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The purpose of this note is to explain the overlap between our paper [1], published in this journal,
and the earlier work [2] which appeared in the Russian literature.

The paper [1] studies switched linear systems of the form

ẋ = Aσx (1)

where x ∈ R
n, {Ap, p ∈ P} is a compact set of n × n matrices, P is an index set, and σ : [0,∞) → P

is a piecewise constant switching signal. The main result of [1] (Theorem 2) states that the system (1)
is globally exponentially stable, uniformly over all switching signals, if all the matrices Ap, p ∈ P are
Hurwitz and the Lie algebra generated by these matrices is solvable. (Hurwitzness of the matrices Ap,
p ∈ P, as well as of all their convex combinations, is also a necessary condition for such a stability
property.)

The paper [2] studies bilinear control systems of the form

ẋ =

m
∑

i=1

uiAix (2)

where x ∈ R
n, {A1, . . . , Am} is a finite collection of matrices, and u =

(

u1 · · · um

)T
is the vector of

measurable open-loop controls taking values in a compact subset U of R
m. The main result of [2] is

that when the Lie algebra generated by the matrices A1, . . . , Am is solvable, the system (2) is globally
exponentially stable, uniformly over all controls, if and only if all the matrices

∑m
i=1

uiAi, u ∈ U are
Hurwitz.

For suitable choices of the control set U , the bilinear control system (2) becomes equivalent to the
switched linear system (1) with P = {1, . . . ,m} or to the differential inclusion ẋ ∈ co{A1x, . . . , Amx}
(where “co” stands for convex hull); see, e.g., [3] for details. Thus the system (2) is more general
than (1), at least when {Ap, p ∈ P} is (in the linear span of) a finite set of matrices, and the main result
of [1] can be deduced from that of [2].

The proofs given in [2] and [1] both rely on Lie’s theorem, which states that matrices in a solvable Lie
algebra can be simultaneously triangularized (over C). After this step, the two proofs proceed differently.
The argument in [2] establishes stability directly in the time domain. In [1] such a time-domain argument
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is only sketched, and an alternative proof is provided by constructing a common quadratic Lyapunov
function for the systems ẋ = Apx, p ∈ P. (Such a Lyapunov function has independent interest.)

The work [2] appeared only in the Russian literature and did not use the term “switched system.”
For these reasons, we were unaware of it until recently. We regret this oversight and want to belatedly
give proper credit to the author of [2]. We further note that subsequent work [4] by the same author
also establishes a result essentially equivalent to Theorem 2 of [5] (the latter paper contains several
other results not reported in [4]).

We are grateful to Yuliy Baryshnikov for bringing the references [2], [4] to our attention.
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