ILLINOIS Coordinated Science Lab

How to Park a Car Blindfolded

(1)

1. Introduction

• Consider the following driftless control system

 $\dot{x}(t) = \sum_{i=1}^{m} g_i(x(t))u_i(t),$ $x(0) = x_0.$

subject to the constraints

- 1. System (1) satisfy the Lie Algerba Rank Condition (LARC) everywhere;
- 2. A global upper bound ${\mathcal D}$ on the non-holonomy degree is known;
- 3. The vector functions g_i , for $i = \{1, \dots, m\}$ are smooth, i.e. $\mathcal{C}^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$.

Consider the coder map at time n

 $\begin{aligned} \gamma_1 : x(t_1) &\mapsto q_1, \\ \gamma_n : (q_1, \cdots, q_{n-1}, x(t_1), \cdots, x(t_n)) &\mapsto q_n, \end{aligned}$

where
$$q_n \in \mathcal{C}_n$$
, with \mathcal{C}_n a finite alphabet, for all $n \in \mathbb{N}$

 \bullet Consider the controller map at time n

$$\delta_1 : (q_1, i) \mapsto (u_{[t_1, t_2]}, k) \\ \delta_n : ((q_1, \cdots, q_n), i) \mapsto (u_{[t_n, t_{n+1}]}, k),$$

where $k\in\mathbb{N}$ and $i\in\mathbb{N},$ and $u_{[t_1,t_2]}\in (U^m)^{[t_n,t_{n+1}]}$ is the set of functions from $[t_n,t_{n+1}]$ to $U^m.$

• Let the average data-rate be given by

$$b := \limsup_{j\to\infty} \frac{1}{t_j} \sum_{i=1}^{j} \log (\#C_i).$$

In this presentation $C_i = \{-1, 1\}, \forall i \in \mathbb{N}, \text{ and } U = [-1, 1].$

- Our problem is: Can we find a constructive algorithm that gives us coder and controller maps such that system (1) is globally asymptotically stabilized with minimum average data-rate?
- The answer is yes and we can do it with average data-rate zero.

2. The Driver

• System (1) can be rewritten in its integral form as

$$x(t_n) = x(t_{n-1}) + \sum_{i=1}^m \int_{t_{n-1}}^{t_n} g_i(x(\tau))u_i(\tau)d\tau,$$

$$x(0) = x_0.$$
(2)

Define the parameter $\alpha_n := ||u_{[t_{n-1},t_n]}||_{\infty}, \forall n \in \mathbb{N}$. Also, let $x_n := x(t_n), \forall n \in \mathbb{N}$. Furthermore, define $v_n := \sum_{i=1}^m \int_{t_{n-1}}^{t_n} \frac{g_i(x(\tau))u_i(\tau)}{\alpha_n} d\tau$. Note that the function $\frac{u_{[t_{n-1},t_n]}}{\alpha_n}$ has its image on [-1,1] by definition of α_n , but it is an arbitrary piecewise constant function, otherwise.

• Therefore the following equation holds

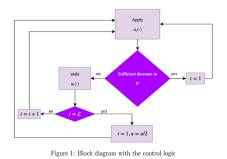
$$x_n = x_{n-1} + \alpha_n v_n, \tag{3}$$

- Consider $V : \mathbb{R}^d \to \mathbb{R}$ a convex, radially unbounded, $\mathcal{C}^1(\mathbb{R}^d, \mathbb{R})$, function with Lipschitz derivative around the origin.
- The idea is to choose a control law u_[tn-1,tn] such that v_n can be made into a decreasing direction for the cost function V departing from x_{n-1}. This is the idea behind the compass search method [A. R. Conn, K. Scheinberg, and L. N. Vicente, 2009].
- If we choose a nondecreasing direction, we can go back, due to the *strong* reversibility property of driftless systems.

We need to be careful about two things

- The step size α_n needs to be small
- If the decrease in the function value between two consecutive iterations is not large enough we might get stuck.

- To solve the second problem: introuce a function ρ : ℝ_{≥0} → ℝ_{≥0} with the properties: (1) non-decreasing, (2) continuous, (3) lim_{ℓ↓0} ^{ρ(ℓ)}/_{ℓ^D}.
- Declare the iteration successful only if $V(\phi(t_n,x_{n-1},u_{[t_{n-1},t_n]}))-V(x_{n-1})+\rho(\alpha_n))<0$
- To generate the directions v_i ∈ V, we pick control laws that generate approximations to all Lie brackets up to order D, i.e. v_n = α^{p−1}X_p + ^{o(p)}/_α.



3. Parking the Car

• Consider the equations of the Dubin's car

$$s(\theta)$$

 $a(\theta)$ (4)

where states x_1 and x_2 represent the x-y coordinates of a unicycle, while θ is the angle.

 $\dot{x}_1 = u_1 \operatorname{co}$ $\dot{x}_2 = u_1 \sin$

 $\dot{\theta} = u_2$

• The cost function is $V(x_1, x_2, \theta) = x_1^2 + x_2^2 + \theta^2$.

$$\begin{split} f_1(x_1,x_2,\theta) &= \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad f_2(x_1,x_2,\theta) = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \\ 0 \end{bmatrix}, \\ [f_1,f_2](x_1,x_2,\theta) &= \begin{bmatrix} \sin(\theta) \\ -\cos(\theta) \\ 0 \end{bmatrix}, \end{split}$$

• The controls are the functions $u_1^{\alpha}(t) = (\alpha, 0)$ for $t \in \left[0, \frac{T_x}{2}\right], u_2^{\alpha}(t) = (0, \alpha)$ for $t \in \left[0, \frac{T_x}{2}\right]$,

$${}^{\alpha}_{3}(t) = \left\{ \begin{array}{ll} (\alpha, 0) & t \in \left[0, \frac{T_{k}}{8}\right) \\ (0, \alpha) & t \in \left[\frac{T_{k}}{8}, \frac{T_{k}}{4}\right] \\ (-\alpha, 0) & t \in \left[\frac{T_{k}}{4}, \frac{3T_{k}}{8}\right] \\ (0, -\alpha) & t \in \left[\frac{3T_{k}}{8}, \frac{T_{k}}{2}\right] \end{array} \right\},$$

and $u_{j+3}^{\alpha} = -u_j$ for j = 1, 2, 3.

 The cost value reaches a plateau due to (i) local convergence properties of direct search methods [A. R. Conn, K. Scheinberg, and L. N. Vicente, 2009], and (ii) by the fast convergece of θ to zero.

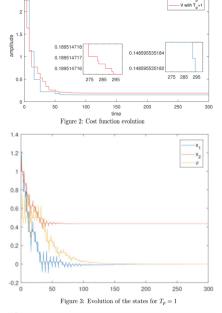
4. Analysis

- It can be shown that the following assumptions are satisfied if the first set of assumptions hold. From this we conclude GAS.
- (i) The level set $L(x_0) = \{x \in \mathbb{R}^d : V(x) \le V(x_0)\}$ is compact;
- (ii) If for some real constant α > 0, the step size at iteration k, α_k, is such that α_k > α, for all k ∈ N. Then the algorithm visits only a finite number of points;
- (iii) Let $\xi_1, \xi_2 > 0$ be some fixed constants. The positive spanning sets \mathcal{V}_k used in the algorithm are chosen from the set

 $\left\{\mathcal{V}_k \text{ positively span } \mathbb{R}^d: \operatorname{cm}(\mathcal{V}_k) > \xi_1, \ ||\bar{v}|| \leq \xi_2, \forall \bar{v} \in \mathcal{V}_k\right\}$

Recall that the cosine measure of a finite positively spanning set $\mathcal{V} \subset \mathbb{R}^d$ is $\operatorname{cm}(\mathcal{V}) = \min_{w, ||w||=1} \max_{v \in \mathcal{V}} \frac{\langle v, w \rangle}{||w||}$.

(iv) The gradient ∇V is Lipschitz continuous in an open set containing $L(x_0),$ with Lipschitz constant $\nu.$



NECSYS 2019

Sept 16- 17, 2019

nansa

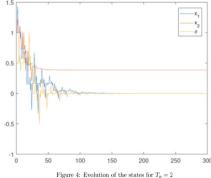
· •

IFAC.

Guilherme Scab

DameDLiberzon

2.5



- Let $P(\boldsymbol{x}_k)$ be the positively spanning set generated by the method at iteration k
- Denote by κ the minimum of the norm of the nonzero Lie brackets of {f_i}^m_{i=1} up to order D evaluated at the iterate x_k.
- By Theorem 5.1 of the paper

 $||\nabla V(x_k)|| \le \frac{\nu}{2} \operatorname{cm}(P(x_k))^{-1} \max_{d \in P(x_k)} ||v|| \alpha_k + \operatorname{cm}(P(x_k))^{-1} \frac{\rho(\alpha_k)}{\min_{v \in P(x_k)} ||v|| \alpha_k}$

- By assumption (iii) and the fact that $\frac{\rho(\alpha_k)}{\min_{v \in P(x_k)} ||v|| \alpha_k} \leq \frac{\rho(\alpha_k)}{\kappa(\alpha_k)^{\mathcal{D}}} \downarrow 0$, for $\alpha_k \downarrow 0$, we conclude that $||\nabla V(x_k)|| \downarrow 0$.
- Therefore, (x_k)_{k∈ℕ} converges to 0 proving GAS.

5. Conclusion

- We presented a limited information control algorithm that globally asymptotically stabilizes a subclass of non-holonomic driftless affine systems.
- $\bullet\,$ We proved that the minimum average data-rate for achieving GAS for this class is 0.
- Future works include extending the constructive method presented here to other classes of control systems and providing data-rate theorems for more general classes of systems.

csl.illinois.edu

COLLEGE OF ENGINEERING