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Abstract— In this paper we study several stability proper-
ties for state-dependent switched systems. We examine the
gap between global asymptotic stability and uniform global
asymptotic stability, and illustrate it with an example. Several
regularity assumptions are proposed in order to obtain the
equivalence between these two stability properties. Based on
this equivalence, we are able to show that global stability
and asymptotic gain imply input-to-state stability for state-
dependent switched systems, which is the main result of the
paper. The proof consists of a bypass via an auxiliary system
which takes in a bounded disturbance, and showing that this
system is uniformly globally asymptotically stable.

I. INTRODUCTION

Input-to-State Stability (ISS), first introduced by Sontag
in [1], turned out to be an important and widely used
concept for characterizing a system’s response to inputs.
While ISS is normally defined in terms of the sum of an
initial-state-dependent, time-decaying estimate and an input-
dependent estimate, it also has many other characterizations,
each with its own advantages. For example, ISS is equivalent
to the validity of a dissipation inequality for an appropriately
defined energy storage function; ISS is also equivalent to the
Uniform Asymptotic Gain (UAG) property (see, e.g., [2]).
Here we are interested in the close relation of ISS with
the Global Stability (GS) property and the Asymptotic Gain
(AG) property; these two properties combined were shown
to be equivalent to ISS for single-mode, Lipschitz systems
in [3].

In our prior work, we have designed state feedback
controllers with quantized state measurements, via zoom-
in/out techniques, for achieving disturbance attenuation. This
controller design can be applied to single-mode linear sys-
tems with inputs [4], or to switched linear systems with
inputs [5]. The closed-loop system was proven to be GS
and AG with respect to the external disturbance, yet this
does not immediately result in ISS as the closed-loop system
is a switched system and so the theorem from [3] is not
directly applicable. A strictly weaker version of ISS with
parametrization was shown in [6], with significant extra
effort.

Motivated by the above reasons, we want to study ISS for
switched systems, in particular the implication from GS plus
AG to ISS. It is observed that in quantized controller design,
the zoom events and transitions of control law typically occur
when the error exceeds certain bounds; in other words, the
switch is triggered when the system state reaches certain
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regions in the state space. Accordingly, we choose to focus
on state-dependent switched systems; see, e.g., [7]. (We
note that event-triggered control systems [8] can also be
captured in a similar modeling framework.) As a popular
type of hybrid systems, state-dependent switched systems
have attracted a lot of research recently (see, e.g., [9], [10]
among many other works). Our main task in this paper is to
formulate assumptions under which the implication from GS
plus AG to ISS holds for state-dependent switched systems.

It is identified in this paper that the major gap between
GS plus AG and ISS is the uniformity of convergence time.
Briefly speaking, the lack of uniformity lies in the nature of
state-dependent switched systems, namely, in the fact that
solutions evolving from adjacent initial states may behave
very differently because they are in different modes. As a
result, while AG guarantees that all solutions will converge
to the equilibrium, the time to converge to a small set is
no longer continuous with respect to the initial states and
hence a uniform upper bound on the convergence time may
not exist; consequently the system may not be ISS. This gap
can be filled by imposing suitable regularity conditions; for
example, in the hybrid system framework of [11], the system
solution space is closed, and it is concluded that global
pre-asymptotic stability is equivalent to uniform global pre-
asymptotic stability. It is also noted that GS plus AG is
related to the nonuniform ISS defined in [12], which is
shown to imply ISS if this nonuniform ISS still holds when
either the dynamics of the system or switch guards/rules are
perturbed.

Motivated by [13], we would like to impose transversality
of solutions with respect to switch guards in our model. The
idea of transversal solutions can be traced back to [14] in
the 1980s. In [15] the transversality condition is also shown
to be essential for trajectory sensitivity analysis. With this
assumption of transversality, we can eventually draw the
equivalence between GS plus AG and ISS.

This paper is divided into 8 sections. Section II intro-
duces the necessary notation and stability-related definitions.
Section III provides an ill-behaved example and proposes
the assumptions needed for the problem to be well posed.
Section IV states the main theorem. Sections V and VI
contain the supporting lemmas. Section VII compares our
model with another one from the literature and discusses
some possible improvements. Finally, Section VIII concludes
the paper.



II. PRELIMINARIES

A. Basic definitions and notations

Our state-dependent switched system deploys a model
from [13], which has a similar setup as the state-dependent
switched system model in [7] and the references therein. Let
I = {1, 2, · · · , l} be the set of modes of the system and for
each i ∈ I , define functions

fi(x, u) : Rn × U → Rn.

These are the dynamics for each mode and we require
fi(x, u) to be locally Lipschitz in both x and u for all i ∈ I .
Here U ⊆ Rm is the input value set. We then define MU as
the set of all locally essentially bounded functions from R≥0

to U . Let Si ⊆ Rn be the admissible regions of the state x in
mode i. Si’s are not necessarily disjoint, meaning the system
can have same state while in different modes. Define the
total admissible hybrid state space to be S = ∪i∈I(Si, {i}).
Define the switch guards Ei,j ⊂ Rn so that a switch from
mode i to j occurs when x ∈ Ei,j and σ = i. By convention
Ei,i = ∅ and Ei,j can be empty for lots of other indices j,
meaning that the switch from mode i to j will never happen.
Here are some regularity assumptions on the switch guards:
A1:

Ei,j ⊆ intSj ∀i, j ∈ I, and (1)

∪j∈IEi,j = ∂Si ∀i ∈ I. (2)

A2: each Ei,j is closed and

Ei,j ∩ Ei,k = ∅ ∀j 6= k, i, j, k ∈ I. (3)

Here (1) ensures that the solution is still in the admissible
hybrid state space after each switch. Equation (2) ensures the
occurrence of a switch when the state is at the boundary of
an admissible region, and (3) guarantees that when a switch
is about to occur, the mode-to-be is unique.

The dynamics of a forward complete, state-dependent
switched system (Σ) is defined as follows:{

ẋ = fσ(x, u) if x ∈ intSσ
x+ = x if x ∈ ∂Sσ

(4){
σ+ = σ if x ∈ intSσ
σ+ = j if x ∈ Eσ,j

(5)

with initial condition (x0, σ0) ∈ S. We denote
the state and mode of the solution at time t as
x(t, x0, σ0, u), σ(t, x0, σ0, u) respectively. When (x0, σ0) ∈
S is given and u ∈ MU is fixed, we can simplify the
two notations to be x(t), σ(t), respectively. Sometimes we
will simply call x(t, x0, σ0, u) the solution of system (Σ)
while ignoring the current modes the system is in. Because
of Assumption A1, we see that (x(t), σ(t)) ∈ S for all
t ≥ 0, u ∈ MU . In addition, (5) is well defined when
x ∈ ∂Sσ because (3) in Assumption A2 tells us that the
mode-to-be is unique.

For any r > 0 and set Ω, define ball

Br(Ω) := {x : |x− y| < r for some y ∈ Ω}

Let B̄r(Ω) be the closure of Br(Ω). In case Ω = {0},
we simplify the notations to be Br, B̄r, respectively. The
ambient space where Ω is in will be made clear in the
context.

For two sets A,B ⊂ Rn define the metric

d(A,B) := inf
x∈A,y∈B

|x− y|.

It naturally reduces to the case when one of them is only a
single point x ∈ Rn and we abuse the same notation

d(A, x) := inf
y∈A
|x− y|.

Finally, we say a function ρ(t) : [0,∞)→ [0,∞) is a class
K∞ function if it is strictly increasing with ρ(0) = 0 and
limt→∞ ρ(t) = ∞. We say a function β(ξ, t) : [0,∞) ×
[0,∞) → [0,∞) is a class KL function if it is strictly
increasing in ξ, decreasing in t, β(0, t) = 0 for all t ≥ 0
and limt→∞ β(ξ, t) = 0 for all ξ ≥ 0.

B. Auxiliary system

Let r > 0 and let ρ be a class K∞ function. Define

fρi (x, d) := fi(x, ρ(|x|)d), i ∈ I (6)

Define the auxiliary system (Σρ) for (Σ) as follows:{
x = fρσ(x, d) if x ∈ intSσ
x+ = x if x ∈ ∂Sσ

(7)

{
σ+ = σ if x ∈ intSσ
σ+ = j if x ∈ Eσ,j

(8)

with initial condition (x0, σ0) ∈ S and disturbance d ∈
MD, D = B̄1. Similarly we denote the state and mode of
this auxiliary system (Σρ) by xρ(t, x0, σ0, d), σρ(t, x0, σ0, d)
respectively. Notice that by this definition, xρ(t, x0, σ0, d) =
x(t, x0, σ0, ρ(|x|)d), σρ(t, x0, σ0, d) = σ(t, x0, σ0, ρ(|x|)d)
for all t ≥ 0, (x0, σ0) ∈ S, d ∈ MD. The construction of
an auxiliary system is a common technique practiced in the
literature (see, e.g., [3],[17]) and we also would like to mimic
those techniques in this paper. The relation between (Σ) and
(Σρ) will be discussed in Section V.

C. Stability definitions

First of all, fi(0, 0) = 0 for all i ∈ I such that 0 ∈ Si
imply x(t, 0, σ0, 0) ≡ 0 ∀t ≥ 0, (0, σ0) ∈ S . In this case
we say 0 is an equilibrium to the system (Σ).

Consider the case when U = Rm; that is, when the control
is unconstrained. We say the system (Σ) has global stability
(GS) property if bounded initial states and controls produce
uniformly bounded trajectories and, in addition, small initial
states and controls produce uniformly small trajectories:

∃σ, γ ∈ K∞ s.t. ∀(x0, σ0) ∈ S,∀u ∈MU ,
sup
t≥0
|x(t, x0, σ0, u)| ≤ max{σ(|x0|), γ(‖u‖∞)}.



The system (Σ) has asymptotic gain (AG) property if every
trajectory must ultimately stay not far from the origin,
depending on the magnitude of the input:

∃γ ∈ K∞ s.t. ∀(x0, σ0) ∈ S,∀u ∈MU ,
lim sup
t→∞

|x(t, x0, σ0, u)| ≤ γ(‖u‖∞).

The system (Σ) is input-to-state stable (ISS) if

∃β ∈ KL, γ ∈ K∞ s.t. ∀(x0, σ0) ∈ S,∀u ∈MU ,
|x(t, x0, σ0, u)| ≤ β(|x0|, t) + γ(‖u‖[0,t]).

The next few stability definitions will only be used on the
auxiliary system (Σρ) whose input value set D is the unit
ball. Nevertheless, we state the definitions for the general
state-dependent switched systems (Σ) when U is bounded.
We say a system (Σ) is globally asymptotically stable (GAS)
if the system is stable in the sense that

∀ε > 0,∃δ > 0 s.t. ∀(x0, σ0) ∈ S with |x0| ≤ δ,
sup

t≥0,u∈MU
|x(t, x0, σ0, u)| ≤ ε

and is attractive in the sense that

∀(x0, σ0) ∈ S, u ∈MU , lim
t→0

x(t, x0, σ0, u) = 0.

Further, the system (Σ) is said to be uniformly globally
asymptotically stable (UGAS) if the system is stable and
is uniformly attractive in the sense that

∀ε > 0, κ > 0,∃T ≥ 0 s.t. ∀(x0, σ0) ∈ S with |x0| ≤ κ,
sup

t≥T,u∈MU
|x(t, x0, σ0, u)| ≤ ε.

Notice that the uniformity in UGAS refers to the existence
of uniform time T for attractivity. In the special case when
U = {0}, the system becomes autonomous and stability,
attractivity, uniform attractivity, GAS and UGAS reduce
to the classical definitions (see, e.g., [16]) for autonomous
systems.

III. MOTIVATION

Before studying the state-dependent switched system, we
would like to review some ideas behind the elegant proof
in [3] of the equivalence between GS plus AG and ISS for
single-mode Lipschitz systems. Figure 1 shows a proof flow
of the main result in that paper:

Σ: GS + AG (f)←− ISS
↓(a) ↓(b) ↑(c)

Σρ: stability + attractivity (d)−→ GAS (e)−→ UGAS

Fig. 1. Proof flow of AG+GS=ISS

In their proof, while the implication (f) in Figure 1 is
trivial, the proof of the other direction is done by a detour
via arguments on the auxiliary system (Σρ). Firstly (a) and
(b) are proven by straightforward comparison function ma-
nipulation; (c) can be either concluded directly by invoking
the converse Lyapunov theorem from [17], or again proven

via comparison functions. In addition, (d) is the definition
of GAS. The essential step is (e), which heavily depends on
the property of continuous dependence of solutions on initial
conditions induced by a Lipshitz vector field and an approx-
imation of the limit of a sequence of infinite time horizon
solutions with arbitrarily small error. Thanks to this key result
of (e), there is no necessity to mention uniform convergence
time for systems with Lipschitz vector fields whenever we
are dealing with stability of systems and convergence of
solutions. For example, ISS (with uniform convergence time
implicitly embedded in the class KL function β) applied to
an autonomous system yields the so-called 0-GAS property,
which in fact should be more precisely referred as 0-UGAS.
However, this equivalence between GAS and UGAS cannot
be simply transferred to state-dependent switched systems,
as illustrated by the following counterexample.

A. Counterexample

Consider a 2-dimensional, 2-mode system with

S1 = {(x1, x2) ∈ R2 : x1 ≥ 1}, S2 = R2,

E1,2 = ∂S1 = {(1, x2) : x2 ∈ R}.

The subsystem dynamics of each mode is given by:

f1(x) = (
√
x2

1 + x2
2 − 1)

(
−x2

x1

)
, f2(x) = −

(
x1

x2

)
.

Fig. 2. A 2-dimensional example which is GAS but not UGAS

The mode regions and corresponding vector fields are
shown in Fig 2. It is not hard to see that in Mode 1,
the system solution is rotating counter-clockwise around
the origin with angular velocity |x| − 1. Since S1 is only
the right half-plane with respect to the line x1 = 1, the
rotation velocity is always positive in intS1 and the solution
will eventually hit the boundary and switch to Mode 2. In
Mode 2, the solution converges to the origin exponentially
fast. Therefore, this system is stable and attractive, so it is
GAS. Nevertheless, consider a solution with initial condition
x0 = (r, 0), σ0 = 1 where r > 1 but very close to 1. It needs
to rotate an angle of arccos( 1

r ) before it hits E1,2, hence it
has to stay in mode 1 for a time arccos( 1

r )

r−1 , which tends to
infinity when r → 1+. Thus the convergence time is not
uniformly bounded; the system is not uniformly attractive.
Therefore, this system is not UGAS.



B. Additional assumptions

For simplicity, the assumptions in this subsection are
expressed in terms of fρi , which can be translated to as-
sumptions in terms of fi via (6). It is observed that in the
previous example, the ill behavior of solutions arises in the
neighborhood of state (1, 0) in S1, on which f1(x) becomes
parallel to the boundary x1 = 1 and hence the time needed
for a switch to occur approaches infinity. Therefore, we need
a suitable transversality assumption imposed on the system:
A3: There exist functions gi ∈ C1(Rn) such that each

admissible region Si can be defined by gi:

Si = {x ∈ Rn : gi(x) ≥ 0}, i ∈ I.

In addition,

fρi (x, d) · ∇gi(x) < 0 ∀d ∈ D, x ∈ ∂Si, i ∈ I. (9)

By this definition, the boundaries of regions of system modes
are ∂Si = {x ∈ Si : gi(x) = 0}. For any K ⊂ S (in most
cases the mode element in K is a singleton), the reachable set
of the solutions of (Σρ) over the time interval [0, T ] starting
from K is denoted to be RT (K). In other words,

RT (K) := {xρ(t, x0, σ0, d) : t ∈ [0, T ],

(x0, σ0) ∈ K, d ∈MD}

To make the analysis easier, we also impose the two follow-
ing assumptions here:
A4: For any T ≥ 0 and compact set K ⊂ S, there exists

c > 0 such that RT (K) ⊆ Bc.
A5: The sets Fi(x) := {fρi (x, d) : d ∈ D} are convex for

all x ∈ Rn, i ∈ I .
Assumption A4 means the reachable space over a com-
pact set of initial conditions and finite time horizon is
bounded. While this assumption is always true for single-
mode, Lipschitz systems (see [17]), it is not clear for state-
dependent switched systems. Nevertheless, if we are working
on a compact state space, or |fi| are globally bounded, or
some more knowledge of the system directly tells that every
solution is bounded, then A4 would be true. We postpone
the discussion of A5 to Lemma 7 where it is used.

IV. MAIN RESULTS

With the assumptions proposed in the previous section, we
can prove the following theorem regarding GAS and UGAS
in this paper:

Theorem 1 Let a state-dependent switched system (Σρ) be
defined via (7), (8). Under assumptions A1–A5, (Σρ) is GAS
if and only if it is UGAS.

Theorem 1 also leads to the main result of our work:

Theorem 2 Let a state-dependent switched system (Σ) be
defined via (4), (5) and assume it is GS and AG. There exists
ρ ∈ K∞ such that if assumptions A1–A5 are satisfied with
fρi defined via (6), then (Σ) is ISS.

Referring to Figure 1 and following the same proof flow,
we will first prove some simple arrows in the figure, that
is, (a) by Lemma 1, (b) by Lemma 2, and (c) by Lemma
4, respectively. We will then prove Theorem 1, which also
leads to the arrow (e) in the figure. As that proof is the most
critical component of this paper, it will be contributed by
the entire Section VI, consisting of several lemmas. Now
notice that the arrow (d) is simply the definition of GAS and
(f) is still trivial in this case, subsequently we can conclude
Theorem 2.

V. CONNECTION BETWEEN (Σ) AND (Σρ)

Without loss of generality we can assume the two γ
functions in the definition of GS and AG are identical and
smooth. Define

ρ(s) := γ−1(
s

2
). (10)

Since γ ∈ K∞, ρ(s) is also a class K∞ function and γ ◦
ρ(s) = s

2 . Use this ρ and define the corresponding auxiliary
system, we can prove several relations between (Σ) and (Σρ)
in the following subsections.

A. GS to stability

Lemma 1 If (Σ) is GS, then its auxiliary system (Σρ) is
stable, where ρ is defined via (10).

Proof: Let ε > 0. Pick δ = σ−1(ε). GS implies

sup
t≥0
|xρ(t, x0, σ0, d)| = sup

t≥0
|x(t, x0, σ0, ρ(|xρ(t)|)d)|

≤ max{σ(|x0|), γ(‖ρ(|xρ(t)|)d(t)‖∞)}
≤ max{σ(|x0|), γ(‖ρ(|xρ(t)|)‖∞)}
≤ max{σ(|x0|), ‖γ(ρ(|xρ(t)|))‖∞}

= max{σ(|x0|),
1

2
‖xρ(t)‖∞}

Since ‖xρ(t)‖∞ is nothing but a differnt notation of
supt≥0 |xρ(t, x0, σ0, u)|, the bound 1

2‖x
ρ(t)‖∞ is redundant.

Hence when |x0| ≤ δ, supt≥0 |xρ(t, x0, σ0, u)| ≤ σ(|x0|) ≤
σ(δ) = ε and the auxiliary system (Σρ) is stable.

B. AG to attractivity

Lemma 2 If (Σ) is AG, then its auxiliary system (Σρ) is
attractive, where ρ is defined via (10).

Proof: By lemma II.1 in [3], AG is equivalent to the
property

lim sup
t→∞

|x(t, x0, σ0, u)| ≤ γ
(

lim sup
t→∞

|u(t)|
)

for all (x0, σ0) ∈ S, u ∈ MU where γ is the same as the
one in the definition of AG. Fix (x0, σ0) ∈ S and d ∈ MD



and denote xρ(t) := xρ(t, x0, σ0, d), we have

lim sup
t→∞

|xρ(t)| = lim sup
t→∞

|xρ(t, x0, σ0, d)|

= lim sup
t→∞

|x(t, x0, σ0, ρ(|xρ(t)|)d(t))|

≤ γ
(

lim sup
t→∞

ρ(|xρ(t)|)|d(t)|
)

≤ lim sup
t→∞

γ(ρ(|xρ(t)|))

≤ 1

2
lim sup
t→∞

|xρ(t)|

which implies lim supt→∞ xρ(t) = 0. Thus the system (Σρ)
is attractive.

C. UGAS and ISS

First of all, we provide an alternative definition of UGAS
via a class KL function:

Lemma 3 A system (Σρ) is UGAS if and only if there is a
class KL function β such that

|xρ(t, x0, σ0, d)| ≤ β(|x0|, t) (11)

for all (x0, σ0) ∈ S, d ∈MD.

The proof is similar to that for the autonomous version of
Lemma 4.5 in [16], which can be found in its appendix and
hence omitted here. It is noticed that since converse Lya-
punov theorem may not hold for state-dependent switched
systems, the existence of a Lyapunov function V can not be
assumed when showing UGAS implies ISS; nevertheless, by
using the alternative definition of UGAS in Lemma 11 and
assuming that (Σ) is GS, we can still derive this implication
via comparison functions:

Lemma 4 Assume that the system (Σ) is GS. Then it is also
ISS if and only if its auxiliary system (Σρ) is UGAS where
ρ is defined via (10).

Proof: When (Σ) is ISS, by definition there exists β ∈
KL, γ ∈ K∞ such that for all (x0, σ0) ∈ S, u ∈MU ,

|x(t, x0, σ0, u)| ≤ β(|x0|, t) + γ(‖u‖[0,t])

For any d ∈MD,

|xρ(t, x0, σ0, d)| = |x(t, x0, σ0, ρ(|xρ(t)|)d)|
≤ β(|x0|, t) + γ

(
ρ(|xρ(t)|)‖d‖[0,t]

)
≤ β(|x0|, t) + γ ◦ ρ(|xρ(t)|)

= β(|x0|, t) +
|xρ(t)|

2

Hence |xρ(t, x0, σ0, d)| ≤ 2β(|x0|, t). Because 2β is also a
class KL function, by Lemma 3 (Σρ) is UGAS.
To show that UGAS (Σρ) implies ISS (Σ), consider a
solution of (Σ). For any initial state (x0, σ0) ∈ S, any control
u ∈ MU , define t0 := inf{t ≥ 0 : ‖u‖[t,∞) ≥ ρ(|x(t)|)}
(t0 =∞ when the set is empty). Let

d(t) :=

{
u(t)

ρ(|x(t)|) t < t0
0 t ≥ t0

By definition of t0, |u(t)| ≤ ρ(|x(t)|) for all t ∈ [0, t0) hence
d(t) ∈MD. Thus for t ∈ [0, t0)

x(t, x0, σ0, u) = x(t, x0, σ0, ρ(|x|)d) = xρ(t, x0, σ0, d)

Then by Lemma 3, we have |x(t, x0, σ0, u)| ≤ β(|x0|, t).
Notice that this β is independent of t0. ISS is shown when
t0 =∞. Otherwise, notice that ‖u‖[t,∞) is a non-increasing
function of t and ρ(|x(t)|) is continuous with respect to
t, from the definition of t0 we must have ‖u‖[t0,∞) ≥
ρ(|x(t0)|). Because the system (Σ) is assumed to be GS
and time invariant, take t0 as the initial time and we have
that for all t ≥ t0,

|x(t)| ≤ max{σ(|x(t0)|), γ(‖u‖[t0,∞))}
≤ max{σ ◦ ρ−1(‖u‖[t0,∞)), γ(‖u‖[t0,∞))}
≤ γ′(‖u‖[t0,∞)) ≤ γ′(‖u‖∞)

where γ′(s) = max{σ ◦ ρ−1(s), γ(s)}. Combine the two
parts together we have |x(t)| ≤ β(|x0|, t) + γ′(‖u‖∞) for
all t ≥ 0. Observe that t0 does not appear in the above bound
so it is true for all x0, σ0, u. Appealing to causality we can
replace ‖u‖∞ by ‖u‖[0,t] and hence we have shown ISS.

VI. GAS TO UGAS

The special properties of state-dependent switched systems
are not required for the proofs for the lemmas in Section V;
they will only appear when we show the implication from
GAS to UGAS. For convenience we will omit the super-
scripts of ρ on fρi and xρ only in this section as everything
will be discussed on the auxiliary system.

A. Transversality

We first conclude an important result from the transversal-
ity assumption A3. The following lemma suggests whenever
a solution is very close to the switching guards, it is
guaranteed to hit the switching guards within a time that
is proportional to the distance the current state is away from
the guards.

Lemma 5 When A3 is true, for any T > 0 and any compact
set K ⊆ S , there exists r1 > 0, µ > 0 such that if
|x(s, x0, σ0, d)− y| ≤ r1 for some s ≤ T, (x0, σ0) ∈ K, d ∈
MD and y ∈ ∂Sσ(s), then x(s+ ∆, x0, σ0, d) ∈ ∂Sσ(s) for
some ∆ ≤ µ|x(s, x0, σ0, d)− y|.

Proof: By A4 there exists c′ > 0 such that RT (K) ⊆
Bc′ . Let h > 0 and c = c′ + h, then Bc contains the dilated
reachable set Bh(RT (K)). Define

M := sup
x∈B̄c,d∈D,i∈I

|fi(x, d)|. (12)

Since gi ∈ C1, let L2 be the common Lipschitz constant on
all gi’s over B̄c (recall gi’s define the guards for switch). For
any γ > 0, define sets

Ni(γ) := {x ∈ B̄c : d(x, ∂Si) ≤ γ}, i ∈ I

Notice that by this definition, Ni(γ) is compact. Thus by A3
and continuity of the function fi(x, d) · ∇gi(x) with respect



to x and d, we know that there exists a > 0, r1 > 0 such
that fi(x, d) ·∇gi(x) ≤ −a for all i ∈ I, u ∈ D, x ∈ Ni(r1).
We pick r1 sufficiently small so that r1 ≤ min{h, ah

ML2
}.

When y ∈ ∂Sσ(s), gσ(s)(y) = 0 by definition of ∂Si. If
|x(s) − y| ≤ r1, we have d(x(s), ∂Si) ≤ r1; in addition
x(s) ∈ Bc′ ⊂ B̄c so x(s) ∈ Ni(r1). Evaluate gσ(s)(x(t)) as
a function of time along the solution starting at time s,

d

dt
gσ(s)(x(t))|t=s = ∇gσ(s)(x) · fσ(s)(x, u)|t=s ≤ −a,

gσ(s)(x(s)) = gσ(s)(x(s))− gσ(s)(y) ≤ L2|x(s)− y|.

It means that g(x(t, ξ, u)) is decreasing at rate −a at least,
starting from a value no larger than L2|x(s)− y|. by taking
r1 sufficiently small, x(t) will stay in Nσ(s)(r1) while
decreasing g(x(t)) and hence the value has to drop to 0,
that is, x(t) will hit ∂Sσ(s) after time ∆ ≤ µ|x(s) − y|
where µ := L2

a . In addition for any τ ∈ [s, s+ µr1],

|x(τ)| ≤ |x(s)|+Mµr1 ≤ c′ +
ML2

a
r1 ≤ c′ + h = c

which implies x(τ) ∈ Bc so L2,M are indeed valid along
the solution over time [s, s+ ∆] ⊆ [s, s+ µr1].

Now with the help of the other assumptions, we can show
there are more nice properties on this type of state dependent
switched system.

B. Convergent switching time

With the help of Lemma 5 and the other assumptions
in the theorem statement, we can now show that adjacent
solutions of the state-dependent switched system switch
at similar time. To be more precise, let K ⊆ S be
a compact set and pick a convergent sequence of initial
conditions(xk0 , σ0) ∈ K. Denote xk(t) := xρ(t, xk0 , σ0, d

k),
σk(t) := σρ(t, xk0 , σ0, d

k) where dk ∈ MD. Suppose that
xk(t) → θ(t) ∈ Rn for all t ≥ 0 point-wise. Clearly
we should have θ(0) = limt→∞ xk0 . It is not hard to see
that xk(t) are locally equicontinuous so the limit θ(t) is
continuous. Keep in mind that θ may not be a solution
so “switches” on θ are not defined. Alternatively, we can
recursively define

t0 = 0, tj = min{t ≥ tj−1 : θ(t) ∈ ∂Sσj−1}, (13)

with σj defined such that θ(tj) ∈ Eσj−1,σj
for j ≥ 1. Similar

switching time means:

Lemma 6 For any T > 0, there exists a k̄ such that for
each j ≥ 1 and tj < T as defined via (13), there will be
a sequence of time tkj when all the solutions xk(t) with
k ≥ k̄ will switch, in the sense that σk(tkj ) = σj−1,
xk(tkj ) ∈ Eσj−1,σj . In addition, limk→∞ tkj = tj and
limk→∞ xk(tkj ) = θ(tj).

Proof: We start from j = 1. From the given T and K
we can derive r1, µ according to Lemma 5. Because xk → θ
uniformly over time [0, t1], there exists k1 such that ‖xk −
xk
′‖[0,t1] ≤ r1 for all k, k′ ≥ k1, in particular we conclude

|xk(t1) − θ(t1)| ≤ r1. If there is no switch on xk(t) over

time [0, t1], the solution is still in mode σ0 at t1. Because
θ(t1) ∈ ∂Sσ0 , by Lemma 5, there will be a switch at tk1 =
t1 + ∆ with ∆ ≤ µ|xk(t1) − θ(t1)|. In addition, xk(t1) →
θ(t1) as k → ∞ implies tk1 → t1. The lemma is almost
proven if there are only finitely many solutions switches at
tk1 with tk1 ≤ t1. Otherwise, consider the subsequence of such
“early switched” solutions and still call them xk, from which
we compare two solutions with index k, k′. Without loss of
generality we assume tk1 ≤ tk

′

1 . Because |xk′(tk1)−xk(tk1)| ≤
r1 and xk(tk1) ∈ ∂Sσ0

, again by Lemma 5 we conclude
that |tk1 − tk

′

1 | ≤ µ|xk(tk1) − xk′(tk1)| ≤ µ‖xk − xk′‖[0,t1].
The most right hand term can be made arbitrarily small by
taking k, k′ large enough, which means tk1 is convergent by
Cauchy Convergence Theorem. Denote limk→∞ tk1 =: t̃k1 .
Equicontinuity of xk implies the sequence of states xk(tk1)
converges as well and limk→∞ xk(tk1) = limk→∞ xk(t̃1) =
θ(t̃1). Now let ∂S∗i := ∂S∗i ∩ B̄c, ∂E∗i,j := Ei,j ∩ B̄c where
c is the radius of ball Bc ⊇ RT+µr1(K) from assumption
A4. By definition all of ∂S∗i , E

∗
i,j are compact and thus from

assumptions A1 and A2 we know that there exists r2, r3 > 0
such that for all i, j, k ∈ I, i 6= j

r2 ≤ d(E∗k,i, E
∗
k,j) (14)

r3 ≤ d(E∗i,j , ∂S
∗
j ), (15)

Convergence of xk(tk1) suggests that there exists k2 such
that |xk(tk1)− xk′(tk′1 )| < r2 for all k, k′ ≥ k2. Hence they
should be hitting the same switch guard, say xk(tk1) ∈ Eσ0,i.
This means σk(tk1) = i for all k ≥ max{k1, k2}. In addition
because switch guards are closed, as the limit of xk(tk1),
θ(t̃1) ∈ Eσ0,i as well. Now because the definition of tj in
(13) suggests that it is the first time θ hits any switch guards,
we must have t̃1 = t1 and i = σ1. The lemma is proven for
the case j = 1.

For j > 1, convergence of tk means |tk1 − tk
′

1 | < r3
M

for all k, k′ ≥ k3 where M is defined via (12) over
B̄c. Denote t̄1 := sup{tk1} = max{tk1 , t1}. Then we see
|xk(tk1) − xk(t̄1)| ≤ M |tk1 − t̄| < r3, meaning there is no
second switch on any solution xk before time t̄1. In other
words, σk(t̄+1 ) = σ1 for all k ≥ k̄ := max{k1, k2, k3}. Reset
t̄+1 to be the initial time and we can inductively prove the
rest cases.

C. Compact infinite time horizon solution space

The next lemma is a similar to the Lemma III.2 in [3]. It
is noticed that their lemma only guarantees the existence of
an approximated solution, which is based on construction of
reverse time solution. However, in the case of state dependent
switched system with overlapped admissible regions Si, the
reverse time solution is actually not well defined so we
cannot use that approach. Instead, we try to directly prove
that there exists a limit curve and it is an infinite horizon
solution, with the convexity assumption A5. First, for any
set Ω ⊆ Rn, define function τΩ : C0(Rn≥0 → Rn)→ Rn≥0:

τΩ(x) := inf
t≥0
{t : x(t) ∈ Ω}



Fig. 3. An illustration of xk, θ and x̄kj

This is the hitting time of a solution to the set Ω. To be
complete, we say τΩ(x) =∞ if x(t) 6∈ Ω for all t ≥ 0.

Lemma 7 Let K ⊆ S be a compact subset and Ω ⊆ Rn be
an open subset. If

sup
(x0,σ0)∈K,d∈MD

τΩ(x(t, x0, σ0, d)) =∞,

then there exists (x∗, σ∗) ∈ K, v ∈MD such that

τΩ(x(t, x∗, σ∗, v)) =∞.

Proof: The proof consists of two parts. The first part is
to show that under the hypothesis, there exists a curve that
never intersects Ω. To do this, observe that the hypothesis
in this lemma means there exists a sequence of solutions
xk(t) such that τΩ(xk) > k for all k ∈ N. Because all
xk(t) are uniformly bounded and equicontinuous over time
[0, 1], by Azela-Ascoli Theorem there exists a convergent
subsequence xg1(k) from xk that converges uniformly over
the time interval [0, 1]. Notice that the same argument can be
applied inductively on any time interval [0, i], i ∈ N and there
will exists a subsequence xgi(k) from xgi−1(k) with g0(k) =
k that converges uniformly over [0, i]. In addition, we see
that their limits are partially identical: limk→∞ xgi(k)(t) =
limk→∞ xgj(k)(t) for all t ∈ [0,min{i, j}]. Thus we have
constructed a continuous curve θ(t) such that for any T >
0, the sequence xgdTe(k)(t) converges to θ(t) uniformly for
t ∈ [0, T ]. Recall that by definition the solution xgdTe(k)

has a hitting time larger than gdTe(k) and in addition since
it is a subsequence of xk, τΩ(xgdTe(k)) > gdTe(k) ≥ k so
xgdTe(k)(t) ∈ Rn\Ω for all t ∈ [0, k]. Because Ω is open,
Rn\Ω is closed so θ(t) = limk→∞ xgdTe(k)(t) ∈ Rn\Ω for
all t ∈ [0, T ]. Lastly, because this T is arbitrary, θ(t) 6∈ Ω
for all t ≥ 0. This completes the first part of the proof.

The second part is to show that θ indeed is a solution to the
system (Σρ). Without loss of generality assume the second
element in K is a singleton; hence we must have σ∗ = σ0.
Define the sequence of tj on θ(t) as in (13). By A1 we know
that in fact tj < tj+1 for all j. From now on we relabel the
convergent subsequence xgdTe(k) as xk for convenience. We
define a solution x̄kj (t) over the time interval [tj , tj+1] by
the dynamics

˙̄xkj (t) = fσj
(x̄kj , d

k)

with initial condition x̄kj (tj) = θ(tj). Figure 3 is an illustra-
tion of the relation between xk, θ and x̄kj . In order to prove

that θ is a solution, we first show that x̄kj → θ uniformly
over [tj , tj+1] for all j ≥ 0 and tj+1 ≤ T . Pick any arbitrary
δ1, δ2 > 0. By Lemma 6, there exists k1 ∈ N such that as
long as k ≥ k1, |tkj − tj | ≤ δ1, |tkj+1 − tj+1| ≤ δ1 and
xk(tkj ) ∈ Eσj−1,σj , x

k(tkj+1) ∈ Eσj ,σj+1 . In addition because
xk(t) converges to θ(t) uniformly over [tj , tj+1] ⊆ [0, T ], we
should have k2 ∈ N such that for all k ≥ k2, |xk(t)−θ(t)| ≤
δ2 for all t ∈ [tj , tj+1]. Now if tkj ≤ tj , |xk(tj)− x̄kj (tj)| =
|xk(tj) − θ(tj)| ≤ δ2. Otherwise, σk(t) = σj−1 for all
t ∈ [tj , t

k
j ], meaning there is no switch on the solution xk

over this time interval so |xk(t)−xk(tj)| ≤M |t− tj |. Thus
we have

|xk(t)− x̄kj (t)| ≤|xk(t)− xk(tj)|+ |xk(tj)− x̄kj (tj)|
+ |x̄kj (tj)− x̄kj (t)|
≤2M(tkj − tj) + δ2 ≤ 2Mδ1 + δ2

So we have |xk(t) − x̄kj (t)| ≤ 2Mδ1 + δ2
for all t ∈ [tj ,max{tj , tkj }]. Now for t ∈
[max{tj , tkj },min{tj+1, t

k
j+1}], we see that σk(t) = σj ,

that is, xk follows dynamics ẋk = fρσj
(xk, uk), which

is the same as of x̄kj . Hence we can apply Grönwall’s
lemma, |xk(t) − x̄kj (t)| ≤ |xk(tkj ) − x̄kj (tkj )|eL1(t−tkj ) ≤
(2Mδ1 + δ2)eL1(tj+1−tj). In the case tkj+1 ≥ tj+1, that is
exactly the upper bound for the separation over whole time
interval [tj , tj+1]. Otherwise, for t ∈ [tkj+1, tj+1],

|xk(t)− x̄kj (t)| ≤|xk(t)− xk(tj)|+ |xk(tj+1)− x̄kj (tj+1)|
+ |x̄kj (tj+1)− x̄kj (t)|
≤2M(tkj − tj) + (2Mδ1 + δ2)eL1(tj+1−tj)

≤2Mδ1 + (2Mδ1 + δ2)eL1(tj+1−tj)

Comparing it with the earlier bounds, we see that the
inequality above is in fact true for all t ∈ [tj , tj+1]. Using
triangle inequality again, we have

|x̄kj (t)− θ(t)| ≤ |x̄kj (t)− xk(t)|+ |xk(t)− θ(t)|
≤ 2Mδ1 + (2Mδ1 + δ2)eL1(tj+1−tj) + δ2

= (2Mδ1 + δ2)
(

1 + eL1(tj+1−tj)
)

For all k ≥ max{k1, k2}, t ∈ [tj , tj+1]. As δ1, δ2 are taken
arbitrarily so the separation can be made arbitrarily small,
we conclude that x̄kj (t) converges to θ(t) uniformly over
[tj , tj+1]. Thus by Filippov’s Theorem [18] and using the
assumption A5 that fi are convex, there exists a control
vj ∈ MD that θ̇ = fσj

(θ, vj) over [tj , tj+1]. By defining
x∗ = θ(0) and v ∈ MD by v(t) := vj(t) ∀t ∈
[tj , tj+1), we finally have x(t, x∗, σ0, v) = θ(t) and hence
τ(x∗, σ0,Ω, v) =∞.

Proof of Theorem 1: Let κ, ε > 0 be arbitrary. The
system (Σ) being GAS means it is stable and attractive.
Let δ > 0 be given by stability so that (ξ, i) ∈ S with
|ξ| ≤ δ implies |x(t, ξ, i, d)| ≤ ε for all t ≥ 0, d ∈ MD.
Let Ω = {x ∈ Rn : |x| < δ} and K = {(ξ, i) ∈
S : |ξ| ≤ κ}. On the other hand, attractivity implies that
τ(ξ, i,Ω, d) < ∞ for all (ξ, i) ∈ S, d ∈ MD. Hence by



the contrapositive argument of Lemma 7 we conclude that
sup(ξ,i)∈K,d∈MD τ(ξ, i,Ω, u) < ∞ . In other words, there
exists T := T (κ, δ) such that x(τ, ξ, i, u) ∈ Ω̄ for some
τ ≤ T and all (ξ, i) ∈ K, d ∈ MD. Because the system is
time-invariant, with the aforementioned stability we conclude
that lim supt≥T,u∈MU |x(t, ξ, i, d)| ≤ ε for all (ξ, i) ∈ S
with |ξ| ≤ κ. Because T only depends on κ and δ, which
further depends on ε, the system (Σ) is uniformly attractive
in addition to being stable, and hence it is UGAS.

VII. DISCUSSION AND FUTURE WORK

We would like to discuss another possible approach to
showing the equivalence between GAS and UGAS via some
results given in [11]. For a hybrid system H defined via{

ẋ ∈ F (x) if x ∈ C
x+ ∈ G(x) if x ∈ D ,

Theorem 7.12 in this reference says that as long as C,D are
closed, G,F are outer semicontinuous, locally bounded and
F (x) is convex for all x ∈ C, then GAS is equivalent to
UGAS. In order to deploy this theorem, we need to combine
state x and mode σ as the hybrid state as well as define
C := ∩i∈I(S̄i, {i}), D := ∩i∈I(∂Si, {i}). Notice that by
this transformation, although C and D are both closed, there
are possible overlaps between them. As a result, when a
solution reaches ∂Si, H either allows the solution to keep
flowing continuously inside ∂Si without switch, or a switch
occurs and the mode jumps. In other words, H is different
from (Σρ) as it allows non-unique solutions. Nevertheless,
under the transversality assumption, the first situation cannot
happen; thus indeed the system H has same solutions as
(Σρ). Additionally, using this approach we see that Lips-
chitzness on fi’s can be replaced by outer semicontinuity
and Assumption 4 becomes redundant. Nevertheless, it is
worth pointing out that our approach used in this paper is
from scratch and does not require the framework of hybrid
systems from [11], the transformation of models from state-
dependent switched system to hybrid system is not apparent,
and analysis in hybrid time domain requires some extra work.
Besides, Lemma 5, Lemma 6 and their proofs also reveal
some robustness related properties on the state-dependent
switched system with the presence of transversality.

In addition, we have required in A5 that the vector fields
fi’s be convex. As discussed earlier, this assumption is
needed to show that the limit of sequence of solutions is
also a solution. In fact, we can relax this; as long as we
can approximate the limit of a sequence of solutions by
a solution on the infinite time horizon within an arbitrary
uniform ε-tube, we can still show the existence of a uniform
convergence time. This is closely related to the Filippov-
Wazewski Relaxation Theorem, and [19] gives an infinite
time horizon version. This relaxation in the context of state-
dependent switched systems will be another possible research
direction.

At last, as partially revealed in the proof of Lemma 7, it
is observed that A1-A4 also imply that our system has the
property of continuous dependence of solutions on initial

conditions. This continuous dependence is considered to be
an overkill for showing the equivalence between GAS and
UGAS, and therefore we would like to develop another set
of assumptions which does not restrict the system studied
to have continuous dependence on initial conditions yet still
allows us to show the implication from GS and AG to ISS.

VIII. CONCLUSION

In this paper we have first proposed several additional
assumptions for a GAS state-dependent switched system to
be UGAS. Based on this equivalence we then proved that
if a state-dependent switched system has the GS and AG
properties, then it is ISS as well.
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