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1. Introduction

» Consider the following drittless control system

1)

subject to the constraints

fy the Lie Algerba Rank Condition (LARC) everywhere:

vstem (1) sati

A global upper bound D on the non-holonomy degree is known;

3. The vector functions g;, for i = {1,--- ,m} are smooth, i.e. C=(R4, EY).

» Consider the coder map af time n

T ra(ty) = g,

St () o g,

RCREUITRE

where ¢,, € C,,, with C,, a finite alphabet, for all n € M.

» Consider the controller map at time n

dy (g ) — (”_h ) k)
G ((g1e 2 qn) 1) = (“‘r,we,‘.‘|--’~‘)-

where k € N and i € N, and up, 4,) € (Um)ltetasil s the set of unctions

m

from [t tys] to U

» Let the average data-rate be given by

1 d
b= limsup log (#C;).
oo b ; =

In this presentation €; = {—1,1},Vi € N, and U = [-1,1].

» Our problem is: Can we find a constructive algorithm that gives
us coder and controller maps such that system (1) is globally
asymptotically stabilized with minimum average data-rate?

» The answer is yes and we can do it with average data-rate zero

2. The Driver

» System (1) can be rewritten in its integral form as

m

tn
z(ty) = x(ty-1) + Z / gila(T))ui(r)dr, 2)
i=1 ta-1
2(0) = xq.
Define the parameter a, = ”"I'.. ,_JMHX.\J'H e M. Also, let z, =

dr. Note

m [t gslelnl)

i=1Jt, an

a(t,),¥n € N. Furthermore, define v,
that the function —==2) has its image on [—1,1] by definition of ay,,

but it is an arbitrary piecewise constant function, otherwise,

» Therefore the following equation holds

&y =

=1 + QU (3)

» Consider V : B — R a convex, radially unbounded, C'(R%, R), function
with Lipschitz derivative around the origin.

» Theidea is to choose a control law u,, _, 4 ) such that v, can be made into
a decreasing direction for the cost function V' departing from x,, ;. This
is the idea behind the compass search method [A. R. Conn, K. Scheinberg,
and L. N. Vicente, 2009].

» If we choose a nondecreasing direction, we can go back, due to the strong

reversibility property of driftless systems.

We need to be careful about two things:

» The step size a, needs to be small

o If the decrease in the funetion value between two consecutive iterations is
not large enough we might get stuck.

» To solve the second problem: introuce a function p: B> — Esq with the
#lt)
Rl

properties: (1) non-decreasing, (2) continuous, (3) limgyo 55

» Declare the iteration successful only if V(é(t,,
plag)) <0

—1 e,y )=V (o )+

» To generate the directions v; € V, we pick control laws that generate

ofa®
approximations to all Lie brackets up to order D, i.e. v, = aP ™1 X, + 222,
Apply
-y
undo.
)y
i=i+l e
i=la=a2
Figure 1: Block diagram with the eontrol logic
king th
3. Parking the Car
» Consider the equations of the Dubin’s car
#1 = uy cos(f)
Fy = 1y sin(0) (4)

6 =u;

where states & and @z represent the & —y coordinates of a unicycle, while
# is the angle.

» The cost function is V(z

0 cos(0)
filenen8) = |0] . Falwrwz.6) = |sin(0)
1 0
sin(0)
[fr. fo] (21, 2. 0) = | — cos(B)
0

re the functions u§ (t) = (o, 0) for t € [(l. Tz‘} uf(t) = (0,a)

for i€ [0, %],

(a, 0) te
(0, e0) te
g (t) = (—on) 1€
(0,—a) te

—uj for j=1,2,3.

and u?

» The cost value reaches a platean due to (i) local convergence properties
of direct search methods [A. R. Conn, K. Scheinberg, and L Vicente,
2009], and (ii) by the fast convergece of @ to zero,

4. Analysis

o It can be shown that the following assumptions are
of assumptions hold. From this we conclude GA!

satisfied if the first set

The level set Lzg) = {z € BY: V(x) < V(xq)} is compact;

(ii) If for some real constant o > 0, the step size at iteration k, ay., is such
that a; > a, for all k € M. Then the algorithm visits only a finite number
of points;

(i) Let &£ > 0 be some fixed constants. The positive spanning sets Vi used
in the algorithm a iosen from the set

{ Vi positively span BY : em(Vy) > &1, |[0]] < &, %0 € Vi }

finite positively spanning set V € R4

Recall that the cosine measure of

is em(V) = miny, |ju =1 maxpey

(iv) The gradient ¥V is Lipschitz continuous in an open set containing L{zg),
with Lipschitz constant 1.
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Figure 2: Cost function evolution
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Figure 3: Evolution of the states for Tj, =1
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Figure 4: Evolution of the states for T), = 2

* Let P(xy) be the positively spanning set generated by the method at it-
eration k

¢ Denote by & the minimum of the norm of the nonzero Lie brackets of
{fi}’Z; up to order D evaluated at the iterate ;.

& By Theorem 5.1 of the paper

1 plow)
minye iz, [[v]lax”

|9V (x|l € zem(Plzg))™" max |[|v|lag+em{P(zk))”™
deP(xy)

I plag) plos) ‘
i) and the fact that To—Lesh o < #o | o, for

ay 10, we conclude that ||[VV (a)|| | 0.

* By assumption

o Therefore, (v )ren converges to 0 proving GAS.

5. Conclusion

* We presented a limited information control algorithm that globally asymp-
less affine systems

toticaly stabilizes a subcelass of non-holonomic ¢

o We proved that the minimum average data-rate for achieving GAS for this

class is 0.

& Future works include extending the constructive method presented here
to other classes of control systems and providing data-rate theorems for

more general classes of systems.
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