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Abstract

In this paper, we present an algorithm that achieves global asymptotic
stability for a broad class of driftless nonholonomic systems using limited
data rate. Moreover, we prove in a constructive way that the minimum data-
rate for this class of systems is zero, hence providing a data-rate theorem,
which was an open problem in the literature [9]. Finally, we present the
Dubin’s car as an example of system in such a class.

1 Introduction
Recently there has been an increasing interest in the control and estimation of sys-
tems with limited data-rate [13, 10]. This is due to both theoretical and practical
applications that are subject to communication constraints. Many of such appli-
cations are related to the control of networked systems, since they often have to
share bandwidth. The smaller the bandwidth the stronger the constraints imposed
on the data-rate available to the control task. A more concrete example are the
multi-agents systems, which often need to use the same communication network
[12].

This raises questions about what constraints the communication network im-
poses on the control tasks that can be solved [5]. It is well-known today that
there exists a minimum data-rate below which there is no stabilizing controller
for unstable linear systems [21, 1]. This type of result is refered to as data-rate
theorem.

Unfortunately, however, most of the results concerning the control with mini-
mum data-rate have been solved only for linear systems [9, 6] with some remarkable
exceptions [14, 11]. For instance, the problem of minimum data-rate for exponen-
tial stabilization was addressed in [3]. In that paper a lower bound on the minimum
data-rate for exponential stabilization, with a prescribed exponential rate of con-
vergence α, was given. That result showed that there exist no control law using
a smaller data-rate than the stabilization entropy that still drives the state to an
equilibrium point at the prescribed rate α, in the sense that the norm of the differ-
ence between the trajectory and the equilibrium point decreases at the exponential
rate α.

In a similar fashion, we prove a data-rate theorem for a class of driftless non-
holonomic systems. This problem was first studied in [9], and, to the best of the

1



2

authors’ knowledge, has not received a satisfactory answer so far. The following
claim was made in [9]: "Unfortunately, the data-rate theorem applies essentially
only to linear systems, and while there has been some effort to extend the result
to the nonlinear domain ..., treatment of nonlinear control systems which are not
amenable to linear methods (e.g. wheeled vehicle kinematics, rigid body dynamics,
etc.) remains largely unexplored", and an approximate answer was given in [9]
for a path following problem. However, a general answer to the asymptotical
stabilization problem is still missing.

The main contributions of this paper are to present an algorithm that glob-
ally asymptotically stabilizes this class of driftless non-holonomic control systems
using a limited data-rate. Also, we show how to modify the same algorithm and
prove constructively a data-rate theorem for this class of systems, solving at least
partially, therefore, the open question asked in [9]. This data-rate theorem, which
is stated in Theorem 2.1, claims that the minimum average data-rate for global
asymptotic stabilization for this class of systems is zero. We interpret this zero
data rate as the channel being almost always free rather than not sending any
data.

Some definitions are in order. We denote by R the set of real numbers, R≥0 the
set of non-negative reals, N the set of natural numbers without 0. For a function
f : I ⊂ R → Q, where Q is any set and I is an interval, we define f[a,b] the
restriction of f to [a, b] ⊂ I. For a set Q, #Q denotes its cardinality. We denote
by ||f ||∞ the essential supremum norm of f , and ||x|| the Euclidean norm of a
vector. The sign function sign(x) is 1 if x ≥ 0 or −1 otherwise.

Denote by Lie(X1, · · · , Xm) the Lie algebra generated by vector fields {X1, · · · , Xm},
with Xi : Rd → Rd. Denote by Lien(X1, · · · , Xm) the sub set of all Lie brackets
up to length n ∈ N. We call a system that is globally asymptotically stable a GAS
system.

2 Problem Description
The goal of this Section is to introduce the control problem and necessary defini-
tions. First, consider the following driftless control system

ẋ(t) =
m∑
i=1

gi(x(t))ui(t), (1)

x(0) = x0,

where x0 ∈ Rd. Also, let ui : R≥0 → U , with U ⊂ R, and let u(t) = (u1(t), · · · , um(t)).
Consider further U that is the set of piecewise constant functions over Um. In ad-
dition, denote by φ(·, x0, u[a,b]) the flow of (1) starting at x0, under the action of
the control law u[a,b]. We recall the definition, for our class of systems, of Lie
Algebra Rank Condition (LARC) [16]. LARC at the point x0 ∈ Rd is the cond-
tion that Rd = span {X(x0) : X ∈ Lie(f1, · · · , fm)}. Also, recall that the non-
holonomy degree is the maximal length of Lie brackets needed to generate Rd, i.e.,
saying that system (1) has a non-holonomy degree equal n ∈ N means that Rd =
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span {X(x0) : X ∈ Lien(f1, · · · , fm), } and Rd 6= span
{
X(x0) : X ∈ Lien−1(f1, · · · , fm),

}
,

see Chapter 4 of [15] for instance. We are now in condition to make our main as-
sumptions. We assume that:

1. System (1) satisfy the Lie Algerba Rank Condition (LARC) everywhere;

2. A global upper bound D on the non-holonomy degree is known;

3. The vector functions gi, for i = {1, · · · ,m} are smooth, i.e. C∞(Rd,Rd).

The first assumption ensure, through Chow’s theorem [2], that the system (1)
is controllable, and there exist control laws u that globally asymptotically stabilize
(1) to 0. The third assumption is just a technical assumption that guarantees that
we can differentiate the vector fields fi. The second is a technical assumption
which is instrumental, however, to our algorithm to work.

In order to state our problem formally, consider the following definitions of
conder-controller scheme and average data-rate [14]. Let {tn}n∈N be a strictly
increasing sequence of sampling times with limn→∞ tn → ∞. Also, let {Cn}n∈N
be a sequence of alphabets with uniformly bounded cardinality, i.e. ∃M > 0,
#Ci < M, ∀i ∈ N. Furthermore, let {γn}n∈N be a sequence of functions such that
γn :

∏n−1
i=1 Ci × Rdn → Cn, where γn is called the coder mapping at time n. In a

slightly more explicit way, we can write the coder mappings as

γ1 : x(t1) 7→ q1,

γn : (q1, · · · , qn−1, x(t1), · · · , x(tn)) 7→ qn,

where qn ∈ Cn, for all n ∈ N.
Additionally, let {δn}n∈N be a sequence of functions such that δn :

∏n
i=1 Ci×N→

(Um)[tn,tn+1] ×N, where δn is called the controller map at time n, and (Um)[tn,tn+1]

is the set of functions from [tn, tn+1] to Um. As before, a more explicit way of
writing the controller mappings is

δ1 : (q1, i) 7→ (u[t1,t2], k)

δn : ((q1, · · · , qn), i) 7→ (u[tn,tn+1], k),

where k ∈ N and i ∈ N. Those parameters k and i are nonstandard and are
instrumental in our approach. They work as counters that keep registered, in a
sense explained later in Section 3, the last controller applied.

Finally, define the coder-controller scheme as the quadruple

S =
(
{tn}n∈N , {Cn}n∈N , {γn}n∈N , {δn}n∈N

)
.

It is also necessary to define the concept of average data-rate. The average
data-rate of the coder-controller scheme S is given by

b := lim sup
j→∞

1

tj

j∑
i=1

log (#Ci) . (2)



4

In this paper Ci = {−1, 1} ,∀i ∈ N, and U = [−1, 1].
The problem we want to solve is: consider a system described by equation (1),

can we find a constructive algorithm that gives us a coder-controller scheme S
such that system (1) is globally asymptotically stabilized with minimum average
data-rate? The answer to this problem is summarized in the following

Theorem 2.1. Consider system 1 satisfying assumptions 1, 2, and 3. Then, there
exists a coder-controller scheme S that renders system (1) globally asymptotically
stable with average data-rate 0.

First, we will show how to stabilize system (1) with limited average data-rate
constructively. Afterwards, we show how to adapt that solution so that GAS can
be achieved with zero average data-rate by another constructive solution.

3 The Algorithm
In this Section we describe the algorithm that renders system (1) GAS with finite
average data-rate. A high-level explanation of the algorithm’s main idea is in
order. First, note that system (1) can be rewritten in its integral form

x(tn) = x(tn−1) +
m∑
i=1

∫ tn

tn−1

gi(x(τ))ui(τ)dτ, (3)

x(0) = x0.

Define the parameter αn :=
∣∣∣∣u[tn−1,tn]

∣∣∣∣
∞ , ∀n ∈ N. Also, let xn := x(tn),∀n ∈

N. Furthermore, define vn :=
∑m

i=1

∫ tn
tn−1

gi(x(τ))ui(τ)
αn

dτ . Note that the function
ui[tn−1,tn]

αn
has its image on [−1, 1] by definition of αn, but it is an arbitrary piecewise

constant function, otherwise. Therefore the following equation holds

xn = xn−1 + αnvn, (4)

Now, consider V : Rd → R a convex, radially unbounded, and continuously
differentiable, i.e. C1(Rd,R), function with Lipschitz derivative around the origin.
The idea is to choose a control law u[tn−1,tn] such that vn can be made into a
decreasing direction for the function V departing from xn−1. Note, however, that
we choose the restriction u[tn−1,tn] of the function u instead of choosing vn directly.
This extra step raises the question about the existence of such u and how to find
it. We present an affirmative answer to the former and a method for the latter in
Section 3.

In order to find this decreasing direction we will proceed as in the compass
search procedure [4]. First, we need finite sets Vn ⊂ Rd, with #Vn < M, ∀n ∈ N,
for some M > 0, i.e., sets with uniformly bounded cardinality. Also, we require
that the positive cone generated by Vn [4] is Rd. This last condition means that
∀x ∈ Rd, there exists αi ∈ R≥0, for i = 1, · · · ,#Vn, such that we have x =∑#Vn

i=1 αivin , for vin ∈ Vn. We call a set with this last property a positively
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spanning set [4]. It is well known [4] that for a set that satisfies this condition,
then for all nonzero w ∈ Rd, there exists at least one vin ∈ Vn, such that 〈w, vin〉 <
0. If we take w = ∇V (x), for a nonstationary point x ∈ Rd, then we have
〈∇V (x), vin〉 < 0, i.e., there exists a decreasing direction in Vn.

Also, notice that, for driftless systems, one can start from the initial state x̄n =
φ
(
tn, xn−1, u[tn−1,tn]

)
and go back to xn−1 by applying u[tn,tn+∆n](t) = −u[tn,tn−1](2tn−

t), for t ∈ [tn, tn + ∆n], where ∆n = tn − tn−1. That means that

φ
(
∆n, x̄n,−u[tn,tn+∆n]

)
= xn−1,

this property is known as strong reversibility, see for example chapter 4 of [15],
and is well known to be satisfied by driftless systems. From this, we have that if
we fail in our attempt to decrease the value of V by applying u[tn−1,tn], we can go
back to the previous point xn−1 by applying another control. Otherwise we can
set xn = x̄n and continue iterating.

Nonetheless, finding a decreasing direction is not sufficient; the step size αn
needs to be small. That can be solved by decreasing the step size after checking
all directions on Vn and getting only unsuccessful iterations. A typical way of doing
so is to take αn+1 = αn

2
. Furthermore, if the decrease in the function value between

two consecutive iterations is not large enough we might get stuck. To disentangle
this issue, consider a non-decreasing continuous function ρ : R≥0 → R≥0, with
limt→0+

ρ(t)
t

= 0. This function ρ is called a forcing function [4]. We declare the
iteration successful if V (φ(tn, xn−1, u[tn−1,tn]))− V (xn−1) + ρ(αn)) < 0. In this way
we enforce a sufficient decrease condition.

In order to generate the aforementioned directions vin ∈ Vn, we need to pick
control laws that generate approximations to all Lie brackets up to order D. That’s
done by means of the usual binary valued piecewise constant functions described
in [7]. We know, by assumption (1), that the Lie brackets of {±fi}mi=1 positively
span Rd, therefore, for a good enough approximation of those brackets we should
also positively span Rd. Now, consider LαD, for α > 0 to be the ordered set of all
nonzero scaled Lie brackets of {fi}mi=1 up to order D with sign, e.g. for D ≥ 3 it
contains ±αfi, ±α2[fi, fj], and ±α3[fi, [fj, fk]], for all i, j, k ∈ {1, · · · ,m}. The
parameter α is just a positive scaling factor. Also, the order relation in LαD can be
chosen arbitrarily.

Consider Tp > 0 a fixed sampling time. We denote by uαj :
[
0, Tp

2

]
→ U , the

control law that generates the approximations to the j-th element of LαD divided
by α, i.e. these controllers ensure that, at the end of iteration n, x̄n = xn−1 +
αpXp + o(αp), where Xp is a Lie bracket of {fi}mi=1 order p− 1. Using the notation
from equation (4) we can identify vn = αp−1Xp + o(αp)

α
. Therefore, in this sense

we can use the controls uαn
j to generate directions that approximate scaled Lie

brackets of {fi}mi=1 at the iteration n. A final remark is needed, if p = 1, then
o(αp) = 0, because we can generate the directions spanned by the vector fields
{fi}mi=1 exactly.

The coder-controller scheme adopted to solve the problem is the following. The
sequence of sampling times is given by tn = nTp, where n ∈ N. The coder map at
time n is
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γn (q1, · · · , qn−1, x(t1), · · · , x(tn)) =

sign (V (x(tn))− V (x(tn−1)) + ρ(αn)) ,

notice that αn is a function of (qn)n∈N, where qi ∈ Ci. Here we need to impose
further a technical assumption on the forcing function ρ(·). We require that ρ
satisfies limt↓0

ρ(t)
tD

. The reasons for that will be made clear at the end of Section
5. Define L = #LαD, and notice that it is constant for any α > 0.

The control map at time n is

δn(qn, i) =


(
−uαn−1

i−1 (tn − ·) ∧ uαn
i (· − tn) , i+ 1

)
(a)

(−uαn−1

L (tn − ·) ∧ uαn
1 (· − tn) , 1) (b)

(0 ∧ uαn
1 (· − tn) , 1) (c)

where condition (a) is qn = 1 and i ∈ {1, · · · ,L − 1}, condition (b) is qn =

1 and i = L, and condition (c) is qn = −1. Also, we denote by 0 :
[
0, Tp

2

]
→ {0}

the zero function. Finally, f∧g represents the concatenation of two functions in the
following way: given f :

[
0, Tp

2

]
→ U and g :

[
0, Tp

2

]
→ U , then f ∧ g : [0, Tp]→ U

is defined by

(f ∧ g)(t) =

f
(
t+ Tp

2

)
t ∈
[
0, Tp

2

]
g
(
t− Tp

2

)
t ∈
[
Tp
2
, Tp

]
.

This control law simply states that if there was not a sufficient decrease in the
cost V , then one should apply another control to undo the effect of the previously
applied control ui(·) and try a new one afterwards. Otherwise, a new control law
should be applied. Furthermore, notice that the parameter i is just a counter that
keeps track of which control law was previously applied and is not transmitted
through the network. This discussion is depicted in the block diagram in figure 1.

Figure 1: Block diagram with the algorithm’s idea

In this way, as we will justify in Section 5, we can drive the state to the origin
using constantly 1 bit per sample. Therefore, the average data-rate is b = 1. Now,
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one could modify the algorithm by only transmitting data if n = 2k, for k ∈ N. The
control law applied whenever data is not transmitted should be u = 0 constantly.
In this manner our algorithm still globally asymptotically stabilizes system (1),
but with an average data-rate b = 0.

4 Example
Consider the equations of the Dubin’s car [8]

ẋ1 = u1 cos(θ)

ẋ2 = u1 sin(θ)

θ̇ = u2

(5)

In this example, the states x1 and x2 represent the x − y coordinates of a
unicycle, while θ is the angle that it makes with respect to the x-axis measured in
a counterclokwise manner. Consider the function V (x1, x2, θ) = x2

1 +x2
2 + θ2. Note

that it is convex, radially unbounded, and its gradient ∇V is Lipschitz near 0 (in
fact it is analytic, but our analysis only needs the assumption of Lipschitzness).
Also, consider the forcing function ρ(t) = t2. Furthermore, notice that the vector
fields

f1(x1, x2, θ) =

0
0
1

 , f2(x1, x2, θ) =

cos(θ)
sin(θ)

0

 ,
[f1, f2](x1, x2, θ) =

 sin(θ)
− cos(θ)

0

 ,
span Rd, therefore ±f1,±f2,±[f1, f2] positively span Rd. Finally, consider the
functions uα1 (t) = (α, 0) for t ∈

[
0, Tp

2

]
, uα2 (t) = (0, α) for t ∈

[
0, Tp

2

]
,

uα3 (t) =



(α, 0) t ∈
[
0, Tp

8

)
(0, α) t ∈

[
Tp
8
, Tp

4

)
(−α, 0) t ∈

[
Tp
4
, 3Tp

8

)
(0,−α) t ∈

[
3Tp
8
, Tp

2

] ,

and the functions uα4 = −uα1 , uα5 = −uα2 , and uα6 = −uα3 . Writing the solution of
equation (5) we get that x(tn) = x(tn−1) +αvn by reinterpreting it using equation
(4). Therefore, we can see that we can generate the vectors vn = ±f1, vn = ±f2,
and vn = ±α[f1, f2] + o(α2)

α
. One can prove that, for α small enough, this set

of directions vn positively span Rd. In this way, we can globally asymptotically
stabilize the Dubin’s car to the origin with minimum data-rate equal to 0.

We simulated the algorithm using the parameters α0 = 0.5, x1(0) = 1, x2(0) =
1, and θ(0) = 0.5 rad. Furthermore, we performed simulations with Tp = 1 and
Tp = 2 time units. The evolution of the cost function value after each sucessful
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iteration is presented in figure 2, while the evolution of the state of the system for
Tp = 1 and Tp = 2 are depicted in figures 3 and 4, respectively.
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Figure 2: Evolution of the cost value
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Figure 3: Evolution of the state for Tp = 1
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Figure 4: Evolution of the state for Tp = 2

It is important to notice that by decreasing the sampling time Tp we increase
the average data-rate. In fact, the average data-rate for Tp = 1 is b = 1 bit/unit
of time, while for Tp = 2 it is b = 0.5 bits/unit of time.

Figure 2 shows that the cost sharply decreases at first for both values of Tp, then
it reaches a plateau. This effect has two main causes. The first is related to the
local convergence of direct search methods. Since our algorithm essencially applies
the compass search algorithm (which is a direct search method [4]), it inherits its
bad local convergence features. The second cause can be explained by figure 3 and
4. Those figures show a rapid convergence of x1 and θ to zero, nonetheless, when
θ approaches zero, so does sin(θ), making the dynamics of x2 slow. This latter
cause explains why there is no simple relation between the average data-rate and
performance for this algorithm, given that a faster convergence of θ to zero makes
the convergence of x2 slower. Finally, it is worth mentioning that, even though
the cost function value seemingly stagnates, it keeps going down as can be seen in
the zoomed parts in figure 2.

We also present the results of this simulation, for the case where Tp = 2, in
video format. We created two videos with this simulation, one with the state space
evolution [17] and another with the top view of a car parking, i.e. the evolution in
the x− y plane [19]. It is important to remark that whenever a decrease happens,
the blue dot remains in place for Tp

2
units of time. That occurs because we apply

u = 0 for that duration of time, as explained in Section 3.
Furthermore, one way of mitigating the aforedescribed second cause for the

slow convergence is by changing the cost function. In our case, we can give a
smaller weight to the term that depends on θ to reduce its relative importance in
the total cost. We choose Ṽ (x1, x2, θ) = 20(x2

1 + x2
2) + 0.1θ2 for our simulations.
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Also, we keep all other parameters the same, i.e., α0 = 0.5, x1(0) = 1, x2(0) = 1,
and θ(0) = 0.5 rad. Once more we run the simulations with Tp = 1 and Tp = 2.
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Figure 5: Evolution of the cost value
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Figure 6: Evolution of the state for Tp = 1
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Figure 7: Evolution of the state for Tp = 2

Figure 5 shows the evolution of the new cost function value. It is important to
remark that, since the cost functions are different, we cannot compare figure 2 and
figure 5 directly. In order to see the improvement we compare figure 4 and figure
7. Those two figures show that the state is closer to zero than before. Moreover,
state x2, which was the previous cause for the plateau, is much closer to zero,
as desired. Nonetheless, figure 6 does not show a visible improvement to figure
3, which strengthens the claim that the relationship between the average data-
rate and performance is very complex. Lastly, we also present this simulation, for
Tp = 2, in two videos [18], with the state space evolution and [20] with the top
view of the car parking.

5 Analysis
Our mathematical analysis is based on the analysis of directional direct-search
methods in optimization [4], considering equation (4), and considering the algo-
rithm described in Section 2. In essence, we will show that, for a fixed α > 0 and
a departing point xn ∈ Rd, the set of controls {uαk}

L
k=1 aforementioned, generates

positively spanning sets P (xn) from the dynamics, i.e.

P (xn) =

{
x ∈ Rd : x = φ

(
Tp
2
, xn, u

α
k

)
− xn,∀k = 1, · · · ,L

}
,

is positively spanning. Then, we will use modifications of some theorems from [4]
to show that the iterates xk, generated by our algorithm, converge to some x∗ such
that ||∇V (x∗)|| = 0. First, we state some assumptions that will be used frequently
in our analysis.
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(i) The level set L(x0) =
{
x ∈ Rd : V (x) ≤ V (x0)

}
is compact;

(ii) If for some real constant α > 0, the step size at iteration k, αk, is such that
αk > α, for all k ∈ N. Then the algorithm visits only a finite number of
points;

(iii) Let ξ1, ξ2 > 0 be some fixed constants. The positive spanning sets Vk used
in the algorithm are chosen from the set

{
Vk positively span Rd : cm(Vk) > ξ1, ||d̄|| ≤ ξ2,∀d̄ ∈ Vk

}
Recall that the cosine measure of a finite positively spanning set V ⊂ Rd is
cm(V) = minv,||v||=1 maxd∈V

〈d,v〉
||d|| .

(iv) The gradient ∇V is Lipschitz continuous in an open set containing L(x0).

Notice that items (i) and (iv) are satisfied if we choose V to be C1(Rd,R),
convex, radially unbounded, and ∇V to be Lipschitz continuous around the origin.
Those assumptions also ensure that V has a unique global minimum, which will
be chosen to be 0 without loss of generality. The assumption (iii) is ensured by our
previous assumption 1 on system (1). To see that, notice that Vk satisfies ||d̄|| ≤ ξ2

for some ξ2 > 0 by construction. Also, the cosine measure is lower bounded by
ξ1 > 0 because of the fact that LARC holds everywhere. Additionally, assumption
(ii) is guaranteed by the introduction of the forcing function and Theorem 5.1
adapted from [4].

Now, we state and prove a modification of theorem 2.8 from section 2 of [4]
that will be instrumental in our argument to show that the state converges to the
origin asymptotically, proving GAS.

Theorem 5.1. Let P ⊂ Rd be a positively spanning set, V : Rd → R be a C1(Rd,R)
and convex function, and α > 0 be given. Assume that ∇V is Lipschitz continuous
in a neighborhood of the minimum of V with Lipschitz constant ν > 0. Let ρ :
R≥0 → R≥0 be a forcing function. If V (x) ≤ V (x+αd)−ρ(α), for all d ∈ P , then

||∇V (x)|| ≤ ν

2
cm(P )−1 max

d∈P
||d||α + cm(P )−1 ρ(α)

mind∈P ||d||α
(6)

Proof. Notice that cm(P ) ≤ maxd∈V
〈d,v〉
||d|| , for any v with unit norm. Choose

v = − ∇V (x)
||∇V (x)|| and let d ∈ P be a vector for which

cm(P )||∇V (x)|||d|| ≤ −〈∇V (x), d〉. (7)

Now, from the fundamental theorem of calculus and the fact that V (x) ≤
V (x+ αd)− ρ(α) we get for all d ∈ P , that

ρ(α) ≤ V (x+ αd)− V (x) =

∫ 1

0

〈∇V (x+ tαd), αd〉dt. (8)
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Take now the inequality (7), rewrite its right side in integral form, and multiply
both sides by α > 0. Then

cm(P )||∇V (x)|||d||α ≤
∫ 1

0

−〈∇V (x), αd〉dt. (9)

Adding (8) and (9), we conclude that

cm(P )||∇V (x)|||d||α ≤
∫ 1

0

(〈∇V (x+ tαd)−∇V (x), αd〉) dt− ρ(α).

Finally, using the Lipschitz assumption, isolating the term ||∇V (x)|| on the left,
and majorizing the terms that depend on ||d||, we conclude that

||∇V (x)|| ≤ ν

2
cm(P )−1 max

d∈P
||d||α + cm(P )−1 ρ(α)

mind∈P ||d||α

Note that the condition V (x) ≤ V (x + αd) − ρ(α) of theorem 5.1 is satisfied
whenever we are in an unsuccessful iteration. Moreover, this theorem implies that
if the step size of our algorithm αk ↓ 0, and there exist ξ1 > 0 and ξ2 > 0 such
that cm(P ) > ξ1 and maxd∈P ||d|| < ξ2, then ||∇V (xk)|| ↓ 0. Since V is convex
and differentiable with minimum at 0, xk → 0. We now proceed to prove that
our algorithm implies that αk ↓ 0. We rely on the next result that is, essentially,
theorem 7.11 from [4] with only slight modifications in notation and is transcribed
here for completeness.

Lemma 5.1. Assume we only accept a new iterate if V (xk+1) ≤ V (xk) − ρ(αk).
Also, let assumption (i) hold. Finally, assume that ∃α > 0, such that αk > α, for
all k. Then the algorithm visits only a finite number of points.

Proof. Since ρ is increasing, we have that 0 < ρ(α) ≤ ρ(αk) for all k ∈ N. Sup-
pose that there exists an inifnite sequence of successful iterates. From V (xk+1) ≤
V (xk)−ρ(αk) we get, for all successful iterations, that V (xk+1) ≤ V (xk)−ρ(αk) ≤
V (xk) − ρ(α). Consequently, the sequence (V (xn))n∈N converges to −∞, which
contradicts assumption (i).

Our next lemma was left as an exercise in chapter 7 of [4] and is based on their
theorem 7.1. It shows that assumption (ii) imply that αk goes to zero as desired.

Lemma 5.2. Assume we only accept a new iterate if V (xk+1) ≤ V (xk) − ρ(αk).
Also, let assumption (ii) hold. Then, the sequence of step size parameters satisfies

lim inf
k→∞

αk = 0

Proof. Assume that there exists α > 0 such that αk > α for all k. However, xk
is updated only if V (xk+1) < V (xk) − ρ(αk), therefore, there exists K̄ ∈ N, such
that xk = xk̄, for all k ≥ k̄.

Hence, all iterations after k̄ are unsuccessful and, by our αk update law, it
follows that lim infk→∞ αk = 0, which contradicts the existence of such α > 0.
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A corollary of this lemma shows that there exist a subsequence (ki)i∈N of un-
successful iterates, such that limi→∞ αi = 0 and limi→∞ xki = x∗ for some x∗ ∈ Rd.
This follows from the previous lemma and the fact that αk is decreasing, thus
convergent to zero, and from the fact that (xk)k∈N is inside a compact set by
assumption (i).

Denote by κ the minimum of the norm of the nonzero Lie brackets of {fi}mi=1

up to order D evaluated at the iterate xk. Notice that κ > 0, given that the
aforedescribed set is always finite. We can conclude now, by invoking theorem 5.1,
that

||∇V (xk)|| ≤
ν

2
cm(P (xk))

−1 max
d∈P (xk)

||d||αk + cm(P (xk))
−1 ρ(αk)

mind∈P (xk) ||d||αk
,

hence by assumption (iii) and the fact that ρ(αk)
mind∈P (xk) ||d||αk

≤ ρ(αk)
κ(αk)D

↓ 0, for αk ↓ 0,
we conclude that ||∇V (xk)|| ↓ 0. Therefore, (xk)k∈N converges to 0 proving GAS.

6 Conclusion
In this paper we presented a limited information control algorithm that globally
asymptoticaly stabilizes a subclass of non-holonomic driftless affine systems. In
addition, we proved that the minimum average data-rate for achieving GAS for
this class is 0. Also, we presented the Dubin’s car as an example of system for
which our method works. Furthermore, a mathematical analysis of the algorithm
was presented.

One line of investigation for future works is extending the constructive method
presented here to other classes of control systems. One example of such a problem
is to modify this algorithm to solve the same problem for the control with limited
information of affine systems with drift. This adaptation is not trivial given that
the drift makes it impossible, in general, for us to go back in case we chose a non-
decreasing direction. Also, the problem of providing a data-rate theorems for more
general classes of systems in a constructive manner is another possible extension
of this work.

Finally, an in depth analysis of the performance of our algorithm is missing. It
would show how the average data-rate affects the convergence rate of the state.
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