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Abstract—This paper presents a second-order model for syn-
chronous machines that can be utilized in power system dynamic
performance analysis and control design tasks. The model has
a similar structure to the classical model in that it comprises
two dynamic states, the power angle and the angular speed.
However, unlike the classical model, the model finds applications
beyond first swing stability analysis; for example, they can also
be utilized in transient stability studies. The model is developed
through a systematic model-order reduction of a nineteenth-order
state-space model by using singular perturbation techniques. It is
validated by comparing its response with that of the nineteenth-
order model and that of the classical model.

I. INTRODUCTION

Dynamic models of synchronous machines find applications
in power system analysis, control design tasks, and education,
with each application requiring models that capture dynamical
phenomena relevant to the intended use. This has led to the
proliferation of synchronous machine models in the literature
[1], [2], [3], [4], with varying degrees of complexity, com-
putational cost, and state-space dimension. One such model
is the so-called classical model advocated in [5] and [6], a
second-order dynamic model that captures the dynamics of
the machine phase and angular speed.

Analytically, the classical model is the simplest synchronous
machine dynamical model, but it has certain limitations that
restrict its applications to first swing stability analysis, i.e.,
stability analysis during the first second after a large dis-
turbance [7], [8], [9]. As a result, if we consider that a
power system may be stable in the first swing but unstable in
subsequent swings, it is clear that the classical model, though
simple, is unreliable beyond a one-second time interval and not
suitable for certain analysis and design tasks. For example,
the design of a generator synchronization scheme requires
a model that captures dynamics of the generator phase, fre-
quency and voltage magnitude over the entire synchronization
period. A second-order model such as the classical model
should suffice, but the first swing stability constraint makes it
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inapplicable if the synchronization period exceeds one second.
On the other hand, while existing high-order models, such
as the two-axis model and the one-axis model [2], [10], are
clearly more accurate and therefore very useful for power
system simulation, they are also significantly more detailed
and computationally expensive. Consequently, the high-order
models are, in general, analytically intractable for such control
design tasks. Therefore, there is a need to develop models
that possess the simplicity of the classical model, but also the
temporal breadth that it lacks.

The main contribution of this paper is the development
of a second-order synchronous machine model that, when
compared to the classical model, has the same state-space
dimension but, unlike the classical model, can be utilized
for analysis over multiple swings. Consequently, the model
is significantly more accurate over a long time interval, and
it is useful for a broader range of applications—an example
of a usage of this model is in the development of a robust
synchronization method for synchronous machines [11]. We
employed singular perturbation analysis as our main tool [2],
[12], [13], [14], [15] for deriving the model presented in this
paper by (i) identifying the fastest dynamic states in a high-
order model; (ii) developing approximate manifold equations
for them, which are algebraic equations; and (iii) replacing
the differential equations for these states with the algebraic
counterparts.

Our approach to developing the proposed synchronous ma-
chine model is based on the developments in [2], [15], [16],
where zero-order and first-order approximations of manifolds
for fast dynamic states are used to develop reduced-order mod-
els. In [15], [16], the use of integral manifolds for model-order
reduction is introduced with some applications presented, and
in [2], the technique is used to develop the two-axis model,
the one-axis model, and the classical model.

The remainder of the paper is organized as follows. In Sec-
tion II, we present a synchronous machine high-order model
that is adopted as the starting point for the development of our
reduced order model; we also discuss the classical model. In
Section III, we utilize singular perturbation analysis to develop
a second-order model from the high-order model. Finally, in
Section IV we validate the second-order models developed,
using numerical examples. In Section V we comment on
implications of the presented results.



II. PRELIMINARIES

We begin this section by presenting the high-order model of
a synchronous machine adopted in this work. In addition, the
time-scale properties of this model are discussed. Afterwards,
we introduce the so-called classical model and describe how
it can be obtained from the high-order model.

A. High-Order Synchronous Machine Model

The high-order synchronous machine model we describe
in this section is a nineteenth-order state-space model that is
based on developments in [2], [3]. The components included
in the model are: (i) three damper windings, (ii) a wound-rotor
synchronous machine, (iii) an IEEE type DCIA excitation
system [17], and (iv) a Woodward diesel governor (DEGOV1)
[18], coupled to a diesel engine, which acts as the prime
mover. We provide mathematical expressions that describe
the dynamic behavior of these components. [Note that the
model is presented utilizing the ¢d0 transformation, with all
parameters and variables scaled, and normalized using the per-
unit system. Also, unless otherwise stated, we use ‘g’ and ‘d’
subscripts to denote quadrature axis (g-axis) and direct axis
(d-axis) components of a variable or parameter, respectively].

Assumption 1. The synchronous machine is connected to an
electrical network bus through a short transmission line.

1) Damper windings model: Let ®4,(t) and Eg (t) denote
the flux linkages of two damper windings aligned with the ¢-
axis of the synchronous machine, let ®4, (¢) and E, (¢) denote
the flux linkages of a damper winding and a field winding, re-
spectively, aligned with the d-axis of the synchronous machine,
and let I, and I; denote the g-axis and d-axis components
of the stator output current, respectively. Then, the damper
windings dynamics can be described as follows:

Tq”(i)tp :—(I)qQ — (Xq/ 7Xk) quEdlv (1)
Td”¢d1 = — ¢d1 — (Xd' — Xk) Id + Eq/(t),
and
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where X denotes the machine leakage reactance, X, de-
notes the machine stator reactance, X, and Xy denote
machine transient reactances, X~ denotes the machine sub-
transient reactance, and 7,/ = (quz + qu) Tan =

UJ()R
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constants with Xpq,, Xka,, Xip, Xig, denoting leakage
reactances, X,,, and X,,q denoting mutual reactances, and
Ry,, Rq,, R4, denoting winding resistances.

2) Stator windings and network model: Let @és)(t) and
<I>fis) (t) denote the g-axis and d-axis components of flux
linkages for the stator windings, respectively, let @fle) (t) =
~X@71,, and ®(t) = —X(®1, denote the g-axis and d-
axis components of the flux linkage for the electrical line,

are time

respectively, let w(®)(¢) denote the machine angular speed in
electrical radians per second, and let §(*) (t) denote the power
angle of the synchronous machine in electrical radians. At
the electrical network bus, let V() and () denote the voltage
magnitude, in per unit, and the voltage phase relative to a refer-
ence frame rotating at the nominal frequency in electrical radi-

ans, respectively. Let V" := VO cos (5(‘) 6(1)) (l)

VO sin (56 — 5<l>), ®,(t) = B (1) + B (1), By(t) =

) (t) + ®\(t). Then, the stator winding and network
dynamics are described by:
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where X;,e,) = Xy + X© and X(gi) = Xg + X,
X () denotes the per-phase line reactance, X, denotes a
machine sub-transient reactance, R(¢) denotes the per-phase
line resistance, 5 denotes the per-phase stator resistance, and
wp denotes the nominal frequency in electrical radians per
second.

3) Excitation system model: Let Ef(t) denote the out-
put voltage of the machines excitation system, let Ug(t)
denote the exciter control input, let U f(t) denote the rate
feedback variable of the voltage regulator, and let V(%) =

ey )

Assumption 2. The effects of magnetic saturation on the
machines excitation system are negligible.

Then, the dynamics of the machines excitation system can be
described as follows:

Xd/ — Xd// (
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where W(S) denotes the reference voltage magnitude, 74 =
Xy = _ Li+Lw 7o _ Neax L
ng’Tf Kf s Ty — R, ,Ku—Nu Rf Xd

denotes the machlne stator reactance, 7, denotes the amplifier
time constant, K, denotes the amplifier gain, X denotes
the field winding reactance, Ry denotes the field winding
resistance, Ly denotes the unsaturated field inductance, K|,
denotes the slope of the unsaturated portion of the exciter
saturation curve, R + denotes the exciter circuit resistance, L;
and L,, denote series and magnetizing inductances of the
stabilizing transformer, which is used to stabilize the excitation
system through voltage feedback [2], respectively, R; denotes
the series resistance of a stabilizing transformer, and %:f
denotes the turns ratio of the stabilizing transformer.

4) Prime mover and speed governor model: Let T,,(t)
denote the mechanical torque output of the machine. For the
speed governor system, let P,,(¢) denote the output of its
actuator, with P,, = P,,(t), and let P, (t) denote the
output of its electric control box, with P,, = Py, (t). Let
P, = P, (t) + 74P,,(t) denote the valve position of the
diesel engine, which acts as the prime mover. Then, the speed
control system of the synchronous machine can be expressed
as follows:
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where 75, 173 , T4, 75 and 7g denote time constants of the
control system, 7,, = T?ﬁs, k denotes a controller gain
for the actuator, P. denotes the power change setting of the
machine, M denotes the inertia of the machine, DO denotes
the friction and windage damping coefficient of the machine,
Tm denotes the time constant of the engine, and Dy = ﬁ,
with Rp denoting the droop coefficient. [Note that for salient
pole machines, X, = X/, so that E(t) = 0, and for round-
rotor machines, X, = Xy].

B. High-Order Model Time-Scale Properties

The following observations are based on standard parameter
values obtained from synchronous machine models in [1], [2],
[3], [18], and an eigenvalue analysis of these models.

Observation 1. The dynamics of ®,,, ®q,, Eq, ®q, B, 05,
(I)(e) Ey, Eg, Us, Us, T, P, P@, Py,, P,, and Py, are
much faster than those of w'®) and §%).

Observation 2. For ¢ = 0.1, the parameters RS, Tg's Tg's

Tf Tus Tur Tms Tags T20 T1, (T5+7T6),

oy’
are O (e)L.

T5T6
(t5+76)° K,R

!Consider a positive constant €, where € < 1, and a function f(¢), defined
on some subset of the real numbers. We write f(e) = O (e ) if and only if
there exists a positive real number &, such that: | f(e) ‘ < ke*, as e = 0.

Based on these observations, the nineteenth-order machine
model described by (1) — (5) can be expressed compactly as:

z(t)=f (:c(t),z(t),e) , z(0) = z°,
A1) = g (@), 2(0),0), 2(0) = 2,

T
where x(t) = [6(3), w(s)} ,and z(t) = [<I>q, &, Ey,
Py a7, @, Eyo By Up Uy To,
P,, P.,,, PB,, P, Pbl] . In the remainder of this
paper, we refer to the elements of z(¢) as the fast states, and

the elements of x(t) as the slow states. Other observations,
which will prove useful in Section III, are:

(6)

Observation 3. The dynamics of ®,, ®q, ®% and ® are
much faster than those of ®g,, ®4,, Eq and E.

Observation 4. The dynamics of ®,, and ®4, are much faster
than those of Eg and E .

C. Classical Model

The classical model of a synchronous machine is a second-
order model whose formulation is based on the following
assumptions [19]: (i) the machine can be modeled as a constant
magnitude voltage source with a series reactance, (ii) the
mechanical rotor angle of the machine can be represented by
the angle of the voltage source, (iii) damping can be neglected,
and (iv) the machine mechanical power input is constant. The
classical model is valid only for the first swing, and according
to [2], it can be derived from the hrgh -order model by setting
T = 0,7y = 0, = =0, 20 — 1 R —0, R, =0,
Xy =Xag, T¢ =00, Ty = 00, Tm—ootogrve

HOBRON WO,
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dl
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where Ey = \/(Eq/(O))2 + (B (0))2 and Xé,e) = Xg +

X (©) denote constants.

III. THE DAMPED MODEL: AN ACCURATE
SECOND-ORDER MODEL FOR SYNCHRONOUS MACHINES

In this section, we derive a second-order model for syn-
chronous machines that can be employed for multi-swing
stability analysis, i.e., stability analysis beyond the first one
second after a large disturbance. The model preserves effects
of damper windings on the machines response, and we refer
to it as the damped model. The following simplifying assump-
tions are employed in the model derivation process:

Assumption 3. The angular speed of the machine, w'®)(t), is
suﬁczently close to the nominal speed of the machine so that

=14+ O (e).
Assumptlon 4. The per-phase line resistance, R(°) is O (e).

The damped model is formulated by replacing the damper
windings dynamical equations, (1) and (2), with algebraic



counterparts called first-order approximate manifolds, and
replacing the differential equations for other fast states with
algebraic counterparts called zero-order approximate mani-
folds. By using a first-order approximation for the damper
windings manifolds, effects of damper windings on the ma-
chine response are captured by the resulting reduced model.
Let R = R, + R®, X\ = X, + x©, X\ =
Xg+X©), X(e) Xk+X(e) X( ) — Xq/—i—X(e), XC(;) =
Xo + X, Xf) = X+ X(©), Xg;) = Xgr 4+ X,

Starting with the states observed to have the fastest dynam-
ics, @4(t), ®alt), q)fze) (t) and @Ele)(t), we formulate the zero-
order approximate manifolds presented in the first paragraph of
the Appendix. Next, for the subsequent fastest states, @, (%)
and ®g4, (t), which are damper winding states, we derive a
first-order approximation of its manifold. Manifolds for ®, (¢)
and ®4, (t), can be expressed as power series in Tg and Tgr,
respectively, to give:

(bQ2 (t) = (I)qmo(t) + Tq”q)%,l(t) + (Tq”)Q(I)Q272(t) +-
Dy, (t) = Pa, 0(t) + Tar Pa, 1 () + (Tar)* Py, 2(E) + -+,
()

where ‘0’ subscripts are used to denote a zero-order approxi-
mations, and where first-order approximations are given by:

(I)q2 (t) ~ (I)L]2,0(t) + qu’q)lh,l(t)v

P, (1) = Pa, 0(t) + Tar Pay 1 (1)
Expressions for ®,, o(t), Pg,.1(t), ®g,.0(t) and By, 1(t) are
derived using the following steps:
e Substitute (8) into (1) to give:

€))

T'I”% ((I)fn»o(t) + 7 Py (8) + - ) = ((qu,O(t)

"r‘Tq//(I)q%l(t) + .- ) - (Xq/ — Xk).[q — Ed/(t),

Td//% ((I)dl,O(t) + Td”q)dl,l(t) + - ) = — ((I)dl,O(t)
+7ar®a, 1 () + ) = (Xar = Xi)Ia + Eg (1). 0)

(

e Using the zero-order approximations in (16), substitute
expressions for I, and I, into (10) and equate the (7,/)°,
(1a)°, (Tq)* and (747)' terms to give:

Dg0(t) = = %Ed (1) — e X"V(l sin(6®) (¢) — 60,
Py 0(t) = %Eq (1) + 4 ;kw cos(6) (t) — 50,
Dy, a(t) =— %(xgm, (t) — (X, — X, )V
-sin(é(s) (t) — 5(1))) + w 'd(l),
5
Dg, 1 (1) = %(Xée)[?q’ (t) — (Xa — Xd/)V(l)
-cos(6@(t) —6D)) — qu(l)
- MEN),

Tar(X$)2

where V( = VO cos(6®) () — 6O (6 () — 6B) +
VO sin( (s)() §0), VI = VO cos(6(®)(t) — 60 —
VO sin(66) () — 6) (66 (¢) — §®). Next, for the damper
winding state observed to have the slower dynamics, Eg (),
we derive a first-order approximation of its manifold. A
manifold for Eg (t) can be expressed as a power series in
Ty O give:

Egp(t) = Eqot)+ 1y Ea1(t)+ (1¢)°Eg2(t)+--+, (11)
from where it follows that a first-order approximation is given
by:

Ed/ (t) ~

Expressions for Eg o(t) and Eg 1(t) can be derived using the
following steps:
e Substitute (9) and (11) into (2) to give:
Ty i (Baro(t) + T Eg 1 (t) + ) =
— (Baro(t) + ¢ Bara(t) +---)

X, (X=X )
+ (X — Xg) (Iq Y Xy T Pa 1 (1)

Ed/70(t) +Tq/Ed/71(t). (12)

13)

e Using the zero-order approximations in (16), substitute the
expressions for I, and @, 1(t), into (13), and equate the
(74)° and (74/)! terms to give:

Eyo(t) = %V(U Sin(é(s)(t) _ 5(l)) B %ZV;[),
N,/ ¢
Eyalt) = 5V + O(ry),
where N, = Tq’Tq”Xq(?)Xlge) (X, — X,)(X,
Xqu)(Xq/ — Xk), Dq — Tq/X( (X )2(
Xp)? — 1 XSO (XX, — X)Xy — Xgn), Nq, _

Tq' (X;f))g(Xq — Xg)(Xg — Xi)?, and Dq = Xlge)Dq'
Finally, for other states observed to have fast dynamics, i.e.,
Ey, E¢, Ug, Uy, Ty, Py, Py, Py, Pa,, and Py, , zero-order
manifolds are derived as described in the Appendix.

Substituting the first-order approximate manifolds in (9) and
(12), and the zero-order approximate manifolds in (16) and
(17), into (1)—(5), and setting O ((74)?) terms to zero, the
damped model for synchronous machines is given by:

56 = W) —
Mt = PO — Dyt — G (V) sin2 (5 — 50
_ % (WS) _ V(s)) v sin (5<s> _ 5(1))

( )2605 (5(5) _ 5(1)) (5<s> _ 5(0)
¢, ( z)>2 sin <5<s> _ 5<Z>) (g(s) _ 5(1))
1%

_ (€i=Ca) Cd) Oy ging (5 — 50 )
(14)
vghere PT(S) = Pc + Dowo, DO = DO +
Dy, Ck, Cy, Cy, and (Cy are constants,
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Ky _ (Xa A A
Cp = x4 Co = W’ Cq=Cq + (Cq’ +an) Co,
. ’T//X/X//) pad (X*X/)
with C,» = (7 C, e e ) O, =
R ) T
e ~ raXEOxO(x ,_x ,
WX (X - X)), Cp = ’}a;(» v =Xer)
q
and Cjy = Cqr + (Cd/ + Cd//) Cyr Cd, with
1" X = X 1" ot X 7X U
C, = Iaitd d)) c, = M’ Cy =
(X(e)) Dd
(e) x ()

e Ty X X X ar =X g
leXé/)(Xd,_Xk')j C// = d d X(g) 4 )
Cy,Cq,Cy,  are positive constants, whereas C, is a
nonnegative constant. For salient pole machines, Cq = 0,

whereas for round-rotor machines, C,, = 0.

Assumption 5. The voltage support of the synchronous ma-
chine is such that: (i) the voltage magnitude at the electrical
network bus, i.e., VO, is approximately constant at 1 per-
unit, and (ii) the steady state voltage error of the synchronous
machine, i.e., Vr(s) — V(S), is approximately constant.

Using Assumption 5, a simplified form of the damped
model, which was employed in [11], is formulated as follows.
Let V¥ — v = 1 and V) = 1. It follows that, for
6() := §6) 4 wot, and Y := § 4 wyt, the damped model
is described by:

) — @),

Mo = P& — PO (1) — Dyw®),

where Pr(g) = PC + DQ(JJ(), Do = DQ + Do, l)(
Ky sin(0®) — 1) + X, sin 2(_9(8) - Q(l)) (C1 cos(0
0W) + Cysin?(0) — a0Y)) () — §W), With C; = c
Cy=Cy K1 = % and X1 = =5, C1,C4, Ky are positive

d . .
constants, whereas X1 1S a nonnegative constant.

I'V. NUMERICAL VALIDATION

In this section, simulation results comparing the high-order
model, the classical model, and the damped model of a round-
rotor synchronous machine are presented. We consider a two-
bus power system with a synchronous machine connected to
a constant power load through a short electrical transmission
line. See Fig. 1 for a one-line diagram, and Table I for the
system parameters. In this test case, we consider the system

Fig. 1: One line diagram of a power system with a synchronous
machine connected to a constant power load through a short
transmission line.

response to an increase in active power demanded by the
load. A stable equilibrium point of the high-order model is

chosen as the common initial condition for all the models.
The loads active power demand is increased from 0.05 [pu]
to 0.25 [pu] at time ¢ = 30 [s], and the reference voltage
magnitude W(S) is changed at time ¢t = 30 [s] to keep the
bus voltage magnitude at VY = 1 [pu]. The numerical results
presented in Fig. 2 show that the damped model has an overall
better accuracy than the classical model, and that after the first
one second following the disturbance, the inaccuracy of the
classical model increases exponentially.

TABLE I: System parameters for a salient pole synchronous
machine

parameter value
Ty 0.9453 [s]
T4 0.042 [b]
Damper windings XTZ,// 032%18283 [sz]
Xy 0.7299 [pu]
Xq 1.7997 [pu]
X 0.19 [pu]
wo 376.99 [rad/s]
Stator windings )?d S// 0002(? [g;l;]
X 0.32 [pu]
Tar 5.0141 [s]
Ty 1x 1078 [s]
. Tu 0.002 [s]
IEEE DCI1A exciter 7 1% 1012 [s]
X4 1.7997 [pu]
Ky 1 [pu]
Ky 200
Ky 0 [s]
1 1x10~% [s]
T2 0 [s]
T3 0.5001 [s]
T4 25 x 1073 [s]
T5 9 x 1074 [s]
DEGOV1 speed governor T6 5.74 x 1073 [s]
Tm 24 x 1073 [s]
K 10
P 0 [pu]
M 0.1188 [s2]
Do 2.5825 x 107 [s/rad]
Do 0.0531 [s/rad]
o R(©) 0.004 [pu]
Transmission hne X(e) 00595 [pu]

V. CONCLUDING REMARKS

In this paper, we introduced the damped model for syn-
chronous machines. We also showed how this model and
the so-called classical model can be derived from a high-
order machine model. While the classical model is derived
by identifying small and large parameters in the high-order
model, and setting them to zero and infinity, respectively, the
damped model is derived by identifying fast and slow states
in the high-order model, and replacing differential equations
for the fast states with algebraic counterparts, referred to as
approximate manifolds (zero-order or first-order). The damped
model was validated by comparing its response to those of a
high-order model and the classical model, for given test cases.
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Fig. 2: Machine angular speed, voltage magnitude, and phase.

APPENDIX

In this section, we present the zero-order approximate
manifolds for the fast states identified in Section II-B. These
manifolds are used in our formulation of the damped model.
The following zero-order manifolds were developed by setting

R,=0,R® =0, L =0and (t)

Py o(t) =— V(l) sin (5(5) (t) — 5(1)) 7
Da0(t) = VW cos (5 (t) — 6" )
* (16)
@()(1) = V¥~ vWsin (50(1) - 60,
‘I)EZ()J(t) =—- Vq(s) + VO cos (5(5)(15) _ 5(1)) ,
where ‘0’ subscripts are used to denote a zero-order
approximations, and from where it follows that:
Xgr =Xgr X 1"
I, = Bt - KX

(X —X0) (X5)) (Xq,—x )(X<,,>)Ed’( ) +
VO sin (56 (1)—60)

x$)

cand [ = e P 0) +

(X —X0) (X33
(X —X) Eyt) - V(l)cos<5(5)(t)—5(l))
(Xar—X1) (X;/)) x$)

zero-order manifolds were developed by setting 74, and all
O (€) parameters except 7, and 7., to zero to give:

. The following

K, (V) —v)

Epot) = ===, Tmo(t) = Puo(t),

Puo(t) = Po — Do(w'® (t) —wp),  Py0(t) =0,

Py, o(t) =0, P, o(t) =0, P,,0(t) =0,

Upo(t) = KpEpo(t),  Upo(t) = ZeByo@r), U7

(e) .
Eyo(t) = Xz;) E;o(t) — g—jvqm
+ XXy cog(50) (1) — 60,
Xd

where Ny = 1areXPOX9Xy - Xo)(Xe —
Xdu)(Xd/ - X ), and Dd = Td/ (e)(X(g,e))Q(Xd/
Xp)? = 7 X\ (X2 (Xa = Xar)(Xar = Xa).
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