer to this as
robust synchronization. Particularly suitable in the present context
is a weaker variant of ISS considered in [21], called quasi-ISS. To

define it, we need the following notation. A functionα:R≥0 → R≥0
is of class K if α is continuous, strictly increasing, and α(0) = 0. If
α is also unbounded, it is of class K∞. A function β : R≥0 ×R≥0 →

R≥0 is of class KL if β(·, t) is of class K for each fixed t ≥ 0 and
β(r, t) is decreasing to zero as t → ∞ for each fixed r ≥ 0. We
will denote by ∥ · ∥I the essential supremum norm of a signal on a
time interval I .

The quasi-ISS property from d to e says that for each K > 0,
there should exist a class KL function βK and a class K∞ function
γK such that all solutions of (1), (4) satisfy

|e(t)| ≤ βK (|e(0)|, t) + γK (∥d∥[0,t]) (6)

whenever ∥x∥[0,t] ≤ K and ∥y∥[0,t] ≤ K . The function γK is called
a quasi-ISS gain function; when it is linear, i.e., γK (r) = cr for
some constant c > 0, we refer to c simply as a quasi-ISS gain.
When the state of the system (1) is known to be globally bounded,
quasi-ISS becomes standard ISS (this will be the case for the Lorenz
system considered below). We view (6) as encoding the robust
synchronization objective of interest in this paper. It means, in
particular, that if the disturbance d is bounded or asymptotically
vanishing, then so is the synchronization error e.

The slave system (4) can be regarded as a reduced-order observer
for the master system (1). (If ŷ-dynamics were included, as in (3),
it would be a full-order observer.) Note that the observer does
not explicitly contain a damping term. Such damping has to be
naturally present in the system dynamics; this property will be
captured by the condition (8) below.Observers achieving the above
quasi-ISS property (6) were studied in [21] under the name of
quasi-Disturbance-to-Error Stable (qDES) observers. A set of
Lyapunov-based sufficient conditions for the qDES property was
developed in [21]. It is then clear that in the present set-up, the
results of [21] can be directly used to study robust synchronization.

In particular, adopting Corollary 3 of [21] to themaster/plant (1)
and slave/observer (4), with the synchronization error defined
by (5), we arrive at the following.

Proposition 1. Suppose there exists a C1 function V = V (e) and class
K∞ functions α1, α2, α3, α4 such that for all values of e, x, ywe have:

α1(|e|) ≤ V (e) ≤ α2(|e|),
⏐⏐⏐∂V
∂e

(e)
⏐⏐⏐ ≤ α4(|e|), (7)

∂V
∂e

(e)
(
F (e + x, y) − F (x, y)

)
≤ −α3(|e|), (8)

and the ‘‘asymptotic ratio’’ condition

lim sup
r→∞

α4(r)
α3(r)

= 0 (9)

holds. Then (4) is a qDES observer for (1), i.e., property (6) holds under
the specified conditions.

Since this result was not stated in [21] in exactly the same form,
we briefly outline the main steps of its proof. From (1), (4), and (5),
the error dynamics are given by

ė = F (x̂, y + d) − F (x, y)
=

(
F (e + x, y + d) − F (x, y + d)

)
+

(
F (x, y + d) − F (x, y)

)
.

Differentiating V along these dynamics and using (8), in which y
plays the role of a ‘‘dummy’’ variable and can be replaced by y+ d,
and the last inequality in (7), we see that whenever ∥x∥[0,t] ≤ K
and ∥y∥[0,t] ≤ K for some K > 0, we have

V̇ ≤ −α3(|e|) + α4(|e|)φK (|d|) (10)

where

φK (r) := max
|x|≤K ,|y|≤K ,|d|≤r

|F (x, y + d) − F (x, y)|.

By virtue of (9), the qDES property (6) now follows from the main
result (Theorem 1) of [21].
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Remark 1. There is one special case in which the step of pass-
ing from the Lyapunov inequality (10) to the qDES property (6)
becomes especially clear. Namely, let us slightly strengthen the
asymptotic ratio condition (9) by assuming that there exists a class
K∞ function α such that

α(r)α4(r) ≤ α3(r) ∀ r ≥ 0. (11)

We note that (11) is easily seen to imply (9), and in fact (11) will
be satisfied in the example studied later. We can then write

|e| > α−1
◦ φK (|d|) ⇒

α3(|e|)
α4(|e|)

> φK (|d|) ⇒ V̇ < 0

where the first implication follows from (11) and the second
from (10). This is well known to imply (6) with

γK (r) := α−1
1 ◦ α2 ◦ α−1

◦ φK (r).

2.1. Communication constraints

We now develop the above approach to robust synchronization
in more concrete terms for the scenario when the disturbance d
arises from time sampling and quantization. To begin, we make
two assumptions. The first is that the solutions of the system (1)
are bounded, and the second is that (4) is a qDES observer for (1).

Assumption 1. For every initial condition (x(0), y(0)), the corre-
sponding solution of the master system (1) remains in a bounded
set Ω = Ω(x(0), y(0)) for all t ≥ 0.

In the sequel we consider the initial conditions to be arbitrary
but fixed and suppress the explicit dependence of the set Ω on
initial conditions.

Assumption 2. The master–slave system (1)–(4) is qDES in the
sense of (6).

Let us first address the time-sampling error. Suppose that the
output is sampled at the times tk := kT , k = 0, 1, . . ., where T > 0
is the sampling period, so that the actualmeasured output received
by the slave system is given by

y(t) + d(t) = y(tk), t ∈ [tk, tk+1)

where d(t) := y(tk) − y(t) is the disturbance that represents the
time-sampling error.With the help of Assumption 1, we can obtain
an upper bound on d(t) as follows. For t ∈ [tk, tk+1) we have

y(t) = y(tk) + ẏ(s)(t − tk)

for some s ∈ [tk, t]. Using the second differential equation in (1)
and the fact that t − tk < T , we have

|d(t)| = |y(t) − y(tk)| ≤ |G(x(s), y(s))|T ≤ max
(x,y)∈Ω

|G(x, y)|T .

We rewrite this bound for future use as

|d(t)| ≤ LyT (12)

where we defined

Ly := max
(x,y)∈Ω

|G(x, y)|. (13)

Next we proceed to take into account the effects of quantiza-
tion. Suppose that output measurements are transmitted from the
master system to the slave system over a digital communication
channel using some encoding/decoding scheme. We keep the dis-
cussion general here, but in the next sectionwewill consider a spe-
cific instance of such a scheme. Suppose that the actual measured
output received by the slave system is

ȳ(t) = ȳ(tk), t ∈ [tk, tk+1)

where ȳ(tk) is the output of the decoder at time tk generated from
quantizedmeasurements. Note that the quantization here is added
to the already present time sampling. Then it is easy to see that the
total data transmission error d(t) := ȳ(tk) − y(t) is the sum of two
components, one corresponding to the quantization error and the
other to the time-sampling error:

d(t) =
(
ȳ(tk) − y(tk)

)
+

(
y(tk) − y(t)

)
.

The second term on the right-hand side of this formulawas already
bounded from above by LyT . The size of the first term is determined
by the particular quantization scheme being used. Postponing a
more specific discussion of this issue to the example in Section 3
below, for now let us just suppose that there exists a number ε̄ such
that |ȳ(tk) − y(tk)| ≤ ε̄ for all k. Then, the resulting overall bound
on the data transmission error becomes

|d(t)| ≤ ε̄ + LyT =: ∆. (14)

Finally, let γK be the quasi-ISS (or qDES) gain function from (6),
computed with respect to the set Ω; in other words, K is picked so
that |x| ≤ K and |y| ≤ K when (x, y) ∈ Ω (the value of K depends
on the choice of initial conditions). Such a function γK exists by
Assumption 2. A consequence of the property (6) is the following
ultimate bound on the synchronization error:

lim sup
t→∞

|e(t)| ≤ γK (∆) (15)

where ∆ is given by (14).
In the next section we demonstrate the above approach on

a detailed example, for which we will be able to derive explicit
numerical values for the quantities appearing on the right-hand
side of (15).

3. Lorenz system

Consider the following Lorenz system [27]:

ẋ1 = σx2 − σx1

ẋ2 = −x2 − x1x3 + θx1

ẋ3 = −βx3 + x1x2

y = x1

(16)

where x1(t), x2(t), x3(t) are the state variables, β , σ , θ are constant
parameters. It is known that for certain parameter values (e.g. for
β = 8/3, σ = 10 and θ = 97), system (16) exhibits chaotic
behavior [27,28]. This system fits into the form (1)with x = (x2, x3)
and y = x1, and with the equation order reversed compared to (1).

3.1. Boundedness of solutions

Let us first verify Assumption 1. We claim that all solutions of
the Lorenz system (16) are bounded and eventually enter the ball

{x ∈ R3
: x21 + x22 + (x3 − σ − θ )2 ≤ ρ2

} (17)

whose radius ρ = ρ(β, θ, σ ) is specified below. Such results are
well known; see, e.g., [2,29] and the references therein. Consider
the candidate Lyapunov function

V (x1, x2, x3) =
1
2

(
x21 + x22 + (x3 − σ − θ )2

)
.

Its derivative along solutions of (16) is

V̇ = −σx21 − x22 − β

(
x3 −

σ + θ

2

)2
+ β

(σ + θ )2

4
which is negative outside an ellipsoid contained in the ball of radius
1
2 (σ + θ )

√
1 + β max{1, 1

σ
} centered at (0, 0, (σ + θ )/2). This ball
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is in turn contained in the ball of radius

ρ :=
1
2
(σ + θ )

(
1 +

√
1 + β max{1, 1/σ }

)
(18)

centered at (0, 0, σ + θ ), which serves as an invariant attractor
proving the claim.

The actual upper bound on solutions of course depends on
initial conditions. Namely, the solutionswill remain in the smallest
ball centered at (0, 0, σ + θ ) which contains the initial state and
whose radius is at least ρ. For future reference, we formally define
this ball as

Ω := {x ∈ R3
: x21 + x22 + (x3 − σ − θ )2 ≤ D2

} (19)

where

D := max{ρ, |(x1(0), x2(0), x3(0) − σ − θ )|} (20)

and ρ is defined in (18).

3.2. Time-sampling error

Suppose as before that the output is sampled at the times tk :=

kT , k = 0, 1, . . ., where T > 0 is the sampling period, so that the
actual measured output received by the slave system is given by

x1(t) + d(t) = x1(tk), t ∈ [tk, tk+1)

where d(t) := x1(tk) − x1(t) is the disturbance that represents
the time-sampling error. To derive an upper bound on this time-
sampling error,weneed to specialize the earlier bound (12)–(13) to
the Lorenz system (16). From the first differential equation in (16)
we see that G(x, y) = σ (x2 − x1), hence

Ly = max
(x,y)∈Ω

σ |x2 − x1|

where we know that Ω is the ball defined in (19) with radius D
defined in (20). The maximum of |x2 − x1| over this ball is easily
seen to be

√
2D. We thus obtain Ly = σ

√
2D and

|d(t)| ≤ σ
√
2DT . (21)

The bound (21) will be used below for evaluation of the synchro-
nization error.

3.3. Binary digital quantization error

3.3.1. Data transmission procedure
Consider transmission of the signal over the digital commu-

nication channel, where both time-sampling and level quantiza-
tion are present. Let us consider the binary coder with memory,
cf. [25,30,31].

Let signal y(t) be transmitted over the digital communication
channel at sampling instants tk = kT , where T > 0 is a constant
sampling period, k = 0, 1, . . . are integers. At each k, the deviation
signal δ[k] between transmitted signal y(tk) and a certain centroid
c[k] (defined below in the text) is calculated as δ[k] := y(tk) −

c[k]. Signal δ[k] is subjected to the following binary quantization
scheme:

δ̄[k] := M sign(δ[k]) (22)

where sign(·) is signum function, M > 0 may be referred to as
a quantizer range. Then the quantizer output δ̄[k] ∈ {−M,M} is
transmitted over the communication channel to the decoder. The
sequence of centroids c[k] is recursively defined by the following
algorithm:

c[k + 1] = c[k] + δ̄[k], c[0] = 0. (23)

Eqs. (22), (23) describe the coder algorithm.

A similar algorithm is implemented by the decoder: the decoder
output ȳ[k] is defined as

ȳ[k] := c̄[k] + δ̄[k] (24)

where the centroid c̄[k] is found in the decoder in accordance
with (23):

c̄[k + 1] = c̄[k] + δ̄[k], c̄[0] = 0. (25)

Thus the centroid sequence c̄[k] is the same as c[k] (in the absence
of dropouts or other unexpected transmission errors), and in sub-
sequent derivationswemake no distinction between the two. Note
that the considered coding scheme corresponds to the channel data
rate of R = T−1 bits per second. In between transmission times we
define

ȳ(t) := ȳ[k], t ∈ [tk, tk+1).

3.3.2. Data transmission error
Let us evaluate an upper bound of data transmission error d(t)

given that the growth rate of y(t) is uniformly bounded. A bound
for ẏ(t) was already found in Section 3.2 and it is

Ly = σ
√
2D. (26)

To analyze the coder–decoder accuracy, let us derive an upper
bound ∆ on the transmission error d(t) := ȳ(t) − y(t), defined as
∆ = supt |d(t)|.

From the coding–decoding scheme (22)–(25) it is clear that for
each time interval t ∈ [tk, tk+1), the transmission error may be
represented as d(t) = ȳ[k]−y(t) = c[k+1]−y(t). Due to the above
bound on the rate of y(t), over each time interval t ∈ [tk, tk+1) the
magnitude of d(t) is bounded by |y(tk) − c[k + 1]| + LyT .

To evaluate |y(tk) − c[k + 1]|, assume that for a certain k it is
valid that

|y(tk) − c[k]| ≤ 2M. (27)

Then, after renovation of c by means of (23), the magnitude of
y(tk) − c[k + 1] does not exceed M . Therefore, during the interval
t ∈ [tk, tk+1) the following inequality

|d(t)| < M + LyT (28)

holds. IfM is chosen satisfying the condition

M > LyT (29)

then at instant tk+1 inequality (27) will be fulfilled with k + 1 in-
stead of k and, using the induction argument, the same relation (27)
will be valid for all subsequent steps. In the notation of Section 2.1,
this means that ε̄ = M .

RepresentingM in the formM = αLyT for some α > 1, one ob-
tains the following expression for the upper bound of transmission
error, which is a special case of (14):

∆ = (1 + α)LyT . (30)

The inequality (29) imposes restrictions on sampling period T and
quantizer range M for a given growth rate Ly of y(t). If (29) is
fulfilled, thenmagnitude |d(t)| of data transmission error d(t) does
not exceed ∆. Otherwise the data transmission scheme based on
(22)–(24) may fail.

Remark 2. The assumption has been made that (27) is valid for
some (finite) k. This condition may be violated at the beginning of
the process. But in view of boundedness and continuity of y(t), it
may be easily proven that for any M > 0 procedure (23) ensures
that such a k exists. Alternatively, for speeding up convergence of
c[k] to the vicinity of y(tk), a zooming strategy may be employed
(see [32,33]).
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Remark 3. Violation of (29) may eventually lead to loss of track-
ing by c[k] of the values of y(tk) at some instant. After several
steps, tracking may be restored (based on the aforementioned
arguments), and time intervals when (27) is fulfilled or violated
may alternate. Nevertheless, we consider this situation as data
transmission failure.

3.4. qDES observer

Consider the reduced-order observer:
˙̂x2 = −x̂2 − ȳx̂3 + θ ȳ
˙̂x3 = −β x̂3 + ȳx̂2

where we use the shorthand notation

ȳ = y + d

for the output signal received by the observer, to reflect the fact
that the observer acts on sampled and quantized measurements
of the system; here d is the transmission error as defined earlier.
This observer is consistent with the form (4) for the slave system,
and without disturbance it reduces to the classical Pecora–Carroll
scheme. If desired, it can be completed by the static estimate x̂1 = ȳ
for x1.

Define the state estimation error vector

e =

(
e2
e3

)
:=

(
x̂2 − x2
x̂3 − x3

)
and consider the candidate Lyapunov function

V (e2, e3) :=
1
2
(e22 + e23). (31)

We now check that the hypotheses of Proposition 1 are satisfied.
First, since ∂V/∂e = e it is clear that (7) holds with α4(r) := r .
Next,

F (e+ x, ȳ)− F (x, ȳ) =

(
(−x̂2 − ȳx̂3 +��θ ȳ) − (−x2 − ȳx3 +��θ ȳ)

(−β x̂3 + ȳx̂2) − (−βx3 + ȳx2)

)
hence
∂V
∂e

(e)
(
F (e + x, ȳ) − F (x, ȳ)

)
= −e2

(
x̂2 − x2 + ȳ(x̂3 − x3)

)
− e3

(
β(x̂3 − x3) + ȳ(x̂2 − x2)

)
= −e22 −�

��e2ȳe3 − βe23 +�
��e3ȳe2 = −e22 − βe23 ≤ −min{1, β}|e|2

and so the inequality (8) holds with α3(r) := min{1, β}r2. Since
α4 is linear and α3 is quadratic, the asymptotic ratio condition (9)
is clearly fulfilled and the observer is qDES by Proposition 1 (see
also Remark 1). Therefore, the ISS property from the measurement
disturbance d to the state estimation error e is guaranteed (because
we know that the state of the plant remains bounded).

In fact, we can go further and explicitly estimate the ISS gain.
Note that

F (x, ȳ) − F (x, y) =

(
(HH−x2 − ȳx3 + θ ȳ) − (HH−x2 − x1x3 + θx1)

(���−βx3 + ȳx2) − (���−βx3 + x1x2)

)
=

(
θ − x3
x2

)
d.

Consequently, (10) in this case becomes

V̇ ≤ −min{1, β}|e|2 + C |e| |d| (32)

where

C := sup
x∈Ω

⏐⏐⏐⏐(θ − x3
x2

)⏐⏐⏐⏐

Fig. 1. ρ-circle and the Lorenz attractor (projection onto the (x1, x2)-plane).

and Ω is the compact set defined in (19) which is invariant for the
system (16) by the analysis of Section 3.1. Since Ω is the ball of
radius D centered at (0, 0, σ + θ ), it is easy to see that

C = D + σ . (33)

Rewriting (32) as

|e| >
C

min{1, β}
|d| ⇒ V̇ < 0

yields an upper bound C/min{1, β} on the ISS gain. This means, in
particular, that

lim sup
t→∞

|e(t)| ≤
C

min{1, β}
∥d∥[0,∞) ≤

(1 + α)σ
√
2DTC

min{1, β}
(34)

where the first inequality relies on the form of V given by (31)
and to arrive at the last inequality we used (26) and (30). Recall
that in the case of time-sampling only (Section 3.2) we can set
α = 0, while in the presence of binary quantization (Section 3.3)
we have α > 1 and the quantizer range must be chosen as M =

αLyT . We see that the achievable synchronization error is inversely
proportional to the information transmission rate R = T−1.

3.5. Simulations

3.5.1. Simulation parameters
The classic parameter values of Lorenz system (16) are taken

for the simulations: β = 8/3, θ = 97, σ = 10. For the chosen
parameters, relation (18) yields ρ = 156. For simplicitywe assume
that the initial state vector x(0) belongs to the ball of radius ρ
specified by (17) and (18). Projections onto the (x1, x2)-plane of
this ball and the phase plot of the Lorenz system, starting from
x1(0) = 2, x2(0) = 4, x3(0) = 2, are depicted in Fig. 1.

Expression (26) gives Ly = σ
√
2ρ ≈ 2210.

3.5.2. Data transmission error
Simulation results for α = 1.01 and various T are depicted in

Figs. 2–6.
Based on (29), for T = 2 · 10−3 s the value of M was taken as

M = 4.42. In this case (30) gives ∆ = 8.88. Simulation run during
100 s gives the ‘‘measured’’ values Ly,sim = 850 and ∆sim = 4.79.
The corresponding time histories are depicted in Figs. 2, 3.

For the case of T = 5 · 10−3 s the corresponding time histories
are depicted in Figs. 4, 5. For T = 5 · 10−3 s, (30) gives ∆ = 11.2.
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Fig. 2. Time histories of y(t), ȳ(t), d(t) for T = 2 · 10−3 s.

0

Fig. 3. Time histories of x2(t), x̂2(t), e2(t) = x2(t) − x̂2(t) for T = 2 · 10−3 s.

Fig. 4. Time histories of y(t), ȳ(t), d(t) for T = 5 · 10−3 s.

The signal transmission bound foundby the simulation is as∆sim =

14.3.
Dependencies of ∆, ∆sim on data bit-rate R ∈ [102, 103

] bit/s
are shown in Fig. 6.

It is worth mentioning that the coder range M in the afore-
mentioned simulation has been found based on the theoretical
bound Ly = σ

√
2ρ as Ly = 2210. An actual bound Ly, obtained

by intensive simulations, is about 850. Application of this value to
M = αLyT (for the sameα)makes it possible to significantly reduce
data transmission error∆ and reduces difference between theoret-
ical and computational evaluation of ∆(R), which is seen on Fig. 7.

3.5.3. Synchronization error
To find an upper bound of the estimation error |e(t)| the-

oretically, let us use relation (33). Under the aforementioned
assumption that x(0) belongs to the ball (17), (18) of radius ρ,

Fig. 5. Time histories of x2(t), x̂2(t), e2(t) = x2(t) − x̂2(t) for T = 5 · 10−3 s.

Fig. 6. Transmission error bounds vs. data bit-rate R (bit/s). ∆ – theoretical bound,
∆sim – simulation result.

Fig. 7. Transmission error bounds vs. data bit-rate R (bit/s) for Ly = 850. ∆ –
theoretical bound, ∆sim – simulation result.

we have that x(t) remains in this ball for all t , and it follows that
C = ρ + σ .

Therefore, by (34) we obtain

lim sup
t→∞

|e(t)| ≤
ρ + σ

min{1, β}
∆, (35)

where ρ and ∆ are given by (18) and (30), respectively. For given
parameter values, one obtains that lim supt→∞|e(t)| ≤ 166∆.

Computer experiments demonstrate that in practice the robust
synchronization schemeworks significantly better than the theory
predicts. This difference between the theoretical and simulation-
based evaluation may be explained by a ‘‘random’’ character of
the data transmission error, which is not taken into account in the
worst-case theoretical analysis.
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4. Conclusions

A recently introduced framework of qDES nonlinear observers
was applied to characterize robustness of the Pecora–Carroll syn-
chronization scheme to errors arising from time sampling and
quantization of the measurements sent from the master to the
slave system. For the Lorenz system example, a specific expression
on the synchronization error in terms of the information trans-
mission rate and system parameters was derived. Future studies
will be directed at closing the gap between the derived theoretical
results and the better ones observed in simulations, as well as at
applying the approach to other system classes and other synchro-
nization schemes.
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