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1. INTRODUCTION

When considering dynamical systems with inputs and out-
puts, a key question is how the applied inputs affect the
behavior of the states and outputs of the system. In this
respect, various properties are of interest. For example,
one fundamental system property is controllability, which
is usually formulated as the ability to reach any state from
any other state by choosing an appropriate control input
(see, e.g., Hespanha [2009], Sontag [1998]). Another impor-
tant question is whether bounded inputs lead to bounded
system states or outputs. This question is dealt with in
the context of input-to-state stability (ISS) [Sontag, 1989]
and related notions involving outputs such as input-to-
output stability (IOS) [Sontag and Wang, 1999] or L∞

stability (see, e.g., Khalil [2002]), respectively, where an
upper bound on the norm of the system state and the
output, respectively, are considered in terms of the infinity
norm of the input.

In other settings, a problem complementary to the above
is of interest. Namely, one would like to obtain a lower
bound on the system state or the output in terms of
the norm of the applied inputs. This could, e.g., be
the case in the process industry, where one wants to
determine whether and how an increasing amount of
reagent yields an increasing amount of product, or in
economics, where certain inputs such as the price of a
product or the number of advertisements influence the
profit of a company. Furthermore, if the system input
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constitutes a disturbance, it is interesting to obtain a lower
bound for the effect of the worst case disturbance on the
system states or the output.

In this paper, we give a simplified and streamlined ex-
position of the concept of norm-controllability, which was
introduced by Müller et al. [2011, 2012] and deals with
the questions raised above. As the wording suggests, in
contrast to point-to-point controllability, we consider the
norm of the system state (or, more generally, of an out-
put), and ask how it is affected by the applied inputs.
In particular, we are interested in whether this norm can
be made large by applying large enough inputs for suf-
ficiently long time. The definition of norm-controllability
(see Section 3) is such that the reachable set of the system
projected on the output space can be lower bounded in
terms of the norm of the applied inputs and the time
horizon over which they were applied. In this respect,
norm-controllability can be seen as complementary to the
concepts of ISS or IOS and L∞ stability, respectively. We
survey several sufficient conditions for norm-controllability
from Müller et al. [2011, 2012] and state them in a simpli-
fied way. Furthermore, we illustrate the proposed concept
with several examples.

2. PRELIMINARIES AND SETUP

We consider nonlinear control systems of the type

ẋ = f(x, u), y = h(x), x(0) = x0 (1)

with state x ∈ R
n, output y ∈ R

k, and input u ∈ U ⊆ R
m,

where the set U of admissible input values can be any
closed subset of R

m (or the whole R
m). Suppose that

f ∈ C k̄−1 for some k̄ ≥ 1 and ∂k̄−1f/∂xk̄−1 is locally
Lipschitz in x and u. Input signals u(·) to the system (1)
satisfy u(·) ∈ L∞

loc(R≥0, U), where L∞
loc(R≥0, U) denotes

the set of all measurable and locally bounded functions
from R≥0 to U . We say that a set B ⊆ R

n is rendered
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control-invariant for system (1) by a set Ū ⊆ U , if for
every x0 ∈ B and every u(·) satisfying u(·) ∈ L∞

loc(R≥0, Ū)
the corresponding state trajectory satisfies x(t) ∈ B for
all t ≥ 0. We assume that the system (1) exhibits the un-
boundedness observability property (see Angeli and Sontag
[1999] and the references therein), which means that for
every trajectory of the system (1) with finite escape time
tesc, also the corresponding output becomes unbounded
for t → tesc. This is a very reasonable assumption as one
cannot expect to measure responsiveness of the system
in terms of an output map h (as we will later do) if a
finite escape time cannot be detected by this output map.
We remark that, for example, all linear systems satisfy
this assumption, as do all nonlinear systems with radially
unbounded output maps.

For every b > 0, denote by Ub := {u ∈ U : 0 ≤ |u| ≤ b} the
set of all admissible input values with norm in the interval
[0, b], which we assume to be nonempty. Furthermore, for
every a, b > 0, denote by

Ua,b := {u(·) : u(t) ∈ Ub, ∀t ∈ [0, a]} ⊆ L∞
loc(R≥0, U) (2)

the set of all measurable and locally bounded input signals
whose norm takes values in the interval [0, b] on the time
interval [0, a]. Let Rτ{x0,U} ⊆ R

n∪{∞} be the reachable
set of the system (1) at time τ ≥ 0, starting at the initial
condition x(0) = x0 and applying input signals u(·) in
some set U ⊆ L∞

loc(R≥0, U). The reachable set Rτ{x0,U}
contains ∞ if for some u(·) ∈ U a finite escape time
tesc ≤ τ exists. Define Rτ

h(x0,U) as the radius of the
smallest ball in the output space centered at y = 0 which
contains the image of the reachable set Rτ{x0,U} under
the output map h(·), or ∞ if this image is unbounded.

3. NORM-CONTROLLABILITY: DEFINITION AND
DISCUSSION

In the following, we precisely define and discuss the notion
of norm-controllability.

Definition 1. The system (1) is norm-controllable from x0

with gain function γ, if there exists a function γ : R≥0 ×
R≥0 → R≥0 with γ(·, b) nondecreasing for each fixed b > 0
and γ(a, ·) of class K∞ for each fixed a > 0, such that for
all a > 0 and b > 0

Ra
h(x0,Ua,b) ≥ γ(a, b), (3)

where Ua,b is defined in (2). 2

The above definition of norm-controllability 1 can be in-
terpreted in the following way. It provides a measure for
how large the norm of the output y can be made in terms
of the maximum magnitude b of the applied inputs and the
length of the interval a over which they are applied. This
is captured via the gain function γ, which gives a lower
bound on the radius of the smallest ball which contains the
image of the reachable set under the output map h, when
inputs with magnitude in the interval [0, b] are applied
over the time interval [0, a]. For each fixed time horizon
a, γ(a, ·) is required to be of class K∞, which means that
with inputs of increasing magnitude one should be able
1 We note that while Definition 1 is the same as the originally
proposed definition of norm-controllability in Müller et al. [2011,
2012], the set Ub appearing in (2) is defined in a slightly different
way. This allows us to also restate the sufficient conditions later on
in a slightly simplified way.

to also increase the norm of the output. On the other
hand, for every fixed upper bound b on the input norm,
increasing the time horizon a over which such inputs are
applied should result in a non-decreasing magnitude of the
output. In this respect, norm-controllability captures both
the “short-term” as well as the “long-term” responsiveness
of the system (1) with respect to the input u in terms of
the norm of the output map h, for which the gain γ is a
quantitative measure.

Furthermore, as mentioned in the Introduction, we note
that the concept of norm-controllability can be seen as
somehow complementary to ISS (respectively, to related
concepts involving outputs such as IOS and L∞ stability).
Namely, if a system is ISS, at each time t the norm of the
system state can be upper bounded in terms of the L∞

norm of the input (plus some decaying term depending
on the initial condition). Translated into our setting, this
would correspond to an upper bound on the radius of the
smallest ball which contains the reachable set, i.e., there
exist a function α ∈ K∞ and a function β ∈ KL such that
for all a, b > 0,

Ra
h(x0,Ua,b) ≤ β(|x0|, a) + α(b), (4)

with h(x) = x. On the other hand, norm-controllability
gives a lower bound on Ra

h(x0,Ua,b) in terms of the gain
function γ in (3). If a system is both norm-controllable
(with h(x) = x) and ISS, then it follows from (4) that
γ(·, b) is bounded for each b > 0. In this case, γ(∞, ·)
gives a lower bound for the smallest possible ISS-gain
function α of the system. Similar considerations apply to
related notions involving general outputs (different than
the special choice h(x) = x) such as IOS [Sontag and
Wang, 1999] or L∞ stability (see, e.g., Khalil [2002]).

4. SUFFICIENT CONDITIONS FOR
NORM-CONTROLLABILITY

In this section, we formulate several Lyapunov-like suffi-
cient conditions for a system to be norm-controllable. The
following Theorems originally appeared in Müller et al.
[2011, 2012], and we restate them here in a unified and
slightly simplified way. The proofs are omitted in this
paper due to space restrictions and they are, modulo some
small modifications, identical to those of the respective
Theorems in Müller et al. [2011, 2012].

4.1 Sufficient condition based on first-order directional
derivatives

The first sufficient condition for norm-controllability uses
the notion of lower directional derivatives, which we recall
from Studniarski [1991], Clarke et al. [1997]. Namely, for
a function V : R

n → R, the lower directional derivative of
V at a point x ∈ R

n in the direction of a vector h1 ∈ R
n

is defined as

V (1)(x; h1) := lim inf
tց0,h̄1→h1

(1/t)
(
V (x + th̄1) − V (x)

)
.

Note that at each point x ∈ R
n where V is continu-

ously differentiable, it holds that V (1)(x; h1) = Lh1
V =

(∂V /∂x)h1.

Theorem 1. Suppose there exist a set Ū ⊆ U and a
closed set B ⊆ R

n which is rendered control-invariant
by Ū for system (1). Furthermore, suppose there exist a

Copyright © 2013 IFAC 105



continuous function ω : R
n → R

q, 1 ≤ q ≤ n, a function
V : R

n → R, which is continuously differentiable on R
n\W

with W := {x ∈ R
n : ω(x) = 0} and ∂V/∂x is locally

Lipschitz on R
n \ W , and functions α1, α2, χ, ρ, ν ∈ K∞

such that the following holds:

• For all x ∈ B,

ν(|ω(x)|) ≤ |h(x)|, (5)

α1(|ω(x)|) ≤ V (x) ≤ α2(|ω(x)|). (6)

• For each b > 0 and each x ∈ B such that |ω(x)| ≤
ρ(b), there exists some u ∈ Ū ∩ Ub such that

V (1)(x; f(x, u)) ≥ χ(b). (7)

Then the system (1) is norm-controllable from all x0 ∈ B
with gain function

γ(a, b) = ν
(
α−1

2

(
min

{
aχ(b) + V (x0), α1(ρ(b))

}))
. (8)

Remark 1. If (7) does not only hold if |ω(x)| ≤ ρ(b),
but rather for all x ∈ B, then we can let ρ → ∞ and
γ in (8) simplifies to γ(a, b) = ν

(
α−1

2 (aχ(b) + V (x0))
)
.

Note that in this case, γ(a, ·) might not be of class K∞,
as γ(a, 0) 6= 0 if V (x0) 6= 0. Nevertheless, γ(a, ·) still
satisfies all other properties of a class K∞ function, i.e.,
is continuous, strictly increasing and unbounded. 2

In the following, we discuss various aspects of the sufficient
condition for norm-controllability presented in Theorem 1.
First, the condition expressed by (5)–(6), means that V
can be lower and upper bounded in terms of the norm of
a function ω which has to be “aligned” with the output
map h in the sense given by (5). In the special case of
h(x) = ω(x) = x, this reduces to the usual condition that
V is positive definite and decrescent.

Second, we need to allow V to be not continuously differ-
entiable for all x where ω(x) = 0 because V ∈ C1 together
with (6) would imply that the gradient of V vanishes for
all x where ω(x) = 0, and thus it would be impossible
to satisfy (7) there. In the examples given in Section 5, a
typical choice will be V (x) = |ω(x)|.
When the output map h is such that h(x0) = 0, norm-
controllability captures the system’s ability to “move
away” from the initial state x0. This could e.g. be of
interest if one wants to know how far one can move away
from an initial equilibrium state (x0, u0). In other settings,
it makes sense to consider h(x0) 6= 0, e.g. in a chemical
process where initially already some product is available.
This allows us, for fixed h, ω, and V , to vary the initial con-
dition x0, and the effect of this is given by the term V (x0)
in (8). Also, there might be several possible choices for the
functions ω and V satisfying the conditions of Theorem 1.
In this case the degrees of freedom in the choice of ω and
V can be used to maximize the gain γ in (8). Example 3
will illustrate this in more detail. Furthermore, if systems
without outputs are considered, i.e., an output map h is
not given a priori, we might first search for functions ω
and V satisfying the relevant conditions of Theorem 1.
Then, we can quantify the responsiveness of the system
with respect to every a posteriori defined output map
h satisfying (5). It is also useful to note that increasing
the output dimension by appending extra variables to the
output cannot destroy norm-controllability (it can only
help attain it).

Besides the conceptual complementarity between norm-
controllability and ISS as discussed in Section 3, we em-
phasize that also the sufficient conditions of Theorem 1
are in some sense “dual” to the conditions in typical
ISS results 2 [Sontag and Wang, 1995]. Namely, a system
is ISS if and only if there exist a continuously differen-
tiable function V and K∞-functions α1, α2, χ, ρ such that
α1(|x|) ≤ V (x) ≤ α2(|x|), and V̇ ≤ −χ(|x|) for all u and
all x satisfying |x| ≥ ρ(|u|). This means that the decay rate
of V can be upper-bounded in terms of |x| if |x| is large
enough in comparison to |u| (and this has to hold for all u).
In contrast to this, for norm-controllability we require
in (7) that there exists a u such that the growth rate of V
can be lower-bounded in terms of b (the upper bound for
the input norm) if |x| is small compared to b. However, we
note that while it is instructive to highlight the connections
and similarities between the sufficient condition for norm-
controllability in Theorem 1 and typical Lyapunov-like
conditions for ISS, most of the technical ideas used to prove
the respective results are very different.

Theorem 1 is stated such that norm-controllability is
established on some control-invariant set B. In particular,
this includes as a special case B = R

n, in which case we can
take Ū = U . In the following, we show that in Theorem 1,
the assumption that the set B is control-invariant under Ū
can be relaxed. To this end, define by Λb the sublevel set

Λb :=
{
x ∈ R

n : V (x) ≤ α1(ρ(b))
}
. (9)

Then, for each b > 0 and each x ∈ B such that |ω(x)| ≤
ρ(b), denote by Û b(x) ⊆ Ub a set which contains some

inputs u (at least one) which satisfy (7). Then, let Ũ b :=

∪x∈B,|ω(x)|≤ρ(b)Û
b(x). If B is control-invariant under Ũ :=

∪b>0Ũ
b, we have the situation of Theorem 1 (with Ū = Ũ);

if not, consider the following.

Proposition 1. In Theorem 1, the assumption that a set
Ū exists such that the set B is control-invariant under Ū
can be replaced by the following. For each b > 0, there
exists a set Hb ⊆ R

n with Hb ∩ Λb = ∅ and Λb defined
by (9) such that if x0 ∈ B and u(t) ∈ Ũ b for all t ≥ 0,
then x(t) ∈ B ∪ Hb for all t ≥ 0. Furthermore, instead
of only holding for all x ∈ B, equations (5)–(6) hold for
all x ∈ ∪b>0Hb ∪ B. 2

The condition in Proposition 1 means that each trajec-
tory x(·) cannot exit B before exiting Λb. In other words,
when at some time instant t we have x(t) ∈ Λb, then also
x(t) ∈ B. This means that at each time t, either x(t) ∈ B
(which allows us to apply (7)), or V (x(t)) ≥ α1(ρ(b)),
which allows us to derive the same gain function γ as in (8).

4.2 Sufficient condition based on higher-order directional
derivatives

The sufficient condition for norm-controllability presented
in Theorem 1 is appealing due to its rather simple struc-
ture and its similarity with other Lyapunov-like results
such as for ISS. However, this condition can be rather
restrictive and is in general not satisfied for systems whose
output y has a relative degree greater than one. The
sufficient conditions presented in the following sections
2 Again, similar considerations apply to related notions involving
outputs such as IOS.

Copyright © 2013 IFAC 106



resolve this issue by relaxing the conditions of Theorem 1,
and can be used for systems with arbitrary relative de-
gree. These relaxed conditions are based on higher-order
lower directional derivatives, which we define in accor-
dance with [Studniarski, 1991, Equation (3.4a)] (compare
also the earlier work [Ben-Tal and Zowe, 1982]). Namely,
if V (1)(x; h1) exists, the second-order lower directional
derivative of V at a point x in the directions h1 and h2 is
defined as 3

V (2)(x; h1, h2) := lim inf
tց0,h̄2→h2

(2/t2)
(
V (x + th1 + t2h̄2)

− V (x) − tV (1)(x; h1)
)
.

In general, if the corresponding lower-order lower direc-
tional derivatives exist, for k ≥ 1 define the kth-order lower
directional derivative as

V (k)(x; h1, . . . , hk) := lim inf
tց0,h̄k→hk

(k!/tk)

×
(
V (x + th1 + · · · + tkh̄k) − V (x) − tV (1)(x; h1)

− · · · − (1/(k − 1)!)tk−1V (k−1)(x; h1, . . . , hk−1)
)
. (10)

Similar to Section 4.1, we will later consider lower direc-
tional derivatives of a function V along the solution x(·) of
system (1). For 4 k ≤ k̄, we obtain the following expansion
for the solution x(·) of system (1), starting at time t′ at
the point x := x(t′) and applying some constant input u:

x(t) = x + (∆t)h1 + · · · + (∆t)khk + o((∆t)k+1) (11)

with ∆t := t − t′ and

h1 := ẋ(t′) = f(x, u),

h2 := (1/2)ẍ(t′) = (1/2)∂f/∂x|(x,u)f(x, u),

. . .

hk := (1/k!)x(k)(t′). (12)

In order to facilitate notation, in the following we write

V (k)(x; f(x, u)) := V (k)(x; h1, . . . , hk) (13)

for the kth-order lower directional derivative of V at the
point x along the solution of (1) when a constant input
u is applied, i.e., with h1, . . . , hk given in (12). It is
straightforward to verify that at every point where V is
sufficiently smooth, V (k)(x; f(x, u)) reduces to Lk

fV |(x,u)

(compare [Studniarski, 1991, Section 3] and [Ben-Tal and
Zowe, 1982, p.73]), where Lk

fV |(x,u) is the kth-order Lie
derivative of V along the vector field f . Namely, if V is
locally Lipschitz, the kth-order lower directional derivative
reduces to the kth-order Dini derivative (i.e., in (10) the
direction hk is fixed (see [Studniarski, 1991, Proposition
3.4(a)])); furthermore, if V ∈ Ck, then the limit in (10)
exists (compare [Studniarski, 1991, Proposition 3.4(b)])
which equals Lk

fV [Ben-Tal and Zowe, 1982, p.73].

Theorem 2. Suppose there exist a set Ū ⊆ U and a
closed set B ⊆ R

n which is rendered control-invariant

3 In contrast to Studniarski [1991], Ben-Tal and Zowe [1982], here
we include the factor 2 (and later, in (10), the factor k!) into the
definition of higher-order lower directional derivatives. We take this
slightly different approach such that later, at each point where
V is sufficiently smooth, these lower directional derivatives reduce
to classical directional derivatives (without any extra factors as
in Studniarski [1991], Ben-Tal and Zowe [1982]).
4 Recall that f ∈ Ck̄−1 for some k̄ ≥ 1.

by Ū for system (1). Furthermore, suppose there exist
a continuous function ω : R

n → R
q, 1 ≤ q ≤ n, a

function V : R
n → R, which for some 1 ≤ k ≤ k̄

is k times continuously differentiable on R
n \ W with

W := {x ∈ R
n : ω(x) = 0} and ∂kV/∂xk is locally

Lipschitz on R
n \ W , and functions α1, α2, χ, ρ, ν ∈ K∞

such that (5)–(6) is satisfied and the following holds:

For each b > 0 and each x ∈ B such that |ω(x)| ≤ ρ(b),
there exists some u ∈ Ū ∩ Ub such that

V (j)(x; f(x, u)) ≥ 0 j = 1, . . . , k − 1, (14)

V (k)(x; f(x, u)) ≥ χ(b). (15)

Then the system (1) is norm-controllable from all x0 ∈ B
with gain function

γ(a, b) = ν
(
α−1

2

(
min

{ 1

k!
akχ(b) + V (x0), α1(ρ(b))

}))
.

Remark 2. For the special case of k = 1, Theorem 1
is recovered. Furthermore, Proposition 1 also applies to
Theorem 2, i.e., the assumption of control-invariance of
the set B can be relaxed. 2

4.3 Sufficient condition based on directional derivatives of
different order

In this Section, we generalize the previous results to the
case where the control-invariant set B can be partitioned
into several regions where (14)–(15) holds for different k.
To this end, for a closed set X ⊆ R

n and ℓ ≥ 1, denote
by Rℓ(X) a partition of X such that X = ∪ℓ

i=1Ri and Ri

is closed for all 1 ≤ i ≤ ℓ. Note that R1(X) = X.

Theorem 3. Suppose there exist a set Ū ⊆ U and a
closed set B ⊆ R

n which is rendered control-invariant
by Ū for system (1). Furthermore, suppose there exist a
partition Rℓ(B) for some ℓ ≥ 1 with corresponding integer
constants 1 ≤ k1 < k2 < ... < kℓ ≤ k̄, a continuous
function ω : R

n → R
q, 1 ≤ q ≤ n, a function V : R

n → R,
which is kℓ times continuously differentiable on R

n \ W
with W := {x ∈ R

n : ω(x) = 0} and ∂kℓV/∂xkℓ is locally
Lipschitz on R

n \ W , and functions α1, α2, χ, ρ, ν ∈ K∞,
such that (5)–(6) is satisfied and the following holds:

i) For each b > 0 and each x ∈ Ri for some 1 ≤ i ≤ ℓ
satisfying |ω(x)| ≤ ρ(b), there exists some u ∈ Ū ∩Ub

such that

V (j)(x; f(x, u)) ≥ 0 j = 1, . . . , ki − 1, (16)

V (ki)(x; f(x, u)) ≥ χi(b). (17)

ii) For all 1 ≤ i1, i2 ≤ ℓ and all x ∈ Ri1 ∩ Ri2 , it holds
that U b

i1
(x) ∩ U b

i2
(x) ∩ Ū 6= ∅, where

U b
i (x) := {u ∈ Ub : (16) − (17) hold}

Then the system (1) is norm-controllable from all x0 ∈ B
with gain function

γ(a, b) = ν
(
α−1

2

(
min

{
Ψ(a, b) + V (x0), α1(ρ(b))

}))
,

where

Ψ(a, b) = min
i∈{1,...,ℓ}

(kℓ − ki)!

kℓ!
akiχi(b). (18)

Remark 3. In the special case of ℓ = 1, Theorem 2 is
recovered. Furthermore, condition ii) means that at those
points where two regions Ri1 and Ri2 overlap, there exists
(at least one) u such that (16)-(17) are satisfied with
both i1 and i2 for the same u. 2
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Remark 4. Again, similar to Proposition 1, the assump-
tion of control-invariance of the set B can be relaxed.
Furthermore, we note that the sets Ri of the partition
Rℓ(B) can also depend on the upper bound b of the applied
inputs, i.e., Ri = Ri(b). 2

5. EXAMPLES

In this Section, we illustrate the concept of norm-
controllability as well as the presented sufficient conditions
with several simple examples.

Example 1: Consider the system ẋ = −x3+u with output
h(x) = x, and take ω(x) = x and V (x) = |x|. For each
x 6= 0 and each b > 0, by choosing u such that |u| = b and
xu ≥ 0, we obtain

V̇ = −|x|3 + sign(x)u

= −|x|3 + θsign(x)u + (1 − θ)sign(x)u

≥ (1 − θ)b =: χ(b), 0 < θ < 1

for all |x| ≤ 3
√

θb =: ρ(b). For x = 0, choosing u such that
|u| = b results in V ′(0, f(0, u)) = b ≥ χ(b). Hence we can
apply Theorem 1 with B = R

n and 5 ν = α1 = α2 = id to
conclude that the considered system is norm-controllable
from all x0 ∈ R with gain function γ(r, s) = min

{
(1 −

θ)rs + |x0|, 3
√

θs
}
.

Example 2: Consider the system ẋ = u
1+|u| with h(x) =

x. This system is not norm-controllable. Namely, it is easy
to see that |ẋ| ≤ 1 for all x and u. But this means that
we cannot find a function γ(·, ·) which is a K∞ function in
the second argument such that (3) holds, as for a given
time horizon a, the norm of the output cannot go to
infinity as b → ∞. Hence this system lacks the “short-
term” responsiveness captured by the norm-controllability
property. Nevertheless, one can see that for a → ∞, also
|h(x)| → ∞ for every constant control u > 0.

Example 3: Consider the system

ẋ = f(x, u) =

[
−x3

1 + x2 + u
−x2 + x1 + u

]
, h(x) = x. (19)

As pointed out in Section 3, with this example we illustrate
how different functions ω and V can be used to establish
norm-controllability for system (19). To this end, consider
the two functions ω1(x) = x1 and ω2(x) = x2, as well as
V1(x) = |x1| and V2(x) = |x2|. It holds that |h(x)| ≥
|ωi(x)| for i = 1, 2; thus in both cases we can choose
νi = α1,i = α2,i = id in (5)–(6). Furthermore, the positive
orthant R

2
≥0 := R≥0 × R≥0 is rendered control-invariant

by Ū := R≥0, which can be easily seen by noting that
the vector field f points inside the positive orthant for
all x on its boundary and all u ≥ 0. Considering ω1 and
V1, by similar calculations as in Example 1 one can show
via Theorem 1 that the system (19) is norm-controllable
from all x0 = [x10 x20]

T ∈ R
2
≥0 with gain γ1(r, s) =

min
{
(1 − θ)rs + |x10|, 3

√
θs

}
. Similar calculations using

ω2 and V2 yield that the system (19) is norm-controllable
from all x0 ∈ R

2
≥0 with gain γ2(r, s) = min

{
(1 − θ)rs +

|x20|, θs
}
. Hence we can conclude that the system (19)

is norm-controllable from all x0 ∈ R
2≥ 0 with gain γ =

5 id : R
n → R

n denotes the identity function, i.e., id(s) = s for all
s ∈ R

n.

max{γ1, γ2}, which shows how the possible degrees of
freedom in the choice of the functions ω and V can be
used to maximize the gain γ. Furthermore, by the choice
of the functions ω1, ω2 and V1, V2, we also have proven
norm-controllability of the system (19) for the a posteriori
defined output maps h1(x) = x1 and h2(x) = x2.

Example 4: Consider the double integrator system ẋ1 =
x2, ẋ2 = u with output h(x) = x1. The relative degree
of this output is r = 2. Consider again the positive
orthant B1 := R

2≥ 0 which is rendered control-invariant
by Ū := R≥0. Let ω(x) := x1 and V (x) := |x1|. For all

x ∈ B1 and u ∈ Ū , we obtain V (1)(x; f(x, u)) = x2 and
V (2)(x; f(x, u)) = u. Hence for each b > 0, by choosing
u = b we obtain that V (2)(x; f(x, u)) = b =: χ(b). We
can now apply Theorem 2 with B1 := R

2≥ 0, Ū := R≥0,
k = 2 and χ = id together with Remark 1 to conclude
that the system is norm-controllable from all x0 ∈ B1

with gain function γ(a, b) = (1/2)a2b. Note that we could
not apply Theorem 1 (i.e., we need k = 2 > 1) as
V (1)(x; f(x, u)) = x2 cannot be lower bounded in terms
of u. Similar considerations also apply to the negative
orthant B2 := R

2≤ 0 which is rendered control-invariant
by Ū := R≤0.

Example 5: Consider an isothermal continuous stirred
tank reactor (CSTR) in which an irreversible, second-order
reaction from reagent A to product B takes place [Ogun-
naike and Ray, 1994]:

dCA/dt = (q/V )(CAi
− CA) − kC2

A

dCB/dt = −(q/V )CB + kC2
A, (20)

where CA and CB denote the concentrations of species A
and B (in [mol/m3]), respectively, V is the volume of the
reactor (in [m3]), q is the flow rate of the inlet and outlet
stream (in [m3/s]), k is the reaction rate (in [1/s]), and
CAi

is the concentration of A in the inlet stream, which
can be interpreted as the input. Using x1 := CA, x2 := CB,
c := q/V and u := CAi

, one obtains the system

ẋ1 = −cx1 − kx2
1 + cu =: f1(x, u)

ẋ2 = kx2
1 − cx2 =: f2(x). (21)

The physically meaningful states and inputs are x ∈
R

2
≥0, u ∈ R≥0, i.e., nonnegative concentrations of the two

species. We are interested in the amount of product B
per time unit, i.e. in the output y = h(x) = qx2. Taking
ω(x) = x2 and V (x) = |ω(x)|, one obtains that for
all x ∈ R

2
≥0 and u ∈ R≥0

V (1)(x; f(x, u)) = kx2
1 − cx2, (22)

V (2)(x; f(x, u)) = −kx2
1(3c + 2kx1)+c2x2+2kcx1u, (23)

V (3)(x; f(x, u)) = (−6kcx1 − 6k2x2
1 + 2kcu)f1(x, u)

+ c2f2(x). (24)

Now consider the region B := {x : 0 ≤ x2 ≤ (k/c)x2
1} ⊂

R
2
≥0. Note that V (1)(x; f(x, u)) ≥ 0 for all x ∈ B. Let

0 < ε, θ < 1, and for b ≥ 0 define ϕ1(b; ε) := (−(3 −
ε)c+

√
(3 − ε)2c2 + 16ckθb)/(4k), ϕ2(b) := min{cb/(8(c+

k)),
√

cb/(8(c + k))} and Φ(b) := min{ϕ1(b; 0), ϕ2(b)}.
Now consider the following partition of B, which is also
exemplarily depicted in Figure 1:
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Fig. 1. Partition of the control-invariant region B and the
set Hb in Example 9.

R1(b) := {x ∈ B : 0 ≤ x2 ≤ ε(k/c)x2
1, x1 ≥ Φ(b)},

R2(b) := {x ∈ B : (εk/c)x2
1 ≤ x2 ≤ (k/c)x2

1, x1 ≥ Φ(b)},
R3(b) := {x ∈ B : 0 ≤ x2 ≤ (k/c)x2

1, x1 ≤ Φ(b)}.
For all b > 0 and all x ∈ R1(b), we obtain from (22) that
V (1)(x; f(x, u)) ≥ (1−ε)kx2

1 ≥ (1−ε)kΦ2(b) =: χ1(b). For
all b > 0 and all x ∈ R2(b), by choosing u = b we obtain
from (23) that V (2)(x; f(x, u)) ≥ 2(1−θ)kcbΦ(b) =: χ2(b),
for all x1 ≤ ϕ1(b; ε), which holds if x2 ≤ (εk/c)ϕ2

1(b; ε) =:
ρ(b). Finally, for all b > 0 and all x ∈ R3(b), by choosing
again u = b we obtain from (23) that V (2)(x; f(x, u)) ≥ 0
and from (24) that V (3)(x; f(x, u)) ≥ kc2b2 =: χ3(b).

In order to be able to apply Theorem 3, it remains to
show that the set B can be made control-invariant. We
will use the relaxed form given by Proposition 1. Namely,
given the above, for each x ∈ B and each b > 0 such
that ω(x) ≤ ρ(b), we let Û b(x) := {b} and hence also

Ũ b = {b} ⊆ R≥0. Now note that for all x such that x2 = 0
and x1 ≥ 0, f(x, u) points inside B for all u ∈ R≥0, and
hence no trajectory can leave the set B there. At the other
boundary, i.e., for all x such that x2 = (k/c)x2

1, f(x, u)

points outside B only if x1 ≥ (−c +
√

c2 + 4cku)/(2k) =:
δ(u). However, for each b > 0, if x1(τ) ≥ δ(b) for some
τ ≥ 0, then it follows from (21) that also x1(t) ≥ δ(b) for

all t ≥ τ in case that u(t) ∈ Ũ b. Hence for each b > 0, we
define the set Hb := {x : x1 ≥ δ(b), x2 ≥ (k/c)x2

1} (see also
Figure 1). Furthermore, it is straightforward to verify that
for each b > 0, Hb ∩ Λb = ∅, where Λb = {x : |x2| ≤ ρ(b)}
according to (9).

Summarizing the above, we can apply Theorem 3 with ℓ =
3, k1 = 1, k2 = 2, k3 = 3, α1 = α2 = id and
ν = qid together with Proposition 1 to conclude that
the system (21) is norm-controllable from all x0 ∈ B
with gain function γ(r, s) = q min

{
Ψ(r, s) + V (x0), ρ(s)

}

with Ψ defined in (18). An interpretation of this fact is as
follows. If x2 ≤ (k/c)x2

1, then a sufficiently large amount of
reagent A compared to the amount of product B is present
in the reactor in order that the amount of product B can
be increased. On the other hand, if x2 > (k/c)x2

1, then
already too much product B is inside the reactor such that
its amount will first decrease (due to the outlet stream),
no matter how large the concentration of A in the inlet
stream (i.e., the input u) is, and hence the conditions of
Theorem 3 (in particular (16)) cannot be satisfied there.

6. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we surveyed and discussed the concept
of norm-controllability as well as several Lyapunov-like
sufficient conditions for ensuring that a nonlinear system
possesses this property. Besides its theoretical insights
into the input/output behavior of nonlinear systems, we
believe that norm-controllability can be an interesting
concept in various application contexts such as economics
or process engineering. On the theoretical side, future
research directions can include investigating necessity of
the (relaxed) Lyapunov-like sufficient conditions, as well as
weaker variations of norm-controllability such as requiring
the estimate (3) only to hold for large enough a and/or b
(instead of all a, b > 0). On the application side, the next
steps would be to advance from rather simple systems
such as the presented CSTR example to more realistic
case studies in order to further study the potentials and
limitations of the norm-controllability concept.
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