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Norm-Controllability of Nonlinear Systems
Matthias A. Müller, Daniel Liberzon, Fellow, IEEE, and Frank Allgöwer

Abstract—In this paper, we introduce and study the notion of
norm-controllability for nonlinear systems. This property cap-
tures the responsiveness of a system with respect to applied inputs,
which is quantified via the norm of an output. As a main contri-
bution, we obtain several Lyapunov-like sufficient conditions for
norm-controllability, some of which are based on higher-order
derivatives of a Lyapunov-like function. Various aspects of the pro-
posed concept and the sufficient conditions are illustrated by several
examples, including a chemical reactor application. Furthermore,
for the special case of linear systems, we establish connections
between norm-controllability and standard controllability.

Index Terms—Controllability, input-to-state stability (ISS),
Lyapunov methods, nonlinear systems.

I. INTRODUCTION

CONTROLLABILITY is one of the fundamental concepts
in control theory. Usually, it is formulated as the ability

to steer the state of a system from any point to any other point
in any given time by an appropriate choice of the control input.
For linear time-invariant systems, controllability can be easily
checked via necessary and sufficient matrix rank conditions;
furthermore, controllable modes can be identified with the help
of the Kalman controllability decomposition (see, e.g., [4]). For
nonlinear systems, similar decompositions have been studied,
and for some special system classes—most notably systems
affine in controls—controllability can be characterized in terms
of the rank of a certain Lie algebra of vector fields (see, e.g,
[5], [6]). However, for general nonlinear control systems our
understanding of point-to-point controllability is much less
complete compared to the linear case, and even in those settings
where controllability tests are available they are more difficult
to apply.

In this paper, we propose a new notion which can be viewed
as a weaker/coarser version of the standard controllability.
Namely, in contrast to point-to-point controllability, we look at
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the norm of the state and ask how it is affected by the applied in-
puts. In particular, we examine whether this norm can be made
large by applying large enough inputs for sufficiently long time.
When defining norm-controllability, we actually take a more
general approach and consider the norm of an output which
identifies directions of interest in the state space (and may in
particular be the entire state). The definition (see Section III)
is such that the size of the reachable set of the system (or its
image under the output map) can be lower-bounded in terms of
the norm of the applied inputs and the time horizon over which
they were applied. We believe that this concept is very natural
and relevant in many settings of practical interest. In economics,
for example, it may be of interest to maximize the profit of a
company, for which the effects of inputs such as the price of
a certain product or the number of advertisements have to be
analyzed. Another possible application context is in the process
industry, where one wants, e.g., to determine whether and how
increasing the amount of reagent yields a larger amount of
product; such a chemical reactor example will be considered
in Section V (see Example 6).

Another context of interest for norm-controllability is the
case where the considered system input constitutes a distur-
bance. Then, it is interesting to obtain a lower bound for the
effect of the worst-case disturbance on the system state or out-
put, i.e., to obtain a lower bound for the reachable set at a given
time. In this sense, the proposed concept of norm-controllability
can also be viewed as complementary to the well-known
concept of input-to-state-stability (ISS) as introduced in [7],
and related notions involving outputs such as input-to-output
stability (IOS) [8] or L∞ stability (see, e.g., [9]). Namely,
these concepts deal with the question whether bounded (small)
inputs result in bounded (small) states or outputs, i.e., an upper
bound for all possible system states or outputs at all times is
sought in terms of a suitable norm of the input. In contrast, as
stated above, norm-controllability yields a lower bound on the
reachable set of the system (or its image under the output map)
at each time in terms of the norm of the applied inputs. Besides
the conceptual complementarity between norm-controllability
and ISS (or related notions involving outputs), there is also a
relation in terms of Lyapunov-like characterizations of these
notions. While ISS has an equivalent characterization in terms
of a Lyapunov function that decreases when the norm of the
state is large compared to the norm of the input [10], our first
main result (Theorem 1 in Section IV-A) formulates a similar
Lyapunov-like sufficient condition for norm-controllability, but
a Lyapunov function should now increase when the norm of
the state is small compared to the norm of the input. However,
while it is instructive to highlight the connections and similari-
ties, most of the technical ideas employed in this paper are very
different from those used in the above references.

We note also that our basic premise in this work is similar
to that of the paper [11] which introduced and studied the
concept of norm-observability. Instead of observability, usually
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defined as the ability to reconstruct the state of the system from
measurements of the output (and of the input if one is present),
norm-observability was defined in terms of being able to obtain
from this data an upper bound on the norm of the state rather
than the precise value of the state. For linear systems the two
properties turn out to be equivalent, but for general nonlinear
systems this is no longer the case and the latter, weaker notion
has some interesting properties, as demonstrated in [11]. Again,
the conceptual similarity notwithstanding, the technical devel-
opments presented here and in [11] are completely different
and there does not appear to be any direct duality relationship
between norm-controllability and norm-observability.

Besides introducing and discussing the notion of norm-
controllability (see Section III), one of the main technical
contributions of this paper is the development of several
Lyapunov-like sufficient conditions (see Section IV). The first
one (see Section IV-A) involves first-order derivatives of a
Lyapunov-like function V and has first appeared in the con-
ference paper [1]. While it is appealing due to its rather
simple formulation, its applicability is in general restricted to
systems with relative degree one. The two subsequent suffi-
cient conditions (see Sections IV-B and C), whose formulation
involves higher-order derivatives of V , resolve this issue and
are applicable to systems with arbitrary relative degree; such
conditions were first obtained in [2]. This generalization is
nontrivial and relies on higher-order derivatives that are not
classical ones but higher-order lower directional derivatives
(see, e.g., [12], [13]). A simplified formulation of the sufficient
conditions was recently proposed in1 [3]. In the present paper,
we adopt this simplified formulation and give a self-contained
treatment of all results, including proofs which were partly
missing in the conference versions. Furthermore, several novel
results are presented in this paper, including various illustrative
examples (see Sections V–VII), a further elaboration of norm-
controllability for the special case of linear systems, where we
also establish connections with the standard controllability (see
Section VI), and two weaker versions of norm-controllability
(see Section VII). These weaker versions capture cases where
a system is only responsive to inputs of sufficiently large
magnitude, or where the considered lower bounds are only valid
after a certain amount of time; also for these cases, Lyapunov-
like sufficient conditions are obtained.

II. PRELIMINARIES AND SETUP

We consider nonlinear control systems of the form

ẋ = f(x, u), y = h(x), x(0) = x0 (1)

with state x∈R
n, output y∈R

p, and input u∈U⊆R
m, where

U is a closed set which specifies admissible input values.
Suppose that f ∈C k̄−1 for some k̄≥1 and that the (k̄ − 1)-st
partial derivatives of f with respect to x are locally Lipschitz
in (x, u). Admissible input signals u(·) to the system (1) satisfy
u(·)∈L∞

loc(R≥0, U), where L∞
loc(R≥0, U) denotes the set of all

measurable and locally essentially bounded functions from R≥0

to U . We say that a set B⊆R
n is invariant for system (1)

under controls in a set Ū⊆U if for every x0∈B and every

1We remark that the sufficient conditions in [2], [3] missed the assumption
expressed by the second bullet point in Theorems 2 and 3 of this paper,
respectively, and hence were not correct as stated there.

u(·)∈L∞
loc(R≥0, Ū) the corresponding state trajectory satisfies

x(t)∈B for all t≥0. We assume that the system (1) exhibits
the unboundedness observability property (see [14] and the
references therein), which means that for every trajectory of
the system (1) with finite escape time tesc, also the corre-
sponding output becomes unbounded as t → tesc. This is a
very reasonable assumption as one cannot expect to measure
responsiveness of the system in terms of an output map h (as
we will later do) if a finite escape time cannot be detected by
this output map. We remark that, for example, all linear systems
satisfy this assumption, as do all nonlinear systems with radially
unbounded output maps.

For every a, b > 0, denote the set of all measurable and
locally essentially bounded input signals whose norm does not
exceed b on the time interval [0, a] by

Ua,b :=
{
u(·) : ‖u‖[0,a] ≤ b, u(t) ∈ U ∀t ∈ [0, a]

}
(2)

where ‖ · ‖[0,a] is the essential supremum norm on the interval
[0, a]. Let Rτ{x0,U} ⊆ R

n ∪ {∞} be the reachable set of
the system (1) at time τ ≥ 0, starting at the initial condition
x(0) = x0 and applying input signals u(·) in some set U ⊆
L∞
loc(R≥0, U). The reachable set Rτ{x0,U} contains ∞ if for

some u(·) ∈ U a finite escape time tesc ≤ τ exists. Define
Rτ

h(x0,U) := sup{|h(x)| : x ∈ Rτ{x0,U}} as the radius of
the smallest ball in the output space centered at y = 0 which
contains the image of the reachable set Rτ{x0,U} under the
output map h, or ∞ if this image is unbounded.

III. NORM-CONTROLLABILITY:
DEFINITION AND DISCUSSION

We are now in a position to define and discuss the notion of
norm-controllability.

Definition 1: The system (1) is norm-controllable from x0

with gain function γ if there exists a function γ : R≥0 × R≥0 →
R≥0 with γ(·, b) nondecreasing for each fixed b > 0 and γ(a, ·)
of class2 K∞ for each fixed a > 0, such that for all a > 0 and
b > 0

Ra
h(x0,Ua,b) ≥ γ(a, b) (3)

where Ua,b is defined in (2). �
The above definition of norm-controllability3 can be inter-

preted in the following way. It provides a measure for how
large the norm of the output y can be made in terms of the
maximal magnitude b of the applied inputs and the length a of
the interval over which they are applied. This is captured via
the gain function γ, which gives a lower bound on the radius
of the smallest ball containing the image of the reachable set
under the output map h, when inputs with magnitude at most
b are applied over the time interval [0, a]. For each fixed time
horizon a, γ(a, ·) is required to be of class K∞, which means
that with inputs of increasing magnitude one should be able
to also increase the norm of the output. Note that a necessary

2A function α: R≥0 → R≥0 is of class K if α is continuous, strictly
increasing, and α(0) = 0. If α is also unbounded, it is of class K∞. A function
β : R≥0 × R≥0 → R≥0 is of class KL if β(·, t) is of class K for each fixed
t ≥ 0 and β(r, t) is decreasing to zero as t → ∞ for each fixed r ≥ 0.

3We note that while Definition 1 is the same as the originally proposed
definition of norm-controllability in [1], [2], the set Ua,b in (2) is defined
slightly differently. This allows us to also restate the sufficient conditions later
on in a simplified way.
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condition for this to be satisfied is that the set U of admissible
inputs is unbounded. On the other hand, for every fixed upper
bound b on the input norm, increasing the time horizon a over
which such inputs are applied should result in a non-decreasing
magnitude of the output. Furthermore, in Definition 1 the initial
state x0 is taken as given and, when x0 is changed, γ will
in general also change. We also note the following subtlety:
Definition 1 says that for each time a > 0 and each b > 0
there exists some trajectory x(·) such that |h(x(a))| ≥ γ(a, b),
but not necessarily that there exists some trajectory satisfying
|h(x(a))| ≥ γ(a, b) for all times a > 0, i.e., some (single)
trajectory which can be made large for all times.

As mentioned in the Introduction, the concept of norm-
controllability can be seen as somehow complementary to ISS
(and related concepts involving outputs such as IOS and L∞
stability). Namely, if a system is ISS, at each time a the norm of
the system state can be upper-bounded in terms of the L∞ norm
of the input (plus some decaying term depending on the initial
condition). In particular, there exist a function α ∈ K∞ and a
function β ∈ KL such that for all u(·) ∈ Ua,b and all a, b > 0

|x(a)| ≤ β (|x0|, a) + α(b) (4)

i.e., for all trajectories and all times one can upper-bound the
norm of the system state via (4). This gives us an upper bound
on the radius of the smallest ball which contains the reachable
set, i.e., Ra

h(x0,Ua,b)≤β(|x0|, a) + α(b). On the other hand,
norm-controllability gives a lower bound on Ra

h(x0,Ua,b) in
terms of the gain function γ in (3), which (in case of h(x)=
x) means that for each a, b>0 there exists some u(·) ∈ Ua,b

such that |x(a)|≥γ(a, b). If a system is both norm-controllable
(with h(x)=x) and ISS, then it follows from (4) that γ(·, b)
is bounded for each b>0. In this case, γ(∞, ·) gives a lower
bound for the smallest possible ISS gain function α of the sys-
tem. Similar considerations apply to related notions involving
general outputs (different than the special choice h(x)=x) such
as IOS [8] or L∞ stability (see, e.g., [9]). Moreover, we remark
that for a given initial condition x0 and each a, b>0, the func-
tion γ(a, b) can be interpreted as a lower bound for the value
function of a finite-horizon optimal control problem, where the
utility function to be maximized is |h(x(a))|, subject to the
constraints ẋ=f(x, u), u(t) ∈ U and |u(t)|≤b for all 0≤ t≤a.
Finally, we note some connections of norm-controllability to
the concept of excitation indices as proposed in [15], which also
studies the effect of inputs of norm less than b and for which
certain Lyapunov-like conditions were obtained. This notion,
however, is different from norm-controllability in that it is only
formulated in the context of dissipative systems and focuses on
the limiting behavior as t→∞.

IV. SUFFICIENT CONDITIONS FOR

NORM-CONTROLLABILITY

In this section, we formulate several Lyapunov-like sufficient
conditions for a system to be norm-controllable. The first one
in Section IV-A is the simplest one and is based on first-order
directional derivatives. However, this condition can in general
only be satisfied for outputs with relative degree one. Hence,
in Section IV-B, we subsequently develop a more general
sufficient condition which is based on higher-order directional
derivatives. Finally, in Section IV-C we present further exten-
sions and relaxations of the derived sufficient conditions.

A. Sufficient Condition Based on First-Order
Directional Derivatives

The first sufficient condition for norm-controllability uses
the notion of lower directional derivatives, which we recall
from [12], [16]. Namely, for a function V : Rn → R, the lower
directional derivative of V at a point x ∈ R

n in the direction of
a vector h1 ∈ R

n is defined as

V (1)(x;h1) := lim inf
t↘0,h̄1→h1

1

t

(
V (x+ th̄1)− V (x)

)
. (5)

Note that at each point x ∈ R
n where V is continu-

ously differentiable, it holds that V (1)(x;h1) = Lh1
V (x) =

(∂V /∂x)(x)h1.
Theorem 1: Suppose there exist a set Ū ⊆ U containing 0 in

its closure, and a closed set B ⊆ R
n which is invariant for sys-

tem (1) under controls in Ū . Furthermore, suppose there exist
a continuous function ω : Rn → R

q , 1 ≤ q ≤ n, a function V :
R

n → R which is continuously differentiable on R
n \W with

W := {x ∈ R
n : ω(x) = 0} and such that ∂V/∂x is locally

Lipschitz on R
n \W , and functions α1, α2, χ, ρ, ν ∈ K∞ such

that the following holds:
• For all x ∈ B

ν (|ω(x)|) ≤ |h(x)|, (6)

α1 (|ω(x)|) ≤ V (x) ≤ α2 (|ω(x)|) . (7)

• For each b > 0 and each x ∈ B such that |ω(x)| ≤ ρ(b),
there exists some u ∈ Ū with |u| ≤ b such that

V (1) (x; f(x, u)) ≥ χ(b). (8)

Then the system (1) is norm-controllable from all x0 ∈ B
with gain function

γ(a, b) = ν
(
α−1
2 (min {aχ(b) + V (x0), α1 (ρ(b))})

)
. (9)

Remark 1: If (8) holds not only if |ω(x)|≤ρ(b) but rather
for all x∈B, then we can let ρ→∞ and γ in (9) simplifies to
γ(a, b)=ν(α−1

2 (aχ(b)+V (x0))). Note that in this case, γ(a, ·)
might not be of class K∞, as γ(a, 0)>0 if V (x0)>0. Never-
theless, γ(a, ·) still satisfies all other properties of a class K∞
function, i.e., is continuous, strictly increasing and unbounded.
In particular, this means that the system is norm-controllable,
but the function γ gives us a slightly stronger property than
required by Definition 1. If a function γ satisfying γ(a, 0)=0
is desirable, it can be obtained by replacing V (x0) with 0. �

Theorem 1 is a special case of Theorem 2 in Section IV-B,
which is why we will only prove the latter. Nevertheless, we
decided to state Theorem 1 separately as a result of its own
interest and in order to highlight and discuss various aspects of
our sufficient conditions with this simplest formulation, which
we will do in the following. Furthermore, connections to typical
ISS results are also most apparent for Theorem 1, compared to
the more general formulation in Theorem 2.

Theorem 1 is stated so that norm-controllability is estab-
lished on some invariant set B. In particular, this includes as
a special case B = R

n, in which case we can take Ū = U . The
condition expressed by (6), (7) means that V can be lower- and
upper-bounded in terms of the norm of a function ω, which
has to be “aligned” with the output map h in the sense given
by (6). In the special case of h(x) = ω(x) = x, this reduces
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to the usual condition that V is positive definite and radially
unbounded. Note that (7) together with the requirement that
ω is continuous implies that V is continuous for all x where
ω(x) = 0. However, at these points we need to allow V to not
be continuously differentiable because V ∈ C1 together with
(7) would imply that the gradient of V vanishes for all x where
ω(x) = 0, and thus it would be impossible to satisfy (8) there.
On the other hand, the fact that V need not be continuously
differentiable for all x where ω(x) = 0 allows us to obtain a
non-vanishing lower directional derivative at these points, and
hence (8) can be satisfied. In the examples given in Section V,
a typical choice will be V (x) = |ω(x)|.

When the output map h is such that h(x0) = 0, norm-
controllability captures the system’s ability to “move away”
from the initial state x0. This could e.g. be of interest if one
wants to know how far one can move away from an initial
equilibrium state (x0, u0). In other settings, it makes sense to
consider h(x0) �= 0, e.g. in a chemical process where initially
already some product is available and hence the output should
further be increased. This allows us, for fixed h, ω, and V ,
to vary the initial condition x0, and the effect of this is given
by the term V (x0) in (9). Note that one could also obtain a
(more conservative) lower bound γ which is uniform in x0 by
replacing the term V (x0) in (9) with 0. Also, there might be
several possible choices for the functions ω and V satisfying the
conditions of Theorem 1. The degrees of freedom in the choice
of ω and V can then be used to maximize the gain γ in (9).
Example 4 will illustrate this point in more detail. Furthermore,
if systems without outputs are considered, i.e., an output map h
is not given a priori, we might first search for functions ω and
V satisfying the relevant conditions of Theorem 1. Then, the
system is norm-controllable for every a posteriori defined out-
put map h satisfying (6). It is also useful to note that increasing
the output dimension by appending extra variables to the output
cannot destroy norm-controllability (it can only help attain it).

Besides the conceptual complementarity between norm-
controllability and ISS as discussed in Section III, we empha-
size that also the sufficient conditions of Theorem 1 are in
some sense “dual” to the conditions in typical ISS results [10]
(and related notions involving outputs such as IOS). Namely,
a system is ISS if and only if there exist a continuously
differentiable function V and K∞-functions α1, α2, χ, ρ such
that α1(|x|) ≤ V (x) ≤ α2(|x|), and V̇ ≤ −χ(|x|) for all u and
all x satisfying |x| ≥ ρ(|u|). This means that the decay rate
of V can be upper-bounded in terms of |x| if |x| is large
enough in comparison to |u| (and this has to hold for all u). In
contrast to this, for norm-controllability we require in (8) that
there exists a u such that the growth rate of V can be lower-
bounded in terms of b (the upper bound for the input norm)
if |ω(x)| is small compared to b. Using this condition, in the
proof of Theorem 1 (respectively, Theorem 2, see Section IV-B)
we construct a specific piecewise constant control input which
yields a trajectory with a suitably increasing output norm. Parts
of this proof were inspired by [16] where the authors construct a
piecewise constant control to asymptotically stabilize a system.
However, we note that while it is instructive to highlight the
connections and similarities between the sufficient condition
for norm-controllability in Theorem 1 and typical Lyapunov-
like conditions for ISS, most of the technical ideas employed
here are different from those used in the above references.

B. Sufficient Condition Based on Higher-Order
Directional Derivatives

The sufficient condition for norm-controllability presented in
Theorem 1 is appealing due to its rather simple structure and
its similarity to other Lyapunov-like results such as those for
ISS. However, this condition can be rather restrictive and is in
general not satisfied for systems whose output y has a relative
degree greater than one (see Example 5 for a further discussion
of this issue). The sufficient conditions presented in what
follows resolve this issue by relaxing the conditions of Theorem
1, and can be used for systems with arbitrary relative degree. On
the other hand, we note that verifying these relaxed conditions
for a given system requires more complicated analysis than in
the case of Theorem 1. The following sufficient conditions are
based on higher-order lower directional derivatives, which we
define in accordance with [12, Equation (3.4a)] (cf. also the
earlier work [13]). Namely, if V (1)(x;h1) exists, the second-
order lower directional derivative of V at a point x in the
directions h1 and h2 is defined as4

V (2)(x;h1, h2)

:= lim inf
t↘0,h̄2→h2

(
2

t2

)
×
(
V (x+ th1 + t2h̄2)− V (x)− tV (1)(x;h1)

)
.

In general, if the corresponding lower-order lower directional
derivatives exist, for k ≥ 1 define the kth-order lower direc-
tional derivative as

V (k)(x;h1, . . . , hk)

:= lim inf
t↘0,h̄k→hk

(
k!

tk

)
×
(
V (x+ th1+· · ·+tkh̄k)−V (x)−tV (1)(x;h1)

−· · ·−(1/(k−1)!)tk−1V (k−1)(x;h1,. . ., hk−1)
)
. (10)

Similar to Section IV-A, we will later consider lower direc-
tional derivatives of a function V along the solution x(·) of
system (1). For5 k ≤ k̄, we obtain the following expansion for
the solution x(·) of system (1), starting at time t′ at the point
x := x(t′) and applying some constant input u:

x(t) = x+ (Δt)h1 + · · ·+ (Δt)khk + o
(
(Δt)k

)
(11)

with Δt := t− t′ and

h1 := ẋ(t′) = f(x, u),
h2 := (1/2)ẍ(t′) = (1/2)∂f/∂x|(x,u)f(x, u),

...
hk := (1/k!)x(k)(t′). (12)

In order to facilitate notation, in the following we write

V (k) (x; f(x, u)) := V (k)(x;h1, . . . , hk) (13)

for the kth-order lower directional derivative of V at the point x
along the solution of (1) when a constant input u is applied, i.e.,
with h1, . . . , hk given in (12). It is straightforward to verify that
at every point where V is sufficiently smooth, V (k)(x; f(x, u))

4In contrast to [12], [13], here we include the factor 2 (and later, in (10),
the factor k!) into the definition of higher-order lower directional derivatives.
We take this slightly different approach so that later, at each point where V
is sufficiently smooth, these lower directional derivatives reduce to classical
directional derivatives (without any extra factors as in [12], [13]).

5Recall that f ∈ Ck̄−1 for some k̄ ≥ 1.
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reduces to Lk
fV |(x,u) (compare [12, Section 3] and [13, p.73]),

where Lk
fV |(x,u) is the kth-order Lie derivative of V along

the vector field f . Namely, if V is locally Lipschitz, the kth-
order lower directional derivative reduces to the kth-order Dini
derivative (i.e., in (10) the direction hk is fixed (see [12,
Proposition 3.4(a)]); furthermore, if V ∈ Ck, then the limit
in (10) exists (compare [12, Proposition 3.4(b)]) which equals
Lk
fV [13, p. 73].
Theorem 2: Suppose there exist a set Ū ⊆ U containing 0

in its closure, and a closed set B ⊆ R
n which is invariant for

system (1) under controls in Ū . Furthermore, suppose there ex-
ist a continuous function ω : Rn → R

q , 1 ≤ q ≤ n, a function
V : Rn → R which for some 1 ≤ k ≤ k̄ is k times continu-
ously differentiable on R

n \W with W := {x ∈ R
n : ω(x) =

0} and such that the k-th order partial derivatives of V are
locally Lipschitz on R

n \W , and functions α1, α2, χ, ρ, ν ∈
K∞ such that (6)-(7) is satisfied and the following holds:

• For each b > 0 and each x ∈ B such that |ω(x)| ≤ ρ(b),
there exists some u ∈ Ū with |u| ≤ b such that

V (j)(x; f(x, u)) ≥ 0 j = 1, . . . , k − 1, (14)
V (k) (x; f(x, u)) ≥ χ(b). (15)

• At least one of the following conditions is satisfied: (i)
∂V (j)(x; f(x, u))/∂u = 0 for all j = 1, . . . , k − 1 and all
x ∈ B \W ; (ii) Ū ∩ (∩x∈B,|ω(x)|≤ρ(b)U

b(x)) �= ∅ for all
b > 0, where

U b(x) := {u ∈ U : |u| ≤ b, (14)− (15) hold} . (16)

Then the system (1) is norm-controllable from all x0 ∈ B
with gain function

γ(a, b)=ν

(
α−1
2

(
min

{
1

k!
akχ(b)+V (x0), α1(ρ(b))

}))
. (17)

Remark 2: For the special case of k = 1, Theorem 1 is
recovered. In particular, condition (i) of Theorem 2 is trivially
satisfied if k = 1. �

Remark 3: Conditions (i) and (ii) in Theorem 2 are meant to
ensure that derivatives of V up to order k − 1 along solutions
of (1) are continuous when applying a piecewise constant input,
which will be needed in the proof. Condition (i) achieves this
by requiring that derivatives up to order k − 1 do not explicitly
depend on u. On the other hand, condition (ii) implies that the
set of “good” inputs (16) (in the sense that (14), (15) holds) has
a non-empty intersection for all x ∈ B with |ω(x)| ≤ ρ(b), i.e.,
there exists a common “good” input value u for all such x and
hence a constant input signal can be used to increase the norm
of the output. While condition (ii) might be restrictive for some
systems, it is sufficient that either condition (i) or (ii) is satisfied,
i.e., (ii) only has to hold if (i) is not true. Furthermore, depend-
ing on how the solutions of system (1) behave, in some cases we
might be able to use a constant input (along a given trajectory)
even if condition (ii) fails (see Example 7 for more details). �

Remark 4: When considering higher-order derivatives (i.e.,
k ≥ 2), we do not necessarily need V to be not differentiable
for all x where ω(x) = 0 in order to be able to satisfy (14),
(15), as was the case for k = 1. Nevertheless, allowing V to be
not continuously differentiable everywhere still helps in finding
V satisfying (14), (15); this is in particular true later for the
situation of Theorem 3, where we generalize the results of
Theorem 2 such that (14)-(15) can hold for flexible k. �

Proof of Theorem 2: In the following, we will develop two
technical lemmas and then obtain the proof of Theorem 2 by
combining them. Let a, b > 0 be arbitrary but fixed, and assume
in the sequel that the hypotheses of Theorem 2 are satisfied.
Furthermore, we assume that no u(·) ∈ Ua,b leads to a finite
escape time tesc ≤ a, for otherwise, by the unboundedness
observability property, also Ra

h(x0,Ua,b) = ∞, and thus (3) is
satisfied with γ as in (17) and we are done.

The idea of the proof is to construct a piecewise constant
input signal u(·) ∈ Ua,b such that when applying this input
signal, the corresponding output trajectory satisfies |y(a)| =
|h(x(a))| ≥ γ(a, b). The first lemma considers the initial phase
and proves that V can be increased, and is in particular needed
for the case where ω(x0) = 0, i.e., x0 ∈ W . To this end, define
the set

Xb,κ := {x ∈ B : κ ≤ |ω(x)| ≤ ρ(b)} (18)

for κ satisfying 0 ≤ κ ≤ ρ(b). Recall the definition of U b(x) in
(16) and note that the assumptions of Theorem 2 expressed by
(14)-(15) imply that for each b > 0, Ū ∩ U b(x) �= ∅ for all x ∈
Xb,0 (and hence also for all x ∈ Xb,κ for each 0 ≤ κ ≤ ρ(b), as
Xb,κ ⊆ Xb,0).

Lemma 1: Assume that x0 ∈ Xb,0 and u0 ∈ Ū ∩ U b(x0).
Then there exists some τ > 0 such that for all t ∈ (0, τ ], it holds
that V (x(t)) > V (x0) and hence in particular V (x(t)) > 0,
where x(·) is the trajectory of the system (1) that results from
applying the constant input u0 during this time interval.

Proof: See Appendix I. �
Next, we consider the situation where the state x is already

away from the set W . Then, according to our assumptions, V is
k times continuously differentiable with locally Lipschitz k-th
order partial derivatives, which we can use to show that if some
input ui is “good” at some point xi in the sense that V (k) is
positive, it is also “good” for nearby xi. Let R≤a{x0,Ua,b} :=⋃

0≤t≤a Rt{x0,Ua,b}.
Lemma 2: Consider some time instant 0 ≤ s < a with

x(s) ∈ R≤a{x0,Ua,b}, and assume that x(s) ∈ Xb,δ for some
δ > 0; furthermore, pick some us ∈ Ū ∩ U b(x(s)). Then, for
each 0 < ε ≤ 1, there exists a number Δ(ε, δ) > 0 such that
V (k)(x(t)) ≥ (1− ε)χ(b) and

V (j) (x(t))− V (j) (x(s)) ≥ 1− ε

(k − j)!
χ(b)(t− s)k−j (19)

for all j = 0, . . . , k − 1 and all t ∈ [s, s+Δ(ε, δ)] ∩ [0, a],
where x(·) is the trajectory that results from applying the
constant input us during this time interval, and V (j)(x(t)) :=

V (j)(x(t); f(x(t), us)) = Lj
fV |(x(t),us) for j = 1, . . . , k − 1

and V (0)(x(t)) := V (x(t)).
Proof: See Appendix II. �

Combining Lemmas 1 and 2, we are now able to prove
Theorem 2. Fix an arbitrary 0 < ε̄ < 1. Denote by Λb the sub-
level set

Λb := {x ∈ R
n : V (x) ≤ α1 (ρ(b))} . (20)

We construct a desired input signal in a recursive fashion using
the following algorithm. This input signal will by construction
satisfy u(t) ∈ Ū for all t ∈ [0, a]; hence, the resulting state
trajectory x(·) will remain in the set B in this time interval if
x0 ∈ B. The trajectory x(·) is exemplarily illustrated in Fig. 1,
which might be helpful in following the remainder of the proof.
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Fig. 1. Illustration of the state trajectory constructed in the proof of
Theorem 2 for the case ω(x) = x.

Step 0: Consider x0 ∈ B. If x0 ∈ int(Λb), then by (7) we
have |ω(x0)| < ρ(b) and so x0 ∈ Xb,0 according to (18). We
can then pick some u0 ∈ Ū ∩ U b(x0), which exists as Ū ∩
U b(x0) �= ∅, and apply Lemma 1 to find a time τ > 0 such
that the trajectory corresponding to the constant control u ≡
u0 satisfies V (x(t)) > V (x0) and hence in particular also
V (x(t)) > 0 for all 0 < t ≤ τ . Pick some t1 ∈ (0,min{τ, a}];
note that t1 can be chosen arbitrarily small. Apply the constant
input u ≡ u0 on the interval [0, t1) for as long as the resulting
trajectory x(·) does not hit ∂Λb. If we have x(t) ∈ ∂Λb for
some t ∈ (0, t1), then denote this time t by ť1 and skip to Step 2,
otherwise proceed to Step 1. If x0 ∈ ∂Λb, let t1 = ť1 := 0 and
skip to Step 2. If already x0 �∈ Λb, then let t1 := 0, pick some
u1 ∈ Ū with |u1| ≤ b and apply the constant input u ≡ u1 on
the interval [0, a) for as long as the resulting trajectory x(·)
does not hit ∂Λb. Note that for each b > 0, such a u1 exists,
as by assumption Ū contains 0 in its closure, i.e., Ū contains
input values u of arbitrarily small magnitude. If x(t) ∈ ∂Λb for
some t ∈ [0, a), then denote this time t by ť1 and skip to Step 2,
otherwise skip to Step 3.

Step 1: If6 x(t1) ∈ ∂Λb, then let ť1 := t1 and skip to Step 2.
Otherwise, x(t1) ∈ int(Λb). Let δ̄ := α−1

2 (V (x(t1))) and note
that δ̄ > 0 according to the definition of t1 in Step 0. From (7),
the definition of Λb, and the fact that x(t1) ∈ B, it follows that
δ̄ ≤ |ω(x(t1))| < ρ(b), and hence x(t1) ∈ Xb,δ̄ by (18). We
can thus pick some u1 ∈ Ū ∩ U b(x(t1)) and apply Lemma 2
with s = t1, us = u1, ε = ε̄ and δ = δ̄ to find a Δ(ε̄, δ̄) such
that the trajectory corresponding to the constant control u ≡ u1

on the interval [t1,min{t1 +Δ(ε̄, δ̄), a}) satisfies (19) with
s = t1 and ε = ε̄ on this interval. Apply the constant input
u ≡ u1 on this interval for as long as the resulting trajectory
x(·) does not hit ∂Λb. If we have x(t) ∈ ∂Λb for some t ∈
(t1,min{t1 +Δ(ε̄, δ̄), a}), then denote this time t by ť1 and
skip to Step 2. If this does not happen but t1 +Δ(ε̄, δ̄) ≥ a,
then skip to Step 3. Otherwise, let t2 := t1 +Δ(ε̄, δ̄). In this
case, x(t2) ∈ Λb and, by Lemma 2, V (x(t2)) > V (x(t1)) ac-
cording to (19) with j = 0 and s = t1. So, we can check
that x(t2) ∈ Xb,δ̄ similarly to how we did it earlier for x(t1).
Therefore, we can repeat Step 1 for the times t2, t3, . . . (but
without changing the value of δ̄); note that this sequence of time
instants is finite, as ti+1 − ti = Δ(ε̄, δ̄) > 0 for all i. In case
condition (ii) in Theorem 2 is satisfied, we ensure additionally
that the input values u1, u2, . . . are chosen to be the same.

6Even though u(t1) is not yet defined, x(t1) is defined by continuity as
limt↗t1 x(t).

Step 2: We have x(ť1) ∈ ∂Λb, i.e., V (x(ť1)) = α1(ρ(b)).
If ť1 = a then skip to Step 3. Otherwise, we can ver-
ify analogously to Step 1 that x(ť1) ∈ Xb,δ̌ with δ̌ :=

α−1
2 (α1(ρ(b))), and hence Ū ∩ U b(x(ť1)) �= ∅. Pick some ǔ1 ∈

Ū ∩ U b(x(ť1)). Apply the constant input u ≡ ǔ1 on the interval
[ť1, ť2) where ť2 := min{inf{t : t > ť1, x(t) ∈ ∂Λb}, a}. This
interval is non-empty; in fact, ť2 ≥ min{ť1 +Δ(1/2, δ̌), a}
where Δ(·, ·) comes from Lemma 2. Indeed, as x(ť1) ∈ Xb,δ̌ ,
we can apply Lemma 2 with s = ť1, us = ǔ1, ε = 1/2 (any
other choice 0 < ε < 1 would give a similar result), δ = δ̌ and
j = 0 in order to conclude that V (x(t))− V (x(ť1)) > 0 for
all t ∈ (ť1,min{ť1 +Δ(1/2, δ̌), a}], which implies that ť2 ≥
min{ť1 +Δ(1/2, δ̌), a}. Moreover, if ť2 < a then x(ť2) ∈ ∂Λb

and we can repeat Step 2 for the times ť2, ť3, and so on, and
the above argument shows that this sequence of time instants
is finite.

Step 3: We have now reached the time t = a and we have
constructed the following control input defined on the interval
[0, a), with the control values ui, ǔj and the times ti, ťj as
specified above (those times that are never defined are treated
as ∞):

u(t)=

⎧⎨
⎩

u0 0 ≤ t < min{t1, ť1}
ui ti ≤ t < min{ti+1, ť1, a}, i = 1, 2, . . .
ǔj ťj ≤ t < min{ťj+1, a}, j = 1, 2, . . .

(21)

This input, extended with the last value (u0, ui or ǔj) at
t = a (and arbitrarily for t > a), satisfies u ∈ Ua,b, as by
construction, |u(t)| ≤ b for all t ∈ [0, a]. For each 0 < ε̄ <
1, this input signal is piecewise constant in the interval
[0, a] with only finitely many different values ui and ǔj ;
this follows from the construction in Step 1 and the argu-
ment given in Step 2. Let x(·) denote the state trajectory
resulting from the application of the control input u(·) to
the system (1), and V (j)(x(t)) := V (j)(x(t); f(x(t), u(t)))
for j = 1, . . . , k. The state trajectory x(·) has the following
properties. First, consider the case where t1 > 0 (recall from
Step 0 that this corresponds to x0 ∈ int(Λb)). Using (19)
with j = k − 1 and ε = ε̄, we obtain that V (k−1)(x(t−i )) ≥
(1− ε̄)(ti − ti−1)χ(b)+V (k−1)(x(ti−1)) for all ti with i ≥ 2
which were defined in Step 1, and V (k−1)(x(min{ť1, a}−)) ≥
(1− ε̄)(min{ť1, a}−tr)χ(b) + V (k−1)(x(tr)), where tr is
the last time instant of the sequence {ti} defined in
Step 1. Now if condition (i) is satisfied, we have that
V (k−1)(x(t)) is continuous also at the time instants t = ti
where the control values switch (as x(·) is continuous), i.e.,
V (k−1)(x(t−i )) = V (k−1)(x(ti)). On the other hand, if con-
dition (ii) holds, then u1 = u2 = . . . by construction and
hence again V (k−1)(x(t)) is continuous also at the time in-
stants t = ti (as x(·) is continuous). Hence it follows that
for all t1 ≤ t ≤ min{ť1, a} we have V (k−1)(x(t)) ≥ (1−
ε̄)(t− t1)χ(b)+V (k−1)(x(t1)) ≥ (1− ε̄)(t− t1)χ(b), where
the second inequality follows from (14) with j = k − 1,
x = x(t1) and u = u1. Now for each ti ≤ t < ti+1, due
to the fact that the constant control ui is applied, it fol-

lows that V (k−2)(x(t)) = V (k−2)(x(ti)) +
t∫

ti

V (k−1)(x(τ))dτ .

Using the same argumentation as above, it follows that
V (k−2)(x(t)) is also continuous at the time instants t =
ti, and hence we obtain V (k−2)(x(t)) ≥ (1/2)(1− ε̄)(t−
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t1)
2χ(b) + V (k−2)(x(t1)) ≥ (1/2)(1− ε̄)(t− t1)

2χ(b) for all
t1 ≤ t ≤ min{ť1, a}, where the second inequality again fol-
lows from (14) with j = k − 2, x = x(t1) and u = u1. Re-
peating the above k − 2 times results in V (x(t)) ≥ (1/k!)(1−
ε̄)(t− t1)

kχ(b) + V (x(t1)) for all t1 ≤ t ≤ min{ť1, a}; fur-
thermore, recall from Step 0 that V (x(t1)) > V (x0) due
to Lemma 1.

Next, if ť1 < a, then for ť1 ≤ t ≤ a the construction of the
input signal guarantees that V (x(t)) ≥ V (x(ť1)) = α1(ρ(b)).
Finally, if t1 = 0 (recall from Step 0 that this corresponds
to x0 �∈ int(Λb)), then the preceding inequality V (x(t)) ≥
α1(ρ(b)) is satisfied for all 0 ≤ t ≤ a. Combining the above
yields

V (x(a)) ≥ min

{
1

k!
(1− ε̄)(a− t1)

kχ(b) + V (x0),

α1 (ρ(b))

}
. (22)

Hence, using (7), we have

|ω (x(a))| ≥ α−1
2

(
min

{
(1/k!)(1− ε̄)(a− t1)

kχ(b)

+V (x0), α1 (ρ(b))}) .
Finally, using (6), we obtain

|h (x(a))| ≥ ν
(
α−1
2

(
min

{
(1/k!)(1− ε̄)(a− t1)

kχ(b)

+V (x0), α1 (ρ(b))})) .
As u(·) is contained in Ua,b and as the above calculations hold
for arbitrary x0 ∈ B, it follows that:

Ra
h(x0,Ua,b) ≥ ν

(
α−1
2

(
min

{
(1/k!)(1− ε̄)(a− t1)

kχ(b)

+V (x0), α1 (ρ(b))})) (23)

for all x0 ∈ B. Note that (23) holds for every 0 < ε̄ ≤ 1, and
according to Step 0, either t1 = 0 or t1 can be chosen arbitrarily
small. Thus, as the left-hand side of (23) is independent of ε̄ and
t1, we can let ε̄ → 0 and t1 → 0 (in case t1 is not 0) and arrive
at the desired bound (3) with γ as defined in (17). The function
γ satisfies the required properties of Definition 1, i.e., γ(·, b) is
nondecreasing for each fixed b > 0 and γ(a, ·) ∈ K∞ for each
fixed a > 0. This concludes the proof of Theorem 2. �

Remark 5: The input signal u(·) constructed in the proof of
Theorem 2 results in a monotonically increasing V (x(·)), as
long as x(·) does not leave the set Λb. However, note that this
does not mean that our sufficient conditions only capture cases
where the output h(x) can be increased monotonically. Namely,
h is related to V via (6), (7), and hence we can certainly have
monotonic behavior of V but non-monotonic behavior of h. �

C. Extensions

In this section, we present two extensions of the sufficient
conditions developed in Section IV-A and IV-B. This will allow
us to treat some more advanced examples that the previous
results cannot handle (see, e.g., Example 6 in Section V). We
first show that in Theorem 2 (and hence also in Theorem 1), the
assumption that the set B is invariant under controls in Ū can be
relaxed. To this end, recall that for a given x, the set U b(x) was
defined in (16) as the set of all “good” inputs, i.e., such that (14),
(15) is satisfied. Now for each b > 0 and each x ∈ B such that

|ω(x)| ≤ ρ(b), denote by Û b(x) an arbitrary nonempty subset7

of U b(x). Then, let Ũ b := ∪x∈B,|ω(x)|≤ρ(b)Û
b(x). If Ũ b = ∅ for

some b′ > 0 (which can only happen if |ω(x)| > ρ(b′) for all
x ∈ B), let Ũ b be an arbitrary nonempty subset of {u : |u| ≤ b}.
Now if B is invariant under controls in Ũ := ∪b>0Ũ

b, we have
the situation of Theorem 2 (with Ū = Ũ ); if not, consider the
following.

Proposition 1: Theorem 2 remains valid under the following
modifications.

1) The assumption that a set Ū exists such that the set B is
invariant under controls in Ū is replaced by the following:
For each b > 0, there exists a set Hb ⊆ R

n with Hb ∩
Λb = ∅ and Λb defined by (20) such that if x0 ∈ B and
u(t) ∈ Ũ b for all t ≥ 0, then x(t) ∈ B ∪Hb for all t ≥ 0.

2) Instead of only holding for all x ∈ B, equations (6)-(7)
hold for all x ∈ ∪b>0Hb ∪ B.

3) In condition (ii) of Theorem 2, the set U b(x) is replaced
by Û b(x).

Proof: See Appendix III. �
Condition 1) in Proposition 1 means that each trajectory x(·)

cannot exit B before exiting Λb. In other words, when at some
time instant t we have x(t) ∈ Λb, then also x(t) ∈ B.

The second extension is to generalize the results of
Theorem 2 to the case where the set B can be partitioned into
several regions where (14), (15) holds for different k. This
means that B can be written as B = ∪�

i=1Ri(b) for some � ≥ 1
and sets Ri(b) (possibly depending on b).

Theorem 3: Suppose there exist a set Ū ⊆ U containing 0
in its closure, and a closed set B ⊆ R

n which is invariant for
system (1) under controls in Ū . Furthermore, suppose there
exist a constant � ≥ 1 and for each b > 0 a partition B =
∪�
i=1Ri(b) with corresponding integer constants 1 ≤ k1 <

k2 < . . . < k� ≤ k̄, a continuous function ω : Rn → R
q , 1 ≤

q ≤ n, a function V : Rn → R which is k� times continuously
differentiable on R

n \W with W := {x ∈ R
n : ω(x) = 0}

and such that the k�-th order partial derivatives of V are locally
Lipschitz on R

n \W , and functions α1, α2, χ, ρ, ν ∈ K∞ such
that (6), (7) is satisfied and the following holds:

• For each b > 0 and each x ∈ Ri(b) for some 1 ≤ i ≤ �
satisfying |ω(x)| ≤ ρ(b), there exists some u ∈ Ū with
|u| ≤ b such that

V (j) (x; f(x, u)) ≥ 0 j = 1, . . . , ki − 1, (24)
V (ki) (x; f(x, u)) ≥ χi(b). (25)

• At least one of the following conditions is satisfied for all
b > 0:

(i) For all 1 ≤ i ≤ �, ∂V (j)(x; f(x, u))/∂u = 0 for all
j = 1, . . . , ki − 1 and all x ∈ Ri(b) \W ;

(ii) Ū ∩
(
∩1≤i≤� ∩x∈Ri(b),|ω(x)|≤ρ(b)U

b
i (x)

)
�= ∅,

where

U b
i (x) := {u ∈ U : |u| ≤ b, (24)−(25) hold} . (26)

Then the system (1) is norm-controllable from all x0 ∈ B
with gain function

γ(a, b)=ν
(
α−1
2

(
min

{
Ψ(a, b)+V (x0), α1 (ρ(b))

}))
(27)

7Note that such a subset exists because Ub(x) �= ∅ for all such x, as
discussed in the paragraph below equation (18).
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where

Ψ(a, b) = min
i∈{1,...,�}

(k� − ki)!

k�!
akiχi(b). (28)

Proof: See Appendix IV. �
Remark 6: In the special case of � = 1, Theorem 2 is

recovered. �
Remark 7: Proposition 1 also applies to Theorem 3, i.e.,

the assumption of control-invariance of the set B can be re-
laxed. In this case, the following slight adaptation of Propo-
sition 1 is necessary: the set Ũ b is now defined as Ũ b :=

∪1≤i≤� ∪x∈Ri(b),|ω(x)|≤ρ(b) Û
b
i (x), where Û b

i (x) is an arbi-
trary nonempty subset of U b

i (x) such that condition (ii) of
Theorem 3 is still satisfied with U b

i (x) replaced by Û b
i (x). �

V. EXAMPLES

In this Section, we illustrate the concept of norm-
controllability as well as the presented sufficient conditions
with several examples.

Example 1: Consider the system ẋ = −x3 + u with output
h(x) = x, and take ω(x) = x and V (x) = |x|. For each x �= 0
and each b > 0, by choosing u such that |u| = b and xu ≥ 0,
we obtain V̇ = −|x|3 + sign(x)u = −|x|3 + θsign(x)u+(1−
θ)sign(x)u ≥ (1− θ)b =: χ(b), for all |x| ≤ 3

√
θb =: ρ(b) and

arbitrary 0 < θ < 1. Here θ is just a parameter whose choice
determines the functions χ and ρ. For x = 0, choosing u such
that |u| = b results in V (1)(0, f(0, u)) = b ≥ χ(b). Hence we
can apply Theorem 1 with B = R and8 ν = α1 = α2 = id to
conclude that the considered system is norm-controllable from
all x0 ∈ R with gain function γθ(a, b) = min{(1− θ)ab+

|x0|, 3
√
θb}. As Ra

h(x0,Ua,b) is independent of θ, it follows
that the considered system is norm-controllable from all x0 ∈
R with gain function γ(a, b) = max0≤θ≤1 γθ(a, b). Note that
the latter conclusion also applies to all subsequent examples
involving a parameter θ.

Example 2: Consider the system ẋ = u/(1 + |u|) with
h(x) = x. This system is not norm-controllable. Indeed, it is
easy to see that |ẋ| ≤ 1 for all x and u. But this means that
we cannot find a function γ(·, ·) which is a K∞ function in the
second argument such that (3) holds, as for a given time horizon
a, the norm of the output cannot go to infinity as b → ∞. On the
other hand, one can see that for a → ∞, we have |h(x)| → ∞
for every constant control u > 0.

Example 3: Consider the system

ẋ1 = (1 + sin(x2u)) |u| − x1

ẋ2 = x1 −
1

5
x2

y = x1 (29)

for which the set B := {x : x1 ≥ 0} is invariant under controls
in Ū = R. Take ω(x) = x1 and V (x) = |x1|. For each b > 0,
choosing u such that |u| = b and sin(x2u) ≥ 0 results in

V (1)(x, f(x, u)) = (1 + sin(x2u)) |u| − x1

≥ b− x1 ≥ (1− θ)b =: χ(b)

for all x∈B such that x1≤θb=:ρ(b) and arbitrary 0<θ<1.
This means that for each x ∈ B, the set of “good” inputs, de-

8id denotes the identity function.

Fig. 2. Input and state trajectory together with lower bound γ for b = 2.5 in
Example 3.

fined by (16), is given as U b(x) = {u : |u| = b, sin(x2u) ≥ 0}.
We can now apply Theorem 1 to conclude that the system (29)
is norm-controllable from all x0 ∈ B with gain function

γ(a, b) = min
{
(1− θ)ab+ |x1(0)|, θb

}
. (30)

Fig. 2 shows simulated state and input trajectories with x0 =
0, b = 2.5 and θ = 0.8. The piecewise constant input signal
was constructed as described in the proof of Theorem 2, i.e.,
new input values ui ∈ Ū ∩ U b(x(ti)) = U b(x(ti)) and ǔj ∈
U b(x(ťj)) were chosen at the time instances ti and ťj , respec-
tively, and applied on the time interval [ti, ti+1) and [ťj , ťj+1),
respectively. One can see that the input signal switches between
the values b and −b at certain time instances, and that during the
second stage, i.e., once |x1| ≥ θb, a new control value is chosen
at those time instances where x1 = θb. �

Example 4: Consider the system

ẋ = f(x, u) =

[
−x3

1 + x2 + u

−x2 + x1 + u

]
, h(x) = x. (31)

As pointed out in Section IV-A, with this example we illustrate
how different functions ω and V can be used to establish norm-
controllability for system (31). To this end, consider the two
functions ω1(x) = x1 and ω2(x) = x2, as well as V1(x) = |x1|
and V2(x) = |x2|. It holds that |h(x)| ≥ |ωi(x)| for i = 1,2;
thus in both cases we can choose νi = α1,i = α2,i = id in
(6), (7). Furthermore, the positive orthant R2

≥0 := R≥0 × R≥0

is invariant under controls in Ū := R≥0, which can be easily
seen by noting that the vector field f points inside the positive
orthant for all x on its boundary and all u ≥ 0. Considering ω1

and V1, by similar calculations as in Example 1 one can show
via Theorem 1 that the system (31) is norm-controllable from
all x0 = [x1(0) x2(0)]

T ∈ R
2
≥0 with gain γ1(a, b) = min{(1−

θ)ab+ |x1(0)|, 3
√
θb} and arbitrary 0 < θ < 1. Similar calcu-

lations using ω2 and V2 yield that the system (31) is norm-
controllable from all x0 ∈ R

2
≥0 with gain γ2(a, b) = min{(1−

θ)ab+ |x2(0)|, θb} and arbitrary 0 < θ < 1. Hence we can
conclude that the system (31) is norm-controllable from all
x0 ∈ R

2
≥0 with gain γ = max{γ1, γ2}, which shows how the

possible degrees of freedom in the choice of the functions ω
and V can be used to maximize the gain γ. Furthermore, by the
choice of the functions ω1, ω2 and V1, V2, we also have proven
norm-controllability of the system (31) for the a posteriori
defined output maps h1(x) = x1 and h2(x) = x2.

Example 5: Consider the double integrator system ẋ1 =
x2, ẋ2 = u with output h(x) = x1. The relative degree of
this system is r = 2. Consider again the positive orthant
B1 := R

2
≥0 which is invariant under controls in Ū := R≥0. Let

ω(x) := x1 and V (x) := |x1|. For all x ∈ B1 and u ∈ Ū , we
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obtain V (1)(x; f(x, u)) = x2 (which means that condition (i)
of Theorem 2 is satisfied) and V (2)(x; f(x, u)) = u. Hence for
each b > 0, by choosing u = b we obtain that V (2)(x; f(x,
u)) = b =: χ(b). We can now apply Theorem 2 with B1 :=
R

2
≥0, Ū := R≥0, k = 2 and χ = id together with Remark 1 to

conclude that the system is norm-controllable from all x0 ∈ B1

with gain function γ(a, b) = (1/2)a2b. Similar considerations
also apply to the negative orthant B2 := R

2≤ 0 which is in-
variant under controls in Ū := R≤0. Furthermore, we note that
we necessarily need k = 2, i.e., there does not exist a function
V (x1, x2) satisfying the conditions of Theorem 1. To see this,
first note that in order to satisfy the conditions (6), (7), we
necessarily need that V ([0 x2]

T ) ≡ 0. For x1 = 0, we obtain

V (1)([0 x2]
T ;f

(
[0 x2]

T , u)
)
= V (1)

(
[0 x2]

T ; [x2 u]
T
)

= lim inf
t↘0,h̄1→[x2 u]T

(1/t)V
(
[0 x2]

T + th̄1

)
≤ lim inf

t↘0
(1/t)V

(
[tx2 x2 + tu]T

)
. (32)

For x1 = x2 = 0, we obtain V (1)(x; f(x, u)) ≤ 0 independent
of u, since V ([0 x2]

T ) ≡ 0 as discussed above (in fact, we can
conclude that V (1)(x; f(x, u)) = 0 for x1 = x2 = 0 because
V (x) ≥ 0 for all x). Hence we cannot find a function χ satisfy-
ing (8). We conjecture that a similar conclusion also holds for
x1 �= 0, i.e., where V is differentiable. Furthermore, the above
argument can be extended in a straightforward manner to SISO
systems in normal form (see [17, p. 143]), and hence for such
systems we conclude that in order to satisfy the conditions of
Theorem 2 we need k ≥ r, where r is the relative degree of
the system. For MIMO systems in normal form [17, p. 224], an
analogous statement holds with r := min{r1, . . . , rp}, where

ri is the smallest integer such that y(ri)i explicitly depends on
some input component uj .

Example 6: Consider an isothermal continuous stirred tank
reactor (CSTR) in which an irreversible, second-order9 reaction
from reagent A to product B takes place [18]:

dCA

dt
=

q

V
(CAi

− CA)− kC2
A

dCB

dt
= − q

V
CB + kC2

A (33)

where CA and CB denote the concentrations of species A
and B (in [mol/m3]), respectively, V is the volume of the
reactor (in [m3]), q is the flow rate of the inlet and outlet
stream (in [m3/s]), k is the reaction rate (in [1/s]), and CAi

is the concentration of A in the inlet stream, which can be
interpreted as the input. Using x1 := CA, x2 := CB , c := q/V
and u := CAi

, one obtains

ẋ1 = −cx1 − kx2
1 + cu =: f1(x, u)

ẋ2 = kx2
1 − cx2 =: f2(x). (34)

The physically meaningful states and inputs are x ∈ R
2
≥0, u ∈

R≥0, i.e., nonnegative concentrations of the two species in

9Similar conclusions as in the following can also be reached in the case of
a first-order reaction, i.e., with C2

A replaced by CA in both places in (33), and
with the invariant set B in (35) below redefined using x1 instead of x2

1.

Fig. 3. Partition of the invariant region B and the set Hb in Example 6.

the reactor and the inlet stream, respectively. We are in-
terested in the amount of product B per time unit, i.e. in
the output y = h(x) = qx2. Taking ω(x) = x2 and V (x) =
|ω(x)|, one obtains that for all x ∈ R

2
≥0 and u ∈ R≥0,

we have V (1)(x; f(x, u)) = kx2
1 − cx2, V (2)(x; f(x, u)) =

−kx2
1(3c+ 2kx1) + c2x2 + 2kcx1u, and V (3)(x; f(x, u)) =

(−6kcx1 − 6k2x2
1+2kcu)f1(x, u) + c2f2(x). Now consider

the region

B :=
{
x : 0 ≤ x2 ≤ (k/c)x2

1

}
⊂ R

2
≥0. (35)

Note that V (1)(x; f(x, u)) ≥ 0 for all x ∈ B. Fix some arbi-
trary 0 < ε, θ < 1, and for b ≥ 0 define ϕ1(b; ε) := (−(3−
ε)c+

√
(3−ε)2c2+16ckθb)/(4k),ϕ2(b) :=min{cb/(8(c+k)),√

cb/(8(c+ k))} and Φ(b) :=min{ϕ1(b; 0), ϕ2(b)}. Now con-
sider the following partition of B, which is also exemplarily
depicted in Fig. 3: R1(b) :={x ∈ B :0≤x2≤ε(k/c)x2

1, x1≥
Φ(b)}, R2(b) :={x∈B : (εk/c)x2

1≤x2≤(k/c)x2
1, x1≥Φ(b)},

and R3(b) := {x ∈ B : 0 ≤ x2 ≤ (k/c)x2
1, x1 ≤ Φ(b)}. For

all b > 0 and all x ∈ R1(b), by choosing u = b we ob-
tain that V (1)(x; f(x, u)) ≥ (1− ε)kx2

1 ≥ (1− ε)kΦ2(b) =:
χ1(b). For all b > 0 and all x ∈ R2(b), by choosing u = b
we obtain that V (2)(x; f(x, u)) ≥ 2(1− θ)kcbΦ(b) =: χ2(b),
for all x1 ≤ ϕ1(b; ε), which holds if x2 ≤ (εk/c)ϕ2

1(b; ε) =:
ρ(b). Finally, for all b > 0 and all x ∈ R3(b), by choosing
again u = b we obtain that V (2)(x; f(x, u)) ≥ 0 and that
V (3)(x; f(x, u)) ≥ kc2b2 =: χ3(b).

In order to be able to apply Theorem 3, it remains to
show that either condition (i) or (ii) is satisfied and the set
B can be rendered invariant, where for the latter we will
use the relaxed form given by Proposition 1 (compare Re-
mark 7). Due to the above, for each 1 ≤ i ≤ 3 and each
x ∈ Ri(b) with |ω(x)| ≤ ρ(b), we have U b

i (x) = {b}, and
hence ∩1≤i≤� ∩x∈Ri(b),|ω(x)|≤ρ(b) U

b
i (x) = {b} �= 0, i.e., con-

dition (ii) of Theorem 3 is satisfied. Furthermore, also Ũ b =
{b}. Now note that for all x such that x2 = 0 and x1 ≥ 0,
f(x, u) points inside B for all u ∈ R≥0, and hence no trajectory
can leave the set B there. At the other boundary, i.e., for
all x such that x2 = (k/c)x2

1, f(x, u) points outside B only
if x1 ≥ (−c+

√
c2 + 4cku)/(2k) =: δ(u). However, for each

b > 0, if x1(τ) ≥ δ(b) for some τ ≥ 0, then it follows from
(34) that also x1(t) ≥ δ(b) for all t ≥ τ in case that u(t) ∈ Ũ b

(i.e., u(t) = b) for all t ≥ τ . Hence for each b > 0, we define
the set Hb := {x : x1 ≥ δ(b), x2 ≥ (k/c)x2

1} (see also Fig. 3).
Furthermore, it is straightforward to verify that for each b > 0,
Hb ∩ Λb = ∅, where Λb = {x : |x2| ≤ ρ(b)} according to (20).

Summarizing the above, we can apply Theorem 3 with � =
3, k1 = 1, k2 = 2, k3 = 3, α1 = α2 = id and ν = qid together
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with Proposition 1 (and Remark 7) to conclude that the system
(34) is norm-controllable from all x0 ∈ B with gain function

γ(a, b) = qmin
{
Ψ(a, b) + x2(0), ρ(b)

}
(36)

with Ψ defined in (28). An interpretation of this fact is as
follows. If x2 ≤ (k/c)x2

1, then a sufficiently large amount of
reagent A compared to the amount of product B is present
in the reactor in order that the amount of product B can be
increased. On the other hand, if x2 > (k/c)x2

1, then already too
much product B is inside the reactor so that its amount will
first decrease (due to the outlet stream), no matter how large the
concentration of A in the inlet stream (i.e., the input u) is, and
hence the conditions of Theorem 3 (in particular (24)) cannot be
satisfied there with V (x) = |x2|. However, this does not imply
that (24) cannot be satisfied there for some different function
V (cf. Remark 5). In fact, one can show by somewhat tedious
direct calculations that the system is still norm-controllable in
the latter case (see the technical report [19]). The reason for
this is that while the amount of product B inside the reactor
will first decrease (due to the outlet stream) if x2 > (k/c)x2

1,
the time during which it decreases goes to zero as b, i.e., the
concentration of A in the inlet stream, increases. Hence still for
each fixed time a > 0, the amount of product can be made large
by using a large concentration of A in the inlet stream.

VI. NORM-CONTROLLABILITY FOR LINEAR SYSTEMS

In this section, we further elaborate the property of norm-
controllability for linear systems. We show how global norm-
controllability for special linear output maps corresponding to
real left eigenvectors of the system matrix can be established,
and how this can be related to the standard controllability no-
tion. Furthermore, we show how invariant sets can be used in or-
der to establish norm-controllability for a larger class of output
maps h.

Consider the linear system

ẋ = Ax+Bu (37)

with A ∈ R
n×n, B ∈ R

n×m, and admissible input set U :=
R

m. Denote the controllable subspace of the system (37) by10

S := span[B,AB, . . . , An−1B]. Furthermore, let λ1, . . . , λn

denote the eigenvalues of A (with algebraic and geometric
multiplicity possibly greater than 1) and �T1 , . . . the correspond-
ing left eigenvectors of A. Consider the scalar linear function
ω(x) := cTx for some c ∈ R

n, and take V (x) := |cTx|. For all
x where ω(x) �= 0 we obtain

V̇ = sign(cTx)cT (Ax+Bu)

= sign(cTx)c̃Tx+ sign(cTx)cTBu (38)

with c̃T := cTA. Furthermore, for all x where ω(x) = 0 we ob-
tain, using the definition (5) of the lower directional derivative

V (1) (x; f(x, u)) = lim inf
t↘0,h̄1→Ax+Bu

1

t
|cT th̄1|

=
∣∣cT (Ax+Bu)

∣∣ = |c̃Tx+ cTBu|. (39)

10For a matrix X ∈ R
n×m, denote by span(X) the subspace of Rn spanned

by the columns of X .

A. Global Norm-Controllability of Linear Systems

Proposition 2: A linear system (37) is norm-controllable
from all x0 ∈ R

n with output map h(x) = �Ti x, for each real
left eigenvector �i of A which is not orthogonal to S . �

Proof: Consider a real left eigenvector �i of A which is
not orthogonal to S . Then, for some 0 ≤ k ≤ n− 1, it holds
that �Ti A

kB �= 0. But from this it follows that also �Ti B �= 0, as

�Ti A
kB = λi�

T
i A

k−1B = . . . = λk
i �

T
i B �= 0.

Now consider the linear function ω(x) := �Ti x and take
V (x) := |�Ti x|. For each b > 0 and all x where ω(x) �= 0, (38)
with c = �i yields

V̇ = λi |ω(x)|+ sign
(
�Ti x

)
�Ti Bu

≥ (1− θ)
∣∣�Ti B∣∣ b =: χ(b) (40)

for all |ω(x)| ≤
∣∣∣ θ�Ti B

λi

∣∣∣ b =: ρ(b) and arbitrary 0 < θ < 1 if we

choose u = sign(�Ti x)bB
T �i/|BT �i|. Furthermore, for each

b > 0 and all x where ω(x) = 0, (39) yields

V (1) (x; f(x, u))=
∣∣λi�

T
i x+�Ti Bu

∣∣= ∣∣�Ti Bu
∣∣ ≥ χ(b) (41)

if we choose u = ±bBT �i/|BT �i|. Hence we can apply
Theorem 1 with B = R

n and α1 = α2 = μ := id to conclude
that the system (37) with output map h(x) := ω(x) = �Ti x is
norm-controllable from all x0 ∈ R

n, which concludes the proof
of Proposition 2. �

Remark 8: In order to fulfill the assumptions of Theorem 1
globally (i.e., with B = R

n) with V (x) = |cTx|, we necessarily
need that c = �i for some real left eigenvector �Ti of A being
not orthogonal to S . Indeed, if c �= �i, then c̃T �= λi�

T
i , and

hence we can always find some x ∈ R
n such that |cTx| ≤ ρ(b),

but |c̃Tx| is arbitrarily large and sign(cTxc̃Tx) = −1, i.e., the
right hand side of (38) is negative, and hence (8) cannot hold
with V (x) = |cTx|. Furthermore, if c = �i for some real left
eigenvector of A which is orthogonal to S , i.e., cTB = 0, then
both the right-hand sides of (38) and (39) are independent of
u (in particular, the latter is zero), and hence again (8) can-
not hold. �

For every linear system (37) which is controllable, the con-
trollable subspace is S = R

n, and hence none of the left eigen-
vectors of A are orthogonal to S . According to Proposition 2,
this means that the system is norm-controllable for each output
map h(x) = �Ti x with �i being a real left eigenvector of A. In
fact, it turns out that also the converse is true, given that all
eigenvalues of A are real:

Proposition 3: A linear system (37) with real eigenvalues of
A is controllable if and only if it is norm-controllable from all
x0 ∈ R

n with output map h(x) = �Ti x, for all left eigenvectors
�Ti of A. �

Proof: Necessity follows from Proposition 2 by noting
that eigenvectors corresponding to real eigenvalues are real.
To show sufficiency, note that if the system (37) is norm-
controllable from all x0 ∈ R

n with output map h(x) = �Ti x, for
some left eigenvector �Ti of A, then �Ti B �= 0. Indeed, suppose
�Ti B = 0 for some left eigenvector �Ti . Then ẏ = �Ti (Ax+
Bu) = �Ti Ax = λi�

T
i x = λiy, where λi is the eigenvalue of

A corresponding to �Ti . But this means that the output y
evolves independently of the input u, and hence the system
cannot be norm-controllable with this output map, as claimed.
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Next, since �Ti B �= 0 holds for all left eigenvectors �Ti of A,
the matrix [λI −A B] has full row rank, as �T (λI −A) �= 0
for all �T which are not a left eigenvector of A. But this
means according to the Hautus test that the system (37)
is controllable. �

Furthermore, for each scalar linear function ω(x) = cTx
there exists a K∞-function ν such that (6) is satisfied for the
output map h = id (e.g., we can take ν(r) = r/|c|). Hence we
can state the following corollary of Proposition 2:

Corollary 1: Every controllable linear system with at least
one real eigenvalue of A and output y = x is norm-controllable
from every x0 ∈ R

n. �
The following example shows that also for linear systems

with complex eigenvalues one might be able to establish global
norm-controllability. However, as discussed in Remark 8, in
this case a different function than V (x) = |cTx| is needed.
Also, as suggested in Remark 3, we use a slight extension of
Theorem 2, taking into account information on the behavior of
the solution of the system.

Example 7: Consider the linear harmonic oscillator ẋ1 =
x2, ẋ2 = −x1 + u with output y = x. This system has
two complex eigenvalues ±i. Taking ω(x) = x and V (x) =
(1/2)(x2

1 + x2
2) (and hence α1(r) = α2(r) = (1/2)r2), we ob-

tain V (1)(x; f(x, u)) = x2u and V (2)(x; f(x, u)) = −ux1 +
u2. Choosing u such that |u| = b and x2u ≥ 0, it follows
that V (1)(x; f(x, u)) ≥ 0 and V (2)(x; f(x, u)) ≥ (1− θ)b2 =:
χ(b) for all |x1| ≤ θb =: ρ(b) with 0 < θ < 1 arbitrary, where
the latter is implied by |x| ≤ ρ(b). This means that for all
|x| ≤ ρ(b), the set U b(x) as defined in (16) is given as U b(x) =
{b} if x2 > 0, U b(x) = {−b} if x2 < 0 and U b(x) = {±b}
if x2 = 0. But then, neither condition (i) nor condition (ii)
of Theorem 2 are satisfied. However, the solutions of the
considered system are such that for fixed x0, even as condition
(ii) is not satisfied, we can still apply some constant input u
until V (x(t)) = α1(ρ(b)), i.e., the input values ui as chosen in
Step 1 of the proof of Theorem 2 can be the same (compare
Remark 3). This is the case because x2(·) is either nonnegative
or nonpositive (depending on the initial condition) as long
as V (x(t)) ≤ α1(ρ(b)). But then, V (1)(x(t); f(x(t), u(t))) is
continuous during that time, which is sufficient for proving
Theorem 2. Hence the conclusions of Theorem 2 with k=2,
ν = id and α1(r) = α2(r) = (1/2)r2 still hold, i.e., the
system is globally norm-controllable with gain function γ
given by (17). �

B. Norm-Controllability of Linear Systems on
Invariant Sets

In the previous subsection, we have established global norm-
controllability of a linear system whose output corresponds
to a real left eigenvector of A not orthogonal to B. In this
section, we will consider the case of more general linear output
maps and establish norm-controllability on invariant subsets B
of Rn. We first consider the case where B is the controllable
subspace, i.e., B = S . Without loss of generality, consider the
linear system (37) in the Kalman controllability decomposition
form (see, e.g., [4])

ẋ1 = A11x1 +A12x2 + B̃u, ẋ2 = A22x2. (42)

Herein, dim(x1) = rank[B,AB, . . . , An−1B] =: n1, and
dim(x2) = n− n1.

Proposition 4: A linear system (37) with B �= 0 is norm-
controllable from all x0 ∈ S with output map h(x) = [�̃Ti 0]x,
for each real left eigenvector �̃Ti of A11. �

Proof: As by assumption B �= 0, we have n1 > 0. Fur-
thermore, span[B̃, A11B̃, . . . , An1−1

11 B̃] = R
n1 . Now consider

some real left eigenvector �̃Ti of A11 with corresponding eigen-
value λi. Note that �̃Ti B̃ �= 0. Indeed, if this were not true and
�̃Ti B̃ = 0, then

�̃Ti A
n1−1
11 B̃ = λi�̃

T
i A

n1−2
11 B̃ = · · · = λn1−1

i �̃Ti B̃ = 0.

Thus �̃i ⊥ span[B̃, A11B̃, . . . , An1−1
11 B̃] = R

n1 , which is a
contradiction as �̃i ∈ R

n1 . Now consider ω(x) = [�̃Ti 0]x for
some i, and take V (x) = |ω(x)|. Then for all x where ω(x) �=
0, (38) with c = [�̃Ti 0]T yields

V̇ = λi |ω(x)|+ sign (ω(x)) �̃Ti A12x2 + sign (ω(x)) ω̃T
i B̃u.

(43)
If we start with an initial condition on the controllable subspace,
i.e., x2(0) = 0, then, as the controllable subspace is invariant,
the term involving A12 in (43) vanishes for all times, and thus
for each b > 0 the growth of V can be bounded from below by
a function χ(b) analogous to (40). By similar calculations as in
(41) one can also establish this property for all x where ω(x) =
0. Thus one can apply Theorem 1 with B = S to conclude that
the linear system (37) with output map h(x) := ω(x) = [�̃Ti 0]x
is norm-controllable from all x0 ∈ S , which concludes the
proof of Proposition 4. �

For general linear output maps h(x) = cTx and invari-
ant sets B different from the controllable subspace S , one
can sometimes establish norm-controllability with the help of
Theorems 1–3, similarly to the general (nonlinear) case, as
illustrated by the following example.

Example 8: Consider the linear system

ẋ =

[
−1 1
0 −1

]
x+

[
1

0

]
u (44)

which is given in the Kalman decomposition form (42). The
system has a double eigenvalue λ = −1 with corresponding
left eigenvector �T = [0 1], which is orthogonal to the con-
trollable subspace S = span([1 0]T ). Now consider the output
map h(x) := cTx with c = [c1 c2]

T and take ω(x) := cTx
and V (x) := |cTx|. As discussed in Section VI-A, if c1 = 0
then the system is not norm-controllable, as cT = [0 c2] (with
c2 �= 0) is a left eigenvector which is orthogonal to the control-
lable subspace S = span([1 0]T ). Hence in the following we
consider the case c1 �= 0; without loss of generality, assume that
c1 > 0. If this were not the case, just consider −h(x) as out-
put. Now consider the sets B1 := {x ∈ R

2 : cTx ≥ 0, x2 ≥ 0}
and B2 := {x ∈ R

2 : cTx ≤ 0, x2 ≤ 0}. It is straightforward to
show that B1 and B2 are invariant under controls in Ū = R≥0

(respectively, Ū = R≤0).
Now for all x where ω(x) �= 0, (38) yields V̇ = −|ω(x)|+

sign(cTx)c1x2 + sign(cTx)c1u. For all x ∈ B1 ∪ B2, we have
sign(cTx)c1x2 ≥ 0, and hence it follows that V̇ ≥ (1−
θ)|c1|b =: χ(b) for all |ω(x)| ≤ θ|c1|b =: ρ(b) and arbitrary
0 < θ < 1 if we choose u = b if x ∈ B1, respectively u =
−b if x ∈ B2. Furthermore, for all x where ω(x) = 0, (39)
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yields V (1)(x; f(x, u)) = |c1(x2 + u)| ≥ χ(b) if we choose u
as specified above. Hence we can apply Theorem 1 with ν =
α1 = α2 = id to conclude that the system (44) with output
map h(x) = cTx is norm-controllable from all x0 ∈ B1 ∪ B2

with gain γ(a, b) = min{(1− θ)|c1|ab+ |cTx0|, θ|c1|b}. The
gain function γ can be interpreted as follows. If we consider
“normalized” outputs h(x) = cTx with |c| = 1, then the gain γ
becomes maximal if the output is aligned with the controllable
subspace, i.e., if c = [1 0]T . When the output is “rotated”, the
gain decreases until the system is not norm-controllable at all
anymore (corresponding to a gain γ = 0), which happens if
the output is orthogonal to the controllable subspace, i.e., if
c = [0 1]T .

VII. WEAKER VERSIONS OF NORM-CONTROLLABILITY

In this Section, we discuss some relaxations (weaker ver-
sions) of norm-controllability. In the definition of norm-
controllability (see Definition 1), we required the function
γ(a, ·) to be of class K∞. One possible relaxation could
be to only require this function to be nondecreasing and
unbounded.

Definition 2: The system (1) is weakly norm-controllable in
b from x0 with gain function γ if there exists a function γ :
R≥0 × R≥0 → R≥0 with γ(·, b) nondecreasing for each fixed
b > 0 and γ(a, ·) nondecreasing and unbounded for each fixed
a > 0, such that for all a > 0 and b > 0

Ra
h(x0,Ua,b) ≥ γ(a, b) (45)

where Ua,b is defined in (2). �
Such a weaker notion of norm-controllability is interesting in

such cases where the system is only responsive to large, but not
to small, inputs, which will be illustrated with a simple example
below (see Example 9). In particular, as we require γ(a, ·) to be
nondecreasing and unbounded, it can be zero on some finite
interval [0, b̂] for some b̂ ≥ 0. Sufficient conditions for this
weaker notion of norm-controllability can be obtained in the
same way as for our original definition of norm-controllability:

Proposition 5: Let the conditions of Theorem 1 (respec-
tively, Theorem 2 or Theorem 3) be satisfied, but with χ :
R≥0 → R≥0 in (8) (respectively, χ : R≥0 → R≥0 in (15) or
χi : R≥0 → R≥0, 1 ≤ i ≤ �, in (25)) only being nondecreasing
and unbounded instead of K∞. Then the system (1) is weakly
norm-controllable in b from all x0 ∈ B with gain function γ
given by (9) (respectively, (17) or (27)) with V (x0) replaced
by11 V (x0)I(χ(b)) (respectively, V (x0)min1≤i≤� I(χi(b)) in
case of Theorem 3). �

Proof: For each b > 0 such that χ(b) > 0 (respectively,
χi(b) > 0 for all 1 ≤ i ≤ � in case of Theorem 3), the construc-
tion of a piecewise constant input signal satisfying |y(a)| =
|h(x(a))| ≥ γ(a, b) works as in the proof of Theorem 1 (re-
spectively, Theorem 2 or Theorem 3). As χ (respectively, χi for
all 1 ≤ i ≤ � in case of Theorem 3) is required to be nonneg-
ative, nondecreasing and unbounded, it follows that χ(b) = 0
(respectively, χi(b) = 0 for some 1 ≤ i ≤ �) only on some
finite interval [0, b̂] for some b̂ ≥ 0. For these values of b, ex-

11The indicator function I : R≥0 → {0, 1} is defined as I(s) = 0 if s = 0
and I(s) = 1 otherwise.

istence of a piecewise constant input signal satisfying |y(a)| =
|h(x(a))| ≥ γ(a, b) as constructed in the proof of Theorem
1 (respectively, Theorem 2 or Theorem 3) is not guaranteed
anymore (in particular, Lemmas 1 and 2 do not hold anymore if
χ(b) = 0). Nevertheless, for such values of b, the gain function
γ as given in the proposition satisfies γ = 0, and hence (45)
is trivially satisfied. The proof is concluded by noting that
the gain function γ as given in the proposition satisfies the
required properties. In particular, γ(a, ·) is nondecreasing and
unbounded for each fixed a > 0. �

Example 9: Consider the system (1) with output h(x) = x
and f(x, u) = 0 for |u| ≤ 1, f(x, u) = |u| − 1 for 1 < |u| ≤ 2,
f(x, u) = 3− |u| for 2 < |u| ≤ 3, f(x, u) = 0 for 3 < |u| ≤
4, and f(x, u) = |u| − 4 for 4 < |u|; note that R≥0 is invari-
ant under controls in Ū = R≥0. This system is not norm-
controllable according to Definition 1, as f(x, u) ≡ 0 for all
(x, u) such that |u| ≤ 1, i.e., the system is not responsive to
inputs of small magnitude. On the other hand, for each b > 0
and each x ∈ R≥0, (8) is satisfied with V (x) = |x| and χ(b) =
0 for 0 ≤ b ≤ 1, χ(b) = b− 1 for 1 < b ≤ 2, χ(b) = 1 for 2 <
b ≤ 5, and χ(b) = b− 4 for 5 < b. Note that for each x ∈ R≥0,
the set of “good” input values, i.e., such that (8) holds with χ as
given above, is U b(x) = [0, b] for 0 ≤ b ≤ 1, U b(x) = {b} for
1 < b ≤ 2, U b(x) = {2} for 2 < |u| ≤ 5, and U b(x) = {b} for
5 < b. Hence we can apply Proposition 5 together with Remark
1 (using ν = α1 = α2 = id) to conclude that the system is
weakly norm-controllable in b from all x0 ∈ R≥0 with gain
function γ(a, b) = aχ(b) + x0I(χ(b)). �

A second possible relaxation (weaker version) of norm-
controllability could be with respect to the time horizon a.
Namely, instead of requring γ(a, ·) to be of class K∞ for each
a > 0 as in Definition 1, we now only require that γ̄(b) :=
γ(a+ a(x0, b), b) be of class K∞ for each a > 0. Herein,
a(x0, b) ≥ 0 can be interpreted as some “dead zone”, i.e., the
norm of the output can only be increased after some time
a(x0, b) ≥ 0, which possibly depends on the initial condition
x0 of the system as well as the upper bound b for the input
norm.

Definition 3: The system (1) is weakly norm-controllable in
a from x0 with gain function γ if there exists a function γ :
R≥0 × R≥0 → R≥0 and for each b ≥ 0 a constant a(x0, b) ≥
0 such that γ(·, b) is nondecreasing for each fixed b > 0 and
γ̄(b) := γ(a+ a(x0, b), b) is of class K∞ for each fixed a > 0,
and for each a > 0 and b > 0

Ra
h(x0,Ua,b) ≥ γ(a, b)

where Ua,b is defined in (2). �
Proposition 6: Suppose that the conditions of Theorem 1 (re-

spectively, Theorem 2 or Theorem 3) are satisfied. Furthermore,
assume that for each x0 ∈ R

n and each b > 0 there exists a con-
stant a(x0, b) such that Ra(x0,b){x0,Ua(x0,b),b} ∩ B �= ∅. Then
the system (1) is weakly norm-controllable in a from all x0 ∈
R

n with gain function γ̃(a, b) := γ(max{0, a− a(x0, b)}, b),
where γ is given by (9) (respectively, (17) or (27)) with V (x0)
replaced by 0. �

Proof: For each x0 ∈ R
n and each b > 0, by assumption

there exists an input ũ(·) ∈ Ua(x0,b),b such that the result-
ing state trajectory satisfies x(a(x0, b)) ∈ B. By Theorem 1
(respectively, Theorem 2 or Theorem 3), the system is
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norm-controllable from x(a(x0, b)) with gain function γ given
by (9) (respectively, (17) or (27)) with V (x0) replaced by 0
(or by V (x(a(x0, b))), respectively). Hence it follows that for
all a ≥ a(x0, b), we have Ra

h(x0,Ua,b) ≥ γ̃(a, b), with γ̃ as
specified in the proposition. For a < a(x0, b), this bound is
trivially satisfied as γ̃(a, b) = 0 for a < a(x0, b), because γ
given by (9) (respectively, (17) or (27)) with V (x0) replaced
by 0 has the property that γ(0, b) = 0 for all b > 0. As x0 ∈
R

n and b > 0 were arbitrary, the proposition is established
by noting that γ̃ satisfies the required properties of Definition
3, i.e., is γ̃(·, b) is nondecreasing for each fixed b > 0 and
γ̄(b) := γ̃(a+ a(x0, b), b) = γ(a, b) is of class K∞ for each
a > 0 (defining a(x0, 0) = 0). �

Example 10: A simple example to illustrate weak norm-
controllability in a is the system (1) with y = x and f(x, u) = 1
for x < 0 and f(x, u) = 1 + x|u| for x ≥ 0. It is easy to verify
(using, e.g., Theorem 1 with V (x) = |x| together with Remark
1) that this system is norm-controllable from all x0 ∈ B :=
{x ∈ R : x ≥ 1} with gain function γ(a, b) = ab+ V (x0). If
x0 < 1, for each input signal u(·) there exists some t′ ≤
−x0 + 1 such that the solution satisfies x(t) ≥ 1 for all t ≥ t′.
Hence, defining a(x0, b) := max{0,−x0 + 1}, it follows from
Proposition 6 that the system is weakly norm-controllable in
a from all x0 ∈ R with gain function γ̃(a, b) := max{0, a−
a(x0, b)}b.

Remark 9: Note that weak norm-controllability in a accord-
ing to Definition 3 is different (and strictly weaker) than the
situation encountered in Example 6 for initial conditions x(0) �∈
B. There, while |y| was initially decreasing, we still could find
a function γ satisfying the requirements of Definition 1. On the
other hand, in Example 10, for initial conditions x0 < 0 the
norm of the output will necessarily decrease to zero and then in-
crease again; in particular, if x0 < 0 then we have y(τ) = 0 for
τ = −x0 independently of b. Hence the system is not globally
norm-controllable, but only weakly norm-controllable in a. �

VIII. CONCLUSION

In this work, we introduced and studied the notion of
norm-controllability for general nonlinear systems. We ob-
tained several Lyapunov-like sufficient conditions for norm-
controllability and illustrated their applicability as well as vari-
ous aspects of the proposed concept with several examples. Two
weaker variants of norm-controllability, along with sufficient
conditions for verifying them, were proposed as well. We
expect that besides its theoretical interest, the notion of norm-
controllability can be interesting in various application-related
contexts, such as process engineering (which we motivated with
a simple CSTR example) or economics; studying more sophis-
ticated application examples will hence be a topic of future
research. Also, it could be interesting to formulate and study
a slightly stronger variant of norm-controllability which guar-
antees the existence of individual trajectories that stay large for
all times. Moreover, it would be worthwhile to explore possible
relationships of our sufficient conditions using higher-order
directional derivatives with stability results using higher-order
derivatives of Lyapunov functions such as, e.g., [20], and to
obtain more definitive results for (global) norm-controllability
of linear systems with general output maps. Finally, Theorems
1–3 in general only provide sufficient conditions for norm-

controllability; studying necessary conditions is hence another
interesting future research direction.

APPENDIX I
PROOF OF LEMMA 1

Let h(t) := 1/tk(x(t)− x0 − th1 − · · · − tk−1hk−1) for
t > 0, where h1, . . . , hk−1 are defined as in (12) with t′ = 0,
x = x0, and u = u0. Note that h is continuous in t and
limt↘0 h(t) =: hk according to (11). Furthermore, for t > 0,
define the function

g(t) := k!/tk
(
V
(
x0 + th1 + · · ·+ tkh(t)

)
− V (x0)

− tV (1)(x0;h1)−· · ·− tk−1V (k−1)(x0;h1, . . . , hk−1)
)
.

Consider g− := lim inft↘0 g(t). By the definitions of g and
V (k), it holds that

g− = lim inf
t↘0

g(t) ≥ V (k) (x0; f(x0, u0))
(15)

≥ χ(b).

The first inequality holds because in the definition of V (k) in
(10), the infimum over all h̄k with h̄k → hk is taken, while
in g− the specific choice h̄k = h(t) → hk is used. Thus, by
definition of the (one-sided) limit inferior, for every ε > 0 there
exists a τ > 0 such that for all 0 < t ≤ τ , it holds that

g(t) ≥ g− − ε ≥ χ(b)− ε. (46)

Choosing ε small enough so that χ(b) > ε (which can be done
for each fixed b > 0) we obtain

V (x(t)) = V
(
x0 + th1 + · · ·+ tkh(t)

)
= (1/k!)g(t)tk + V (x0) + tV (1)(x0;h1)

+ · · ·+ tk−1V (k−1)(x0;h1, . . . , hk−1)

(46),(14)

≥ (1/k!)(χ(b)− ε)tk + V (x0) > V (x0) ≥ 0

as claimed. �

APPENDIX II
PROOF OF LEMMA 2

In order to prove Lemma 2, we first need a simple auxiliary
result.

Lemma 3: For each κ > 0 there exist constants M and N
such that

|f(x, u)| ≤ M, (47)∣∣V (k) (x′; f(x′, u))− V (k) (x; f(x, u))
∣∣ ≤ N |x− x′| (48)

for all x, x′ ∈ R≤a{x0,Ua,b} ∩X∞,κ and |u| ≤ b, where
X∞,κ := {x ∈ B : κ ≤ |ω(x)|}.

Proof of Lemma 3: As stated earlier, we assume that for
each u(·) ∈ Ua,b there is no finite escape time tesc ≤ a. This
implies that the set R≤a{x0,Ua,b} is compact [21, Proposition
5.1]. As B is closed, also X∞,κ is closed due to continuity
of ω, and hence R≤a{x0,Ua,b} ∩X∞,κ is compact, for each
κ > 0. Furthermore, also the set {u : |u| ≤ b} is compact.
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From the fact that V ∈ Ck for all x ∈ R
n \W and the k-th

order partial derivatives of V are locally Lipschitz there, and
furthermore f ∈ Ck−1 and the (k − 1)-st partial derivatives of
f with respect to x are locally Lipschitz in (x, u), it follows
that V (k)(x; f(x, u)) = Lk

fV |(x,u) is Lipschitz in (x, u) on the

set (R≤a{x0,Ua,b} ∩X∞,κ)× {u : |u| ≤ b}, for each κ > 0.
This follows from the fact that Lk

fV |(x,u) consists of sums of
products of locally Lipschitz functions, and sums and products
of Lipschitz functions on a compact set are Lipschitz on that
set. Hence there exist constants M and N satisfying (47), (48)
for each x, x′ ∈ R≤a{x0,Ua,b} ∩X∞,κ and each |u| ≤ b. �

Proof of Lemma 2: Let τ0 := inf{τ : τ ≥ s, V (x(τ)) =
(1/2)V (x(s))} ∈ (s,∞], where x(·) is the trajectory resulting
from the application of the constant control input us for all τ ≥
s. Note that due to continuity of V and x(·), we have τ0 > s.
Hence, as us ∈ Ū and B is invariant under controls in Ū , from
(7) it follows that x(t) ∈ X∞,δ′ with δ′ = α−1

2 ((1/2)α1(δ))
for all t ∈ [s, τ0) (respectively for all t ∈ [s, τ0] if τ0 < ∞).
Now consider some s ≤ s′ ≤ τ0. For all t ∈ [s, s′] ∩ [0, a], the
trajectory x(·) satisfies

x(t) = x(s) +

t∫
s

f (x(τ), us) dτ. (49)

Furthermore, Lemma 3 (with κ = δ′) provides a constant M
such that from (49) it follows that for each t ∈ [s, s′] ∩ [0, a]

|x(t)− x(s)| ≤ M(t− s). (50)

With this we obtain that for each t ∈ [s, s′] ∩ [0, a]

V (k) (x(t))
(48)

≥ V (k) (x(s))−N |x(t)− x(s)|
(50)

≥ V (k) (x(s))−NM(t− s)
(15)

≥ χ(b)−NM(t− s) ≥ (1− ε)χ (|b|) (51)

for every 0 < ε ≤ 1 if s′ ≤ min{τ0, s+Δ(ε, δ)} with

Δ(ε, δ) :=
εχ(b)

NM
.

The dependence of Δ on δ is due to the fact that the constants
M and N possibly depend on δ′ and hence on δ. As the
constant input us is applied, we have that V (k−1)(x(t))−
V (k−1)(x(s)) =

∫ t

s V (k)(x(τ))dτ , i.e.

V (k−1) (x(t))− V (k−1) (x(s)) ≥ (1− ε)χ(b)(t− s) (52)

for all t ∈ [s,min{τ0, s+Δ(ε, δ)}] ∩ [0, a]. Furthermore, for
j = k − 2, . . . , 0, integrating (52) k − j − 1 times from s to t
while using (14) with x = x(s) and u = us in order to get rid
of the terms V (j+1)(x(s)), . . . , V (k−1)(x(s)) yields

V (j) (x(t))− V (j) (x(s)) ≥ 1− ε

(k − j)!
χ(b)(t− s)k−j (53)

for all t ∈ [s,min{τ0, s+Δ(ε, δ)}] ∩ [0, a]. Hence Lemma 2
is established if we can show that τ0 ≥ s+Δ(ε, δ), which
will be done by contradiction. Namely, suppose that τ0 < s+
Δ(ε, δ). But then (53) is valid for all t ∈ [s, τ0], and from
there it follows (with j = 0) that V (x(τ0)) > V (x(s)), which
contradicts the definition of τ0. �

APPENDIX III
PROOF OF PROPOSITION 1

Let a, b > 0 be arbitrary but fixed. The construction of a
piecewise constant input signal works as in the proof of The-
orem 2, with the following small modifications.

Step 0: If x0 ∈ int(Λb): The control value u0 is now chosen
such that u0 ∈ Û b(x0) ⊆ Ũ b. Note that for this choice of u0,
Lemma 1 is still valid as Û b(x0) ⊆ U b(x0). If x0 �∈ Λb: Pick
some u1 ∈ Ũ b.

Step 1: In Step 1, the control values ui at time instants
ti are defined at points where x(ti) ∈ int(Λb). Recursively,
as up to time ti only input values in Ũ b have been applied
to the system, by assumption we have that x(ti) ∈ B ∪Hb.
But as Hb ∩ Λb = ∅, it holds that x(ti) ∈ B. Now pick some
ui ∈ Û b(x(ti)) ⊆ Ũ b. Note that for this choice of ui, Lemma
2 is still valid as Û b(x(ti)) ⊆ U b(x(ti)) and x(·) ∈ B as long
as x(·) ∈ Λb. Again, in case that condition (ii) of Theorem 2
holds, one can choose the input values u1, u2, . . . to be the same
(which is possible thanks to condition 3) in the proposition).

Step 2: As was the case in Step 1, one can recursively show
that as up to time ťj only input values in Ũ b have been applied
to the system, by assumption we have that x(ťj) ∈ B ∪Hb.
But as Hb ∩ Λb = ∅, it holds that x(ťj) ∈ B. Pick some ǔj ∈
Û b(x(ťj)) ⊆ Ũ b. Then, again Lemma 2 is still valid for this
choice of ǔj .

Step 3: Summarizing the above, the piecewise constant input
signal (21) with the given modified values of u0, ui and ǔj

again satisfies (22), as Lemmas 1 and 2 are still valid as
discussed above. From here, the rest of the proof follows along
the lines of the proof of Theorem 2, thanks to condition 2) of
the proposition. �

APPENDIX IV
PROOF OF THEOREM 3

In order to prove Theorem 3, we need the following auxiliary
result.

Lemma 4: Let a0, a1, . . . , a� ≥ 0 for some � ≥ 1 with a� >
0. Define P := {p : 0 ≤ p ≤ �, ap > 0} and bp(s) := ap(s−
t1)

p for all p ∈ P and some t1 ≥ 0. Then for each t ≥ t1 it
holds that

t∫
t1

min
p∈P

bp(s)ds ≥
1

�+ 1
min
p∈P

⎧⎨
⎩(p+ 1)

t∫
t1

bp(s)ds

⎫⎬
⎭ . (54)

Proof: Let pmin := min{p : p ∈ P}. In case that pmin =
�, inequality (54) is trivially satisfied with equality. Hence in
the following we assume that pmin < � and thus P contains at
least two elements. According to the definition of the functions
bp, for each pair of elements p, q ∈ P with p > q there exists
an s̄ > t1 such that bp(s) < bq(s) for all t1 < s < s̄, bp(s̄) =
bq(s̄), and bp(s) > bq(s) for all s > s̄. Hence

s̄∫
t1

bp(s)ds =
1

p+ 1
ap(s̄− t1)

p+1

=
1

p+ 1
aq(s̄− t1)

q+1 =
q + 1

p+ 1

s̄∫
t1

bq(s)ds. (55)
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Furthermore, the above implies that there exist some s′′ ≥
s′ > t1 such that minp∈P bp(s) = b�(s) for all t1 ≤ s ≤ s′ and
minp∈P bp(s) = bpmin

(s) for all s ≥ s′′. Let τ0 := t1 and p0 :=
�. Define recursively

τi := min{s : s > τi−1, ∃p ∈ P, 0 ≤ p ≤ pi−1 − 1,

bpi−1
(s) = bp(s)}

pi := min
{
p : 0 ≤ p ≤ pi−1 − 1, bp(τi) = bpi−1

(τi)
}

for all i = 1, . . . , imax, where imax := min{i ≥ 1 : pi =
pmin}. Note that according to the above considerations, the time
instances τi are well defined and imax ≤ |P|, where |P| denotes
the number of elements in P . With this, for each t ≥ t1, define
i′(t) := max{i ≥ 0 : τi ≤ t}. Then, by using the fact that the
sequence {pi} is decreasing by construction, the left hand side
of (54) is equal to

τ1∫
t1

bp0
(s)ds+

τ2∫
τ1

bp1
(s)ds+ · · ·+

t∫
τi′(t)

bpi′(t)(s)ds

(55)

≥ p1 + 1

p0 + 1

τ2∫
t1

bp1
(s)ds+ · · ·+

t∫
τi′(t)

bpi′(t)(s)ds

(55)

≥ · · ·
(55)

≥
pi′(t) + 1

p0 + 1

t∫
t1

bpi′(t)(s)ds

≥ 1

�+ 1
min
p∈P

⎧⎨
⎩(p+ 1)

t∫
t1

bp(s)ds

⎫⎬
⎭

which concludes the proof of Lemma 4. �
Proof of Theorem 3: Let a, b > 0 and 0 < ε̄ < 1 be arbi-

trary but fixed, and assume in the sequel that the hypotheses of
Theorem 3 are satisfied. Furthermore, for each x ∈ B, define
i(x) := min{1 ≤ i ≤ � : x ∈ Ri(b)}. A piecewise constant in-
put signal (21) is now constructed as in Steps 0–2 of the proof
of Theorem 2, except that U b(x) is replaced by U b

i(x)(x) in all
places. Step 3 of the proof of Theorem 2 is replaced with the
following.

As shown in the proof of Theorem 2, the input signal u(·)
consists of only finitely many different values ui and ǔj .
Let {ti} be the sequence of time instants defined in Step 1
(i.e., where a new control value ui is chosen), with ts being
the last time instant of this sequence (i.e., such that ts ≤
min{ť1, a}). Let the subsequence {τ1, . . . , τr} of {ti} consist
of those values ti, 2 ≤ i ≤ s, such that i(x(ti)) �= i(x(ti−1)),
i.e., {τi} consists of those time instants where the conditions
of Theorem 3 are applied in a different region Ri(b) than
at the previous time instant ti−1. The state trajectory x(·)
resulting from application of the constructed control input
(21) satisfies the following properties. First, we consider the
situation where t1 > 0 (recall from Step 0 that this corresponds
to x0 ∈ int(Λb)) and i(x(t1)) = �. Using (19) with k = k�, j =
k� − 1, χ = χ� and ε = ε̄, we obtain that V (k�−1)(x(t−i )) ≥
(1− ε̄)(ti − ti−1)χ�(b) + V (k�−1)(x(ti−1)) for all t2 ≤ ti ≤
τ1. By the same argument as in Step 3 of the proof of The-
orem 2 (i.e., using either condition (i) or (ii) of the Theo-
rem), it follows that V (k�−1)(x(t)) is continuous also at the
time instants t = ti, and hence V (k�−1)(x(t)) ≥ (1− ε̄)(t−
t1)χ�(b) + V (k�−1)(x(t1)) for all t1 ≤ t < min{τ1, ť1, a}.

Again, using the same procedure as in Step 3 of the proof of
Theorem 2 (i.e., piecewise integrating this inequality and using
the fact that V (k)(x(t)) for k < k� is continuous also at t = ti),
it follows that

V (k�−1) (x(t)) ≥ (1− ε̄)

(k� − k�−1)!
(t− t1)

k�−k�−1χ�(b)

+V (k�−1) (x(t1)) (56)

for all t1 ≤ t < min{τ1, ť1, a}. Now consider the case where
i(x(τ1)) = �− 1. By construction of the input values ui in
Step 1, from Lemma 2 it follows that

V (k�−1) (x(t)) ≥ (1− ε̄)χ�−1(b) (57)

for all τ1 ≤ t < min{τ2, ť1, a}. If i(x(τ2)) = �, i.e., the solu-
tion x(·) has entered R� again, then analogously to the above
we conclude that for all τ2 ≤ t < min{τ3, ť1, a}, (56) is satis-
fied with t1 replaced by τ2. In particular then, as V (k�−1)(x(t))
is also continuous at t = τ2, we have that V (k�−1)(x(t)) ≥
V (k�−1)(x(τ2)) ≥ (1− ε̄)χ�−1(b), for all τ2 ≤ t < min{τ3,
ť1, a}. Using this argument recursively, it follows that (57)
is satisfied for all τ1 ≤ t < min{τm, ť1, a}, where m :=
infk≥3,i(x(τk)) �∈{�,�−1} k. Combining this with the fact that (56)
is satisfied for all t1 ≤ t < min{τ1, ť1, a}, it follows that

V (k�−1) (x(t))

≥ min
i∈{�−1,�}

(1− ε̄)(k� − ki)!

(k� − k�−1)!
(t− t1)

ki−k�−1χi(b)

=: ϕ̄(t, t1) (58)

for all t1 ≤ t < min{τm, ť1, a}. Note that this inequality is
not only valid in case that i(x(t1)) = �, but also in case that
i(x(t1)) = �− 1.

We now apply the same argumentation as above to the region
R� ∪R�−1 ∪R�−2. Namely, assume that i(x(τm)) = �− 2;
then it follows that

V (k�−2) (x(t)) ≥ (1− ε̄)χ�−2(b)

for all τm ≤ t < min{τn, ť1, a}, where n :=
infk≥m,i(x(τk)) �∈{�,�−1,�−2} k. Combining this with the fact
that (58) is valid for all t1 ≤ t < τm, by piecewise integrating
(58) r := k�−2 − k�−1 times from t1 to t, using again the fact
that V (k)(x(t)) for k < k�−1 is continuous also at the respective
time instants t = ti, and applying (24) with x = x(t1), u = u1

and j = k�−1 − 1, . . . , k�−2, one obtains that

V (k�−2) (x(t))

≥ min

⎧⎨
⎩

t∫
t1

. . .

s2∫
t1

ϕ̄(s1, t1)ds1 . . . dsr, (1− ε̄)χ�−2(b)

⎫⎬
⎭

for all t1 ≤ t < min{τn, ť1, a}. Using Lemma 4 k�−2 − k�−1

times, this results in

V (k�−2) (x(t))

≥ min
i∈{�−2,...,�}

(1− ε̄)(k� − ki)!

(k� − k�−2)!
(t− t1)

ki−k�−2χi(b) (59)
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for all t1≤ t<min{τn, ť1, a}. Again, this inequality is also
satisfied if i(x(t1))=�−2, i.e., for arbitrary values i(x(τi))∈
{�, �−1, �−2} for all 1≤ i≤n. Applying the above argument
repeatedly down to i=1, it follows that (59) with �−2 replaced
by 1 is satisfied for all t1≤ t≤min{ť1, a} and arbitrary values
i(x(τi))∈{1, . . . , �} for all 1≤ i≤r. Integrating this inequality
another k1 times while using Lemma 4 and (24) with x=x(t1),
u=u(t1) and j=k1 − 1, . . . , 1, we obtain that V (x(t))≥
(1−ε̄)Ψ(t−t1, b)+V (t1) for all t1≤ t≤min{ť1, a} and for all
x0∈ int(Λb), with Ψ given in (28). From here, the rest of the
proof follows as in Step 3 of the proof of Theorem 2. �
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