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Abstract This chapter addresses the problem of stabilizing continuous-time
deterministic control systems via a sample-and-hold scheme under random sam-
pling. The sampling process is assumed to be a Poisson counter, and the open-loop
system is assumed to be stabilizable in an appropriate sense. Starting from as early as
mid-1950s, when this problem was studied in the Ph.D. dissertation of R.E. Kalman,
we provide a historical account of several works that have been published thereafter
on this topic. In contrast to the approaches adopted in these works, we use the frame-
work of piecewise deterministic Markov processes to model the closed-loop system,
and carry out the stability analysis by computing the extended generator. We demon-
strate that for any continuous-time robust feedback stabilizing control law employed
in the sample-and-hold scheme, the closed-loop system is asymptotically stable for
all large enough intensities of the Poisson process. In the linear case, for increas-
ingly large values of the mean sampling rate, the decay rate of the sampled process
increases monotonically and converges to the decay rate of the unsampled system
in the limit. In the second part of this article, we fix the sampling rate and address
the question of whether there exists a feedback gain which asymptotically stabilizes
the system in mean square under the sample-and-hold scheme. For the scalar linear
case, the answer is in the affirmative and a constructive formula is provided here. For
systems with dimension greater than 1 we provide an answer for a restricted class
of linear systems, and we leave the solution corresponding to the general case as an
open problem.
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1 Introduction

This chapter addresses the problem of stabilization of sampled-data control systems
under random sampling. Let

(
τn
)

n∈N denote a monotonically increasing sequence in
[0,+∞[ with τ0 := 0. Consider a nonlinear control system

ẋ(t) = f
(
x(t), u(t)

)
, x(0) given, t � 0, (1)

where f : Rd × R
m → R

d is a continuously differentiable map, and the control
process t �→ u(t) is constant on each [τn, τn+1[ for each n. The corresponding solu-
tion

(
x(t)

)
t�0 of (1) is referred to as the state process. We shall comment on the

precise properties of the solutions of (1) momentarily. Control systems where the
control process gets updated at the discrete time instants

(
τn
)

n∈N are referred to as
sampled-data control systems [2, 10, 24], and typically arise when implementing
controllers using a computer [8, 18], or in the context of networked control systems
[20, 33, 47].

Since any admissible control process t �→ u(t) defined above can be written as

u(t) =
+∞∑

k=0

u(τk) · 1[τk ,τk+1[(t) for t � 0, (2)

it is clear that the two key ingredients of sampled-data control systems are the sam-
pling times

(
τk
)

k∈N and the control values
(
u(τk)

)
k∈N. Different classes of these two

ingredients are possible: the former may be periodic [35, 36, 46], state-dependent [7,
22, 38, 42] or random [23, 24]; and the latter may be a random sequence generated
by a randomizedMarkovian policy as defined in [1] or just a feedback from the states
at the sampling instants [20, 23], etc. One of the fundamental problems of interest is
to provide a description of these two components (often in the form of an algorithm)
that results in stability of the closed-loop system. Different approaches have been
developed for the necessary analysis depending on how the sampling instants (τn)n∈N
are chosen: see [2] for an overview of classical tools in linear systems with periodic
sampling, the papers [30, 36, 37] provide tools specifically suited for nonlinear sys-
tems, and the approaches used for optimizing certain performance criterion can be
found in [9, 10]. In this article, we are interested in the situation where the sampling
times are generated randomly. Formally, we define Nt to be the number of sampling
instants before (and including) time t as

Nt := sup
{
n ∈ N

∣∣τn ≤ t
}

for t � 0, (3)

and stipulate that the sampling process (Nt )t�0 is a continuous-time stochastic pro-
cess satisfying the basic requirement

τNt −−−→
t↑+∞ +∞ almost surely. (4)
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It is assumed that there is anunderlyingprobability triplet (Ω,F ,P), sufficiently rich,
that provides the substrate for these processes (i.e., each random variable considered
here is defined on (Ω,F ,P)), and in the sequel we shall denote the mathematical
expectation with respect to the probability measure P by E[·].

Due to our assumptions on the random sequence
(
τk
)

k∈N and the right-hand side
f of (1), it follows that, P-almost everywhere on the sample space Ω , Carathéodory
solutions of (1) exist for a sufficiently small interval of time containing t = 0. In addi-
tion, we assume that solutions of (1) exist for all times. Typically, the sampling pro-
cess

(
Nt
)

t�0 is constructed by means of a renewal process [4, 20]: independent and

identically distributed positive random variables
(
Sn
)

n∈N∗ are defined on (Ω,F ,P),1

with the probability distribution function of S1 being Fhld(t) := P(S1 ≤ t) for t � 0,
and the sequence

(
τn
)

n∈N is defined according to τ0 := 0 and τk :=∑k
�=1 S� for

k ∈ N
∗. The random variable Sn is the nth holding time.

Typical control problems in this setting consist of the design of controllers (feed-
backs) for stabilization [23, 49], optimal control [3, 10], state estimation2 [32, 41],
etc., andwewill study the problemof stabilization in this article.Amapping t �→ x(t)
that satisfies (1) in the preceding setting is, naturally, a stochastic process, and con-
sequently, a library of different notions of stochastic stability are available to us
[25, 26]. We will restrict our attention mostly to the particularly important property
of stability in the mean and mean-square—especially well-studied in the context of
linear models [11, 28]—in the sequel.

Finally, we note a connection with the work of Roberto Tempo, to whom this
article is dedicated, and his coworkers on randomized algorithms in control theory
[43]. That work asks the question of how many random samples in space are needed
to obtain a sufficient guarantee that a property of interest holds over the whole space,
whereas here we are asking how frequently we should sample randomly in time so
that the feedback is still stabilizing.

2 Connections with Piecewise Deterministic Markov
Processes

This section serves the purpose of demonstrating that sampled-data control sys-
tems under random sampling can be readily recast as piecewise deterministic
Markov processes (PDMPs); consequently, typical control problems can be immedi-
ately addressed under this rather general and well-established umbrella framework
[13, 14].

To start our discussion, we recall that the sequence of holding times
(
Sn
)

n∈N∗
is, typically, independent and identically distributed. The assumption of S1 being

1For us N∗ := N \ {0}.
2In contrast to the continuous-time systems given in (1), the references indicated here in the context
of state estimation problems deal with discrete times linear systems, and the arrival of observations
is modeled as a random process.
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an exponential random variable with a given positive intensity λ is fairly common,
and the resulting sampling process

(
Nt
)

t�0 is, consequently, a Poisson process with
intensity λ. Recall [39, Theorem 2.3.2] that the Poisson process of intensity λ > 0
is a continuous-time random process

(
Nt
)

t�0 taking values in N
∗, with N0 = 0, for

every n ∈ N
∗ and 0 =: t0 < t1 < · · · < tn < +∞ the increments {Ntk − Ntk−1}n

k=1
are independent, and Ntk − Ntk−1 is distributed as a Poisson-λ(tk − tk−1) random
variable for each k. The Poisson process is among the most well-studied processes,
and standard results (see, e.g., [39, §2.3]) show that it is memoryless andMarkovian.
Nevertheless, the resulting state process

(
x(t)

)
t�0 obtained as a solution of (1) under

Poisson sampling is not controlled Markovian in general. Recall that an R
ν-valued

random process
(
x̃(t)

)
t�0 controlled by an R

m-valued random process
(
ũ(t)

)
t�0 is

controlled Markov [19, §III.6] if for every t, h > 0 and every Borel set S ⊂ R
ν we

have

P
(
x̃(t + h) ∈ S∣∣̃x(s), ũ(s) for s ∈ [0, t]) = P

(
x̃(t + h) ∈ S∣∣̃x(t), ũ(t)

)
.

Indeed, suppose thatwe intend to employ feedback at sampling instants so that u(t) =
u(τNt ) = κ

(
x(τNt )

)
for some measurable map κ, fix t, t ′ > 0, and suppose that the

history
{(

x(s), u(s)
)∣∣s ∈ [0, t]} up to time t is available to us. Of course, any finite

k samples may have occured during [t, t + t ′]. If k = 0, then x(τNt ) is not needed to
find the conditional distribution of x(t + t ′) given

{(
x(s), u(s)

)∣∣s ∈ [0, t]}. If k = 1,
then the conditional distribution of x(t + t ′) depends on the value of x(τNt ): since
τNt +1 ∈]t, t + t ′], the control action at τNt +1 depends on x(τNt +1), and influences
x(t + t ′). A similar reasoning holds for all k � 2.

The controlled Markovian property is extremely desirable in practice, and to
arrive at a controlled Markov process in the context of (6), we proceed to adjoin an
additional random vector by enlarging the state space. Corresponding to the state
process

(
x(t)

)
t�0 that solves (1), we define the continuous-time last-sample process

(
x(τNt )

)
t�0; at each time t , x(τNt ) is the value of the vector of states at the last sam-

pling time immediately preceding t . In other words, Rd -valued process
(
x(τNt )

)
t�0

attains the value of the states at each sampling instant and stays constant over the
corresponding holding time. It turns out to be convenient to introduce the continuous-
time error process

(
e(t)
)

t�0 defined by

e(t) := x(t) − x(τNt ) for t � 0. (5)

With the joint stochastic process
(
x(t), e(t)

)
t�0 taking values in R

d × R
d , we write

the system of interest as a stochastic process described by the ordinary differential
equation

(
ẋ(t)
ė(t)

)
=
(

f
(
x(t), u(t)

)

f
(
x(t), u(t)

)

)

for almost all t � 0, (6a)
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and at each sampling time τNt the process
(
x(t), e(t)

)
t�0 is reset according to

(
x(τNt )

e(τNt )

)
=
(

x(τ−
Nt

)

0

)
with the convention that x(τ−

0 ) = x0. (6b)

It is readily observed that the joint process
(
x(t), e(t)

)
t�0 is controlled Markovian.

We sometimes abbreviate the right-hand side of (6a) by

R
d × R

m � (x, u) �→ F(x, u) :=
(

f (x, u)

f (x, u)

)
∈ R

d × R
d .

We shall be concerned exclusively with feedback controls in this article. In other
words, we stipulate that there exists some measurable map

R
d × R

d � (x, e) �→ κ(x, e) ∈ R
m

such that our control process becomes, in the notation of (2),

u(t) =
+∞∑

k=0

κ
(
x(τk), e(τk)

)
1[τk ,τk+1[(t) for t � 0.

In other words, with κ substituted into (6a), our closed-loop system becomes

(
ẋ(t)
ė(t)

)
=
(

f
(
x(t),κ

(
x(τNt ), e(τNt )

))

f
(
x(t),κ

(
x(τNt ), e(τNt )

))

)

for almost all t � 0, (7)

while the reset map (6b) stays intact.
With the class of admissible feedback control processes as described above, the

description (6b)–(7) provides the basic ingredients to transit to the framework of
PDMPs. Indeed, we see readily that the standard conditions for a PDMP [14, (24.8),
p. 62] hold for the joint process

(
x(t), e(t)

)
t�0 described by (6b)–(7) with

• the vector field X in [14, §24] being the map (x, e) �→ F
(
x,κ(x, e)

)
,

• the jump rate λ in [14, §24] being a nonnegative measurable function such that
Fhld(t) = exp

(∫ t
0 λ(s) ds

)
, which can be readily derived for particular cases of

probability distribution functions Fhld as in [14, p. 37], and
• the stochastic kernel Q for the reset map in [14, §24, p. 58] is the Dirac measure

Q
(
B; (x, e)

) := δ{(x,0)}(B) = 1B(x, 0) for every Borel subset B ⊂ R
d × R

d in
the context of (6b)–(7).

In this chapter, we will work exclusively under the assumption that the controller has
access to perfect state measurements at sampling times. While, in general, it is of
interest to consider feedbacks which depend on the measurement error at sampling
times e(τNt ),we candrop the dependenceof feedbackκon e(τNt ) in the case of perfect
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measurements since e(τNt ) = 0, for each t ∈ [0,+∞[, in such cases. In the sequel,
we shall employ the feedback exclusively as a function of x(τNt ), which is described
in (5) by the difference between x(t) and e(t), i.e, we shall employ some measurable
map κ′ : Rd → R

m such that κ(x, e) = κ′(x − e) for all (x, e) ∈ R
d × R

d ; we shall
abuse notation and continue to use the symbol κ for κ′ since there is no risk of
confusion.

Remark 2.1 As a consequence of the preceding discussion, we observe that the
techniques in [14, Chapters 4, 5] (including several results on stability and optimal
control) carry over at once to the setting of sampled-data control systems under
random sampling as special cases. In particular, the so-called extended generator
of the PDMP (6b)–(7) is a particularly useful device for the purposes of analyzing
stability and optimality, and we shall look at it in greater detail below in the context
of stability.

The extended generator of the joint process
(
x(t), e(t)

)
t�0 is the linear operator

ψ �→ Lψ defined by

R
d × R

d � (y, z) �→ Lψ(y, z) :=
lim
h↓0

1

h

(
E
[
ψ
(
x(t + h), e(t + h)

)∣∣x(t) = y, e(t) = z
]− ψ(y, z)

)
∈ R (8)

for allmapsψ : Rd × R
d → R such that the limit is defined everywhere. It is possible

to directly write down the extended generator of
(
x(t), e(t)

)
t�0 from [14, (26.15),

p. 70]. We provide the following Proposition catering to the most standard special
case of sampling process being Poisson; a direct proof of Proposition 2.2 is included
in AppendixA for completeness.

Proposition 2.2 If the sampling process
(
Nt
)

t�0 is Poisson with intensity λ > 0,

then the joint process
(
x(t), e(t)

)
t�0 described above is Markovian. Moreover,

for any function R
d × R

d � (y, z) �→ ψ(y, z) ∈ [0,+∞[ with at most polynomial
growth as ‖(y, z)‖ → +∞, we have

Lψ(y, z) = 〈∇yψ(y, z) + ∇zψ(y, z), f
(
y,κ(y − z)

)〉+ λ
(
ψ(y, 0) − ψ(y, z)

)
.

(9)

We submit that this extended generator serves as an important tool inmost control-
theoretic problems associated with this class of randomly sampled-data systems. In
particular, (9) provides the following Dynkin’s formula

E [ψ(x(t), e(t))] = E [ψ(x(0), e(0))] + E

[∫ t

0
Lψ(x(s), e(s)) ds

]
, (10)

which allows us to establish connections with definitive results on stability.
In the sequel, while we provide an account of stability results obtained by different

means in priorworks, the focus is on using the extended generator to obtain conditions
under which the sampled-data systems are asymptotically stable.
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3 Lower Bounds on the Sampling Rate

We employ the tools from the previous section to study the following qualitative
property of the closed-loop system (7)–(6b). The closed-loop system (7)–(6b) is
globally exponentially stable in the second moment [25, Chapter 1, p. 23] if there
exist two constants C,μ > 0 such that

for every x(0) ∈ R
dand t � 0, E

[‖x(t)‖2 ∣∣x(0)
] ≤ C ‖x(0)‖2 e−μt .

This particular property of stochastic stability is standard, and says that, on an aver-
age, the square norm of the system states converges exponentially fast to 0 uniformly
from every initial condition.

As a first step in obtaining conditions which guarantee this property, we specify
the class of feedback controls in (7). The natural candidates for feedback controls,
for which we solve the sampled-data problem, are the ones which asymptotically
stabilize the system when the measurements of the state are available in continuous
time (without sampling), and possess some robustness properties with respect to
errors in the measurement of state. To attribute these properties to the feedback
law κ : Rd → R

m appearing in (7), it is assumed that there is a function U : Rd →
[0,+∞[ such that

(L1) there exist α,α > 0 satisfying

α|x |2 ≤ U (x) ≤ α|x |2 for all x ∈ R
d;

(L2) there exist α, γ > 0 which satisfy

〈∇U (x), f (x,κ(x − e))〉 ≤ −α U (x) + γU (e) for all (x, e) ∈ R
d × R

d;

(L3) there exist χx > 0, χe ∈ R satisfying

〈∇U (e), f (x,κ(x − e))〉 ≤ χx U (x) + χeU (e) for all (x, e) ∈ R
d × R

d .

Restricting our attention to such a class of controllers, we are interested in address-
ing the following problem:

Problem 1 Consider the system (7)–(6b) with
(
Nt
)

t�0 in (3) a Poisson process of

intensity λ. If the feedback law κ : Rd → R
m is such that (L1)–(L3) hold for some

functionU : Rd → [0,+∞[, does there existλ > 0 such that the closed-loop system
(7)–(6b) is globally exponentially stable in the second moment?

It is noted that, between two consecutive updates in the controller value, the
process

(
x, e
)
follows the differential equation
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ẋ = f (x,κ(x − e)) (11a)

ė = f (x,κ(x − e)). (11b)

Assumptions (L1)–(L2) basically characterize the existence of a feedback controller
which renders the system (11a) input-to-state stable (ISS) with respect to measure-
ment errors e. Assumption (L3) is introduced to bound the growth of the error e
which satisfies (11b). The notion of ISS, pioneered in [40], has been instrumental in
the synthesis of control laws for nonlinear systems under actuation and measurement
errors. While the general formulation of ISS property would involve nonlinear gains,
here we choose to work with linear gains to simplify the presentation. Sampled-data
problems in the deterministic setting, where the objective is to find upper bounds on
the sampling period that guarantee asymptotic stability, employing feedback con-
trollers with aforementioned robustness properties, have been studied in [36]. In
fact, such tools have also been useful in a more general framework where errors in
measurements may result from sources other than sampling (see, e.g., [30]). For our
purposes, the existence of such robust static controllers allows us to compute a lower
bound on the mean sampling rate that solves Problem1.

Proposition 3.1 Assume that there exist κ : Rd → R
m and U : Rd → R�0 such that

(L1), (L2), and (L3) hold. If the sampling process
(
Nt
)

t�0 is Poisson with intensity
λ > 0, then for each λ > 0 and δ ∈ [0, 1[ satisfying

λ > χe + γχx

δα
(12)

the system (7)–(6b) is exponentially stable in the second moment.

Proof Let us define the function V : Rd × R
d → [0,+∞[

V (x, e) = U (x) + βU (e),

where β > 0 is to be specified momentarily. From Proposition2.2 it follows that

LV (x, e) = 〈∇U (x) + β∇U (e), f (x,κ(x − e))〉 − λβU (e)

≤ −αU (x) + γU (e) + βχxU (x) + βχeU (e) − λβU (e).

Pick δ ∈ [0, 1[ and select β = δαχ−1
x . Then for any λ > 0 satisfying (12), there

exists 0 < ε < 1 such that

λβ > χeβ + γ + εα(1 − δ)β

so that

LV (x, e) ≤ −εα(1 − δ)(U (x) + βU (e)) = −εα(1 − δ)V (x, e).

Exponential stability in the secondmoment of the process
(
x(t), e(t)

)
t�0 now follows

from Dynkin’s formula (10). �
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The main point of Proposition3.1 is to show that, for controllers with certain
robustness properties, the sampled-data system with random sampling is exponen-
tially stable with large enough sampling rate, and this is done by using the extended
generator for the controlled Markovian process

(
x(t), e(t)

)
t�0. This result can be

generalized in several ways. Instead of requiring quadratic bounds on the function
U in (L1), if for some α > 0, p � 1, U (x) is lower (respectively, upper) bounded by
α|x |p (resp. α|x |p) for each x ∈ R

n , then exponential stability in pth mean can be
established. Other than the Poisson process, it is also possible to consider a differ-
ent random process to determine the sampling instants. This of course changes the
formula for the extended generator. Another level of generalization arises from intro-
ducing a diffusion term in the system dynamics (1), which would require us to work
with a weaker notion of a solution, and consequently, the assumptions on function
U need to be strengthened to be able to compute the extended generator. Stability
analysis using extended generator for impulsive renewal systems with diffusion term
in the differential equation has been carried out in [23].

So far, we have adopted a general approach to address the control of sampled-
data nonlinear systems. Most of the results in the literature on stabilization with
random sampling have been presented in the context of linear systems, and with the
exception of [23], extended generators have not appeared elsewhere. We now focus
our attention on linear systems: An overview of different approaches is presented and
our eventual goal is to establish equivalence between some of these approaches and
the extended generator approach for the case of Poisson sampling. In the process, we
establish what may be regarded as a converse Lyapunov theorem for (6b)–(7) when
the underlying renewal process

(
Nt
)

t�0 is Poisson with fixed intensity λ > 0.

4 Randomly Sampled Linear Systems: A RandomWalk
Down the History Lane

4.1 System Description

In the remainder of this chapter, we will restrict our attention to randomly sampled-
data control of linear systems described by

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 given, t � 0, (13)

with the input u given by

u(t) = K x(τNt ) for all t � 0,

where the pair (A, B) is assumed to be stabilizable, and the feedback gain K is
assumed to be fixed a priori. With

(
Nt
)

t�0 the sampling process for the above
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control system, the resulting stochastic system for the joint process
(
x(t), e(t)

)
t�0

is described by

(
ẋ(t)
ė(t)

)
=
(

A + BK −BK
A + BK −BK

)(
x(t)
e(t)

)
for almost all t � 0, (14a)

and the reset equation at the sampling times is

(
x(τNt )

e(τNt )

)
=
(

I 0
0 0

)(
x(τ−

Nt
)

e(τ−
Nt

)

)
. (14b)

For this class of systems, lower bounds on the sampling rates required for stability
can be computed more explicitly. Also, this case has been studied in the literature
over several epochs, and we provide an overview of the approaches that have been
used for analyzing the stability of randomly sampled linear systems. To simplify
notation, let us abbreviate the system in (14) as

ẋ = Fx

x(τNt ) = G x(τ−
Nt

)
(15)

where x := (x�, e�)� ∈ R
n and n = 2d.

4.2 Early Efforts

It may appear surprising that the investigations into control of linear sampled-data
control systems under random sampling started as early as the late 1950s. Indeed,
Rudolf Kalman in his Ph.D. dissertation [24] studied sample-and-hold schemes for
linear time-invariant control systems under random sampling. In particular, he stud-
ied several stochastic stability notions for both linear scalar systems and systems of
higher dimensions: the definitions of stability almost surely, stability in the mean,
stability in mean-square, and stability in the mean sampling period appear in his
thesis. It is interesting to note that the key steps in his work were to first understand
the asymptotic behaviour of the process

(
x(τk)

)
k∈N as k → +∞, and thereafter to

derive certain inferences about the continuous-time process
(
x(t)

)
t�0. Only asymp-

totically stable systemmatrices A were considered by Kalman; this peculiar assump-
tionwas perhaps a natural consequence of his proof technique. The operator-theoretic
approach à la extended generators pioneered by Dynkin [16, 17] was relatively less
known at the time of Kalman’s graduation.

About a decade later, Oskar Leneman at MIT published a sequence of short
articles on control of linear time-invariant sample-and-hold systems under random
sampling. Chief among this sequence is [29], where Leneman claimed that certain
calculations in [24] did not quite lead to correct results. He focussed attention on
scalar problems in [29], and derived his results following the same route as that of
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Kalman: first getting estimates of the behavior of the sampled process
(
x(τk)

)
k∈N,

followed by inferring stability of the underlying continuous-time process
(
x(t)

)
t�0

via lengthy calculations involving some integral transform calculus. Once again,
only scalar asymptotically stable systems were considered. Related problems of
stability of linear control systems under random sample-and-hold schemes were
almost concurrently investigated by Harold Kushner and his collaborators [27], and
their techniques were also similar to those in [29]. To the best of our knowledge,
it seems that this early period focussed attention only on open-loop asymptotically
stable systems; even neutrally stable linear systems were perhaps considered too
difficult to handle via these techniques. An admittedly speculative reason for this
may have been that even for Poisson sampling, it was not clear how to deal with
remarkably long holding times (that appear with probability 1) during which the
process may deviate very far away from a given compact set since the right-hand
side of the x-subsystem of (14) is affine in x during the holding times.

To anyone attempting to follow the footprints of Leneman, it is not difficult to
appreciate the tediousness of the calculations involved in transitioning from estimates
of the behavior of the sampled process. (In fact, [29] skips quite a few details and
provides the readers with just the key steps of his proofs.) The first part of deriving
estimates for the sampled process

(
x(τk)

)
k∈N is relatively simple:

Lemma 4.1 Let −∞ < t ′ < t ′′ < +∞. If A ∈ R
d×d , then

∫ t ′′

t ′
et A dt =

(
et ′′ A − et ′ A)

A
,

where the object on the right-hand side is defined by

(
et ′′ A − et ′ A)

A
:=

+∞∑

k=1

(t ′′)k − (t ′)k

k! Ak−1.

Proof On the one hand, if A ∈ R
d×d is non-singular, then (see also [6, p. 47])

∫ t ′′

t ′
et A dt =

∫ t ′′

t ′

+∞∑

k=0

Ak

k! t k dt =
+∞∑

k=0

Ak

(k + 1)!
(
(t ′′)k+1 − (t ′)k+1

)

= A−1(et ′′ A − et ′ A)

=
+∞∑

k=1

(t ′′)k − (t ′)k

k! Ak−1 =
(
et ′′ A − et ′ A)

A
,

where we have carried out the interchange of the summation and the integral under
the shadow of Tonelli’s theorem [15, Theorem4.4.5]. In particular, we observe that
the map

R
d×d � A �→

(
et ′′ A − et ′ A)

A
∈ R

d×d
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is continuous. On the other hand, if A ∈ R
d×d is singular, we pick a sequence

of matrices
(

An
)

n∈N∗ with An := A + εn I and εn ↓ 0, such that each An is non-
singular. (For instance, we employ a similarity transformation to obtain the upper-
triangular complex-Jordan form J of A; the eigenvalues of A are on the diagonal of
J and since A is singular, there is at least one 0 on the diagonal of J ; we pick the
sequence εn ↓ 0 such that J + εn I is nonsingular for each n — this is possible since
the spectrum of A is a finite set.) Since An −−−−→

n→+∞ A, we apply the assertion to the

nonsingular matrix An instead of A, and the general formula follows at once from
continuity. �

To simplify some calculations below, we assume that A ∈ R
d×d is non-singular.

Starting from (13) with a given initial condition x(0), and

u(t) = K x(τi ) whenever t ∈ [τi , τi+1[, i ∈ N, (16)

we arrive at

x(t) =
(
e(t−τi )A + et A A−1(e−τi A − e−t A

)
BK
)

x(τi ) for t ∈ [τi , τi+1[, (17)

or equivalently,

x(t) =
(
e(t−τi )A

(
I + A−1BK

)− A−1BK
)

x(τi ) for all t ∈ [τi , τi+1[. (18)

By continuity of solutions,

x(τi+1) =
(
e(τi+1−τi )A

(
I + A−1BK

)− A−1BK
)

x(τi ),

which is a recursive formula for the states at consecutive sampling instants. Multi-
plying out, for any N ∈ N

∗,

x(τN ) =
N−1∏

i=0

(
e(τi+1−τi )A

(
I + A−1BK

)− A−1BK
)

x(0), (19)

where we remember that the product is directed.
In the scalar case (d = 1), by independence of the holding times,

E
[
x(τN )

∣∣x(0)
] = E

[
N−1∏

i=0

(
e(τi+1−τi )A

(
1 + A−1BK

)− A−1BK
)

x(0)
∣∣x(0)

]

=
N−1∏

i=0

E
[
e(τi+1−τi )A

(
1 + A−1BK

)− A−1BK
]
x(0)
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=
N−1∏

i=0

(
E
[
e(τi+1−τi )A

](
1 + A−1BK

)− A−1BK
)

x(0).

The quantity E[e(τi+1−τi )A] is simply themoment generating functionMS (if it exists)
of (τi+1 − τi ) evaluated at A ∈ R, denoted hereafter by MS(A).3 Therefore,

E
[
x(τN )

∣∣x(0)
] =

N−1∏

i=0

(
MS(A)

(
1 + A−1BK

)− A−1BK
)

x(0).

For convergence of the product on the right-hand side to 0 as N → +∞, it is neces-
sary and sufficient that

|MS(A)(A + BK ) − BK | < |A| , (20)

from which we can immediately arrive at the range of permissible K ’s. The question
of designing stabilizing feedback gains K is addressed in detail in Sect. 6; Merely
assuming that A + BK = A(1 + A−1BK ) is Hurwitz stable may not be enough!

Remark 4.2 (A + BK Hurwitz is necessary for the scalar case) In the scalar case
and an unstable open-loop system (that is, A > 0), if we select the feedback gain
K such that A + BK > 0, then the condition (20) will not be satisfied. Indeed,
MS(A) > 1 for every A > 0 whenever the former exists.

The multidimensional case is similar to the scalar one: by independence of the
holding times,

E
[
x(τN )

∣
∣x(0)

] = E

[
N−1∏

i=0

(
e(τi+1−τi )A

(
I + A−1BK

)− A−1BK
)

x(0)
∣
∣x(0)

]

=
N−1∏

i=0

E
[
e(τi+1−τi )A

(
I + A−1BK

)− A−1BK
]
x(0)

=
N−1∏

i=0

(
E
[
e(τi+1−τi )A

](
I + A−1BK

)− A−1BK
)

x(0).

(21)

The matrix E
[
e(τi+1−τi )A

]
is well defined whenever MS(‖A‖) = E

[
e(τi+1−τi )‖A‖]

exists; this follows from a standard application of the dominated convergence theo-
rem [15, Theorem4.3.5].Now, the necessary and sufficient condition for convergence
of the product on the right-hand side to 0 as N → +∞ is that

3Recall that the moment generating functionMX , if it exists, of a random variable X is the function
R � ξ �→ MX (ξ) := E[eξX ] ∈ R. Themoment generating functionmay only be defined on a subset
of R, of course.



222 A. Tanwani et al.

A−1
(
E
[
e(τi+1−τi )A

]
(A + BK ) − BK

)
is Schur stable. (22)

It is evident that straightforward calculations are enough to arrive at necessary and
sufficient conditions for stability in the mean of the sampled process

(
x(τk)

)
k∈N. A

similar calculation can be carried out for
( ‖x(τk)‖

)
k∈N to arrive at convergence in

mean-square of the process
( ‖x(τk)‖

)
k∈N.

However, the preceding calculations do not shed much light on the inter-sample
behavior of

(
x(t)

)
t�0. The transition from stability of the sampled process to that

of
(
x(t)

)
t�0 is a nontrivial matter. A tiny calculation in this direction is to check

whether the process
(
x(τNt )

)
t�0 is stable, and to this end, our assumption (4) pro-

vides the necessary support, and one concludes that E
[
x(τNt )

∣
∣x(0)

] −−−−→
t→+∞ 0. The

next natural step is to compute E
[
x(t)

∣
∣x(0)

]
for a given time t , and finally to take

the limit (if it exists), as t → +∞. However, at this stage matters start to become
rather tedious and complicated. Indeed, if we proceed as Leneman does in [29], for
the quadratic function R

d � x �→ ϕ(x) := 1
2 〈x, Qx〉 ∈ [0,+∞[ where Q ∈ R

d×d

is some symmetric and positive-definite matrix,

E
[
ϕ
(
x(t))

∣∣x(0)
] = E

[

ϕ
(
x(t)

) +∞∑

k=0

1[τk ,τk+1[(t)
∣∣x(0)

]

=
+∞∑

k=0

E
[
ϕ
(
x(t)

)
1[τk ,τk+1[(t)

∣∣x(0)
]

where the second equality follows by the monotone convergence theorem. Since
1[τk ,τk+1[(t) = 1 if and only if Nt = k and 0 otherwise, each summand on the right-
hand side can be manipulated as

E
[
ϕ
(
x(t)

)
1[τk ,τk+1[(t)

∣∣x(0)
] = P

(
Nt = k

∣∣x(0)
)
E
[
ϕ
(
x(t)

)∣∣x(0), Nt = k
]
.

If the sampling process
(
Nt
)

t�0 is Poisson with intensity λ, we have the expression

P
(
Nt = k

∣∣x(0)
) = e−λt (λt)k

k! since the sampling process is independent of the state
process, but for more general sampling (renewal) processes, such expressions are
difficult to arrive at. Even if

(
Nt
)

t�0 is Poisson-λ, it is still not simple to compute

the second term E
[
ϕ
(
x(t)

)∣∣x(0), Nt = k
]
. Indeed, one would naturally proceed, for

the specific case of ϕ defined above, by employing (19) and then (17) and separating
out terms consisting of terms involving x(τk) and (t − τk). The (quadratic) terms
consisting only of x(τk) can be dealt with as discussed above, and those contain-
ing (t − τk) would need the probability distribution of (t − τk). By all indications,
Leneman’s calculations (which are not explicitly provided in [29]) completed the pre-
ceding steps for the case of d = 1 and asymptotically stable A. It should be evident
that for sampling processes more general than Poisson, this route quickly becomes
intractable.
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4.3 New Generation, Same Problem

Skipping a few decades, we arrive at [31] which presents stability conditions for
several sampling routines, one of which is random sampling. Instead of computing
E
[
ϕ
(
x(t))

∣
∣x(0)

]
exactly, the authors of [31] obtain an upper bound and provide

conditions which make this upper bound converge to zero asymptotically. However,
the conditions given in their main result on random sampling [31, Theorem5] are
seen to hold only for open-loop stable systems. To see this, consider the scalar system

ẋ = ax + u

and by choosing u = κx(τNt ), we consider the system ẋ = Fẋ , where

F :=
(

a + κ −κ
a + κ −κ

)
.

Employing the transformation T = ( 1 0
1 1

)
and defining x = T z, we see that

eFt =
(

(1 − κ/a)eat + κ/a 0
−(1 − κ/a)eat − κ/a 0

)
.

Let

M :=
(
1 0
0 0

)
eFt

(
1 0
0 0

)
=
(

((1 − κ/a)eat + κ/a) 0
0 0

)
.

According to [31, Theorem5], the sufficient condition for asymptotic stability in the
second moment is ∥

∥∥E
[

M
�

M
]∥∥∥ < 1.

However, for Poisson sampling with intensity λ, it is seen that

E
[
((1 − κ/a)eat + κ/a)2

] = λ

∫ +∞

0
((1 − κ/a)eat + κ/a)2e−λt dt

= (1 − κ/a)2
λ

λ − 2a
+ κ2

a2
+ 2(κ/a)(1 − κ/a)

λ

λ − a
.

Note that the term on right-hand side is greater than 1 for each λ > 2a.4 In fact, it is
a decreasing function of λ, and

lim
λ→+∞

E
[
((1 − κ/a)eat + κ/a)2

] = 1.

4The necessity of the condition λ > 2a for scalar linear systems with Poisson sampling is discussed
in Sect. 6.2.
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This shows that, even in such simple cases, we do not get
∥∥
∥E
[

M
�

M
]∥∥
∥ < 1 for

arbitrarily large values of λ. This demonstrates the conservatism in the sufficient
condition proposed in [31, Theorem5], and hence it can be presumed that the problem
of computing E

[
ϕ
(
x(t))

∣∣x(0)
]
did not get a positive response until the first decade

of this century. One positive response to this question has been provided in [4], which
we treat in greater detail in the next section. The authors of [4] provide necessary
and sufficient conditions for mean-square stability of linear systems under random
sampling for a rather general class of random processes. We examine closely and
comment on their main result in Sect. 5.1. The techniques involved in [4] are quite
different from the ones that are mainstream.

Before moving on, we mention a couple of additional references dealing with
random sampling. The article [3] deals with control under random sampling: An
optimal control problem with a quadratic instantaneous cost for linear controlled
diffusions was studied in this particular work, but under the assumption that there
are only finitely many sampling instants. The authors of the recent article [49] also
limited their scope to a Lyapunov stable matrix A.

The preceding efforts involve hands-on calculations that are specific to linear
system models and/or specific (and simple) sampling processes, with the exception
of [4]. The connection between PDMPs and sampled-data control under random
sampling discussed inRemark2.1 immediately opens up the possibility of employing
generator-based ideas in this context; our agenda for the next section will focus on
this connection closely. In particular, we shall demonstrate in Sect. 5.2 that the main
results of [4] can also be derived by employing the extended generator (8).

5 Equivalence of Different Stability Conditions for Linear
PDMPs

Turning our attention to (15), and looking at this joint system with state
x = (x�, e�)�, it is possible to find necessary and sufficient conditions for asymp-
totic stability in secondmoment by computingE

[
ψ
(
x(t))

∣∣x(0)
]
for system (15),with

ψ quadratic in x . This is done in an explicit manner in [4], where the authors use the
recursive Volterra integral equation to compute E

[‖x(t)‖2 ∣∣x(0)
]
. Another tool for

analyzing the stability in second moment for system (15) was already revealed in
Sect. 3 in the form of extended generator. After providing a quick overview of how
E
[‖x(t)‖2 ∣∣x(0)

]
is computed,we show the equivalence between the two approaches,

which essentially establishes a converse Lyapunov theorem for (15) with Poisson
renewal process.
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5.1 Volterra Integral Approach

To analyze stability in second moment for system (15), it is observed that we can
write [4, Proposition6]

E
[
x�(t)Qx(t)

] = x�
0 W (t)x0 (23)

where thematrix-valued function W : [0,+∞[→ R
n×n satisfies theVolterra integral

equation
W (t) = K(W )(t) + H(t), (24)

with H(t) = eF�t QeFte−λt for some positive-definite and symmetric Q ∈ R
n×n , and

λ > 0 being the intensity of the Poisson sampling process
(
Nt
)

t�0 so that the jump

times τNt in (14) have the property that
(
τNt − τNt −1

) ∼ Exp(λ). In (24), the operator
K : C1(R�0;Rn×n) → C1(R�0;Rn×n) is given by

K(W )(t) := λ

∫ t

0
eF�s G�W (t − s)GeFse−λs ds. (25)

Due to (23), stability of (14) can be formulated in terms of the asymptotic properties
of the matrix-valued function W (t). In [4, Theorem3], depending upon the stability
notion under consideration, several conditions are provided which are equivalent
to convergence of W in appropriate norms. For example, conditions for stochastic
stability are equivalent to absolute convergence of

∫ +∞
0 W (s) ds, and the conditions

given for mean-square stability are equivalent to W (t) → 0.

5.2 Connections Between the Extended Generator
and Volterra Integral Techniques

In Sect. 3, we used the extended generator to obtain sufficient conditions for stability
of nonlinear PDMPs. In case of linear systems (14), the same approach can be
adopted while restricting attention to quadratic test functions. Since we now have a
characterization of stability in terms of the function W given in (24), it is natural to
ask whether we can establish necessary conditions for stability in second moment
using the extended generator. To show that these approaches are equivalent for linear
dynamics (15) and Poisson renewal processes, we have the following result.

Theorem 5.1 Consider system (14) with (Nt )t�0 a Poisson process of intensity λ >

0. The following statements are equivalent:

(S1) System (14) is exponentially stable in second moment.



226 A. Tanwani et al.

(S2) There exists a symmetric positive-definite matrix Q ∈ R
n×n such that the

matrix-valued function W satisfying (24), with H(t) = eF�t QeFte−λt , con-
verges to zero exponentially as t → +∞.

(S3) There exists a symmetric, positive- definite matrix P ∈ R
n×n such that

F� P + P F + λ(G� P G − P) < 0. (26)

Ifwe letψ(x) := x� Px , then using the expression forLψ(x, e) in (9), the inequal-
ity (26) is equivalently written as Lψ(x, e) < 0, for each (x, e) ∈ R

d×d . A condition
similar to (26) has also appeared in [5, Theorem7]. Note that the result of Theo-
rem5.1 is of independent interest as it proves a converse Lyapunov theorem for a
class of linear PDMPs which are exponentially stable in second moment. Estab-
lishing converse Lyapunov theorems for stochastic hybrid systems, in general, was
identified as an open problem in [44, Section 8.4, Open Problem4], and Theorem5.1
provides a result in this direction for a particular class of stochastic hybrid systems.
The nontrivial aspect of the proof of Theorem5.1 relies on constructing P using the
expression for W in (24).

Proof The equivalence between (S1) and (S2) follows directly from (23), where the
latter is derived in [4, Proposition6]. In the sequel, we prove the equivalence between
(S2) and (S3), and for our purposes it is useful to recall that, using the properties of
Volterra integral equation, W can be explicitly described by the expression

W (t) :=
+∞∑

j=1

K j (H)(t) + H(t). (27)

Now, let us assume that (S3) holds, and from there we show that there is a matrix Q
such that W satisfying (24), with H(t) = eF�t QeFte−λt , converges to zero as t goes
to infinity. Let P be the symmetric, positive-definite matrix satisfying (26), so there
exists α > 0 such that

F� P + P F + λ(G� PG − P) + αP < 0.

Take Q = P . Multiplying the last inequality by eF�t from left, eFt from right, and
the scalar e−λt , we get

F� H + H F + λ(J − H) < −αH (28)

where we recall that H(t) = eF�t QeFte−λt , and

J (t) := eF�t G� QGeFte−λt .

With this choice of Q and H , let W be the function obtained from solving (27). To
see that W converges to zero exponentially, we need the following lemma:
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Lemma 5.2 For the continuously differentiable matrix-valued function W given in
(27), it holds that

d

dt
W (t) =

+∞∑

j=1

K j (F� H + H F − λH)(t) +
+∞∑

j=0

λK j (J )(t)

+F� H(t) + H(t)F − λH(t). (29)

The proof of this lemma is given in AppendixB. Combined with (28), and using the
expression for W in (27), this lemma immediately yields

Ẇ (t) ≤ −αW (t)

from which the exponential convergence of W follows.
Next, we show that (S2) implies the existence of matrix P such that (S3) holds.

For this implication to hold, the important relation that we need to develop is

d

dt
W (t) = F�W (t) + W (t)F − λW (t) + λG�W (t)G, t � 0. (30)

Indeed, if (30) holds, then by letting,

P := lim
t→+∞

∫ t

0
W (s) ds,

it is seen that

F� P + P F + λ(G� PG − P) = lim
t→+∞

∫ t

0

d

ds
W (s) ds,

= lim
t→+∞ W (t) − W (0)

= −Q

where we used the fact that limt→+∞ W (t) = 0 because of (S2). The limit in the
definition of thematrix P is well-defined because W converges to zero exponentially.
The matrix P is also seen to be symmetric and positive definite. To show this, we
first observe from (27) that, for each s � 0, W (s) is symmetric and W (s) � H(s).
Suppose, ad absurdum, that P is not positive definite; then, there exists x ∈ R

n ,
x �= 0, such that

0 = x� Px = lim
t→+∞

∫ t

0
x�W (s)x ds

� lim
t→+∞

∫ t

0
x� H(s)x ds = lim

t→+∞

∫ t

0
x�es F�

Qes Fe−λs x ds.
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Since Q is positive definite, the last inequality suggests that es F x = 0 for every
s � 0, and hence x = 0; a contradiction.

So, the focus in the remainder of the proof is on proving (30). We already have
an expression for d

dt W in Lemma5.2. To simplify the terms on the right-hand side
of (29), we introduce the following lemma:

Lemma 5.3 For each j � 1, we have

K j (F� H + H F − λH) + λK j−1(J )(t) = λG�K j−1(H)(t)G

+F�K j (H)(t) + K j (H)(t)F − λK j (H)(t). (31)

Again, the proof of this lemma is provided in AppendixB. Combining the statements
of Lemmas5.2 and 5.3, we get

d

dt
W (t) =

+∞∑

j=1

λG�K j−1(H)(t)G + F�K j (H)(t) + K j (H)(t)F − λK j (H)(t)

+F� H(t) + H(t)F − λH(t).
(32)

On the other hand, it follows from the expression for W in (27) that

F�W (t) + W (t)F − λW (t) =
+∞∑

j=1

F�K j (H)(t) + K j (H)(t)F − λK j (H)(t)

+F� H(t) + H(t)F − λH(t).
(33)

Substituting (33) in (32), and using the notation K0 to denote the identity operator,
we get

d

dt
W (t) = F�W (t) + W (t)F − λW (t) + λG�

⎛

⎝
+∞∑

j=1

K j−1(H)(t)

⎞

⎠G.

The desired Eq. (30) now follows by recalling the definition of W from (27). �

5.3 Exponential Stability Under Random Sampling

Now that we have established the necessary and sufficient conditions for stability
of the randomly sampled-data system (14) in Theorem5.1, we can obtain refined
estimates on the mean sampling rate λ for stability in second moment to solve Prob-
lem1. We will only work out the estimates that can be obtained from the statement
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(S3). A direct way to obtain a lower bound on the mean sampling rate is by solving
the inequality (26) in λ and P , for a given K ∈ R

m×d . But, since (26) is a bilinear
matrix inequality, and hence nonconvex, it is difficult to obtain analytical bounds on
λ for feasibility. To overcome this issue, we choose to work with a block diagonal
P and proceed with computing the lower bounds on λ analytically with such P . We
fix K to be any matrix which makes A + BK Hurwitz, and with this assumption,
we show that by choosing λ large enough as a function of the matrices A, B, K , the
resulting system is asymptotically stable in second moment.

Theorem 5.4 Consider the system (14), with
(
Nt
)

t�0 a Poisson process of intensity

λ. Assume that there exist α > 0, a matrix K ∈ R
d×m and a symmetric positive-

definite matrix P ∈ R
d×d satisfying

(A + BK )� P + P(A + BK ) ≤ −αP. (34)

For R
d � y �→ V (y) := 〈y, Py〉, there exist constants C0, C1, such that

for every ρ ∈ ]0,α[, for every λ > ρ + C0 + C1

(α − ρ)
,

for every x(0) ∈ R
d , and for every t � 0

(35)

we have
E
[
V (x(t))

∣∣x(0)
] ≤ V (x(0)) exp (−ρt). (36)

In particular, for all λ > 0 sufficiently large, the closed-loop system (14) is globally
exponentially stable in the second moment.

Remark 5.5 It is seen from the statement of the theorem that, even if we choose the
decay rate ρ to be close to α, it is possible to achieve it by choosing the sampling rate
λ to be sufficiently large. In other words, with faster sampling rates, we approach
the performance of the continuous-time system.

Remark 5.6 In the proof of Theorem5.4, we compute the constants C0 and C1 in
(35) as functions of the matrices A, B, K and P satisfying (34). By letting Ỹ :=
P1/2BK P−1/2, and Ã := P1/2 AP−1/2, it turns out that we can choose

C0 := σmax
(−Ỹ − Ỹ �) and (37a)

C1 := σmax

((
Ỹ � − Ỹ − Ã

)(
Ỹ − Ỹ � − Ã�)

)
, (37b)

where, for a given matrix M , σmax(M) denotes the maximum eigenvalue of a matrix
M . In fact, it is possible to show that the claim of Theorem5.4 holds whenever

λ − ρ > σmax

( 1

α − ρ

(
Ỹ � − Ỹ − Ã

)(
Ỹ − Ỹ � − Ã�)− Ỹ − Ỹ �

)
.
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Corollary 5.7 Let K = −R−1B� P, where R and P are symmetric positive-definite
matrices which satisfy, for some α > 0, the relation

(
A + α

2
I
)�

P + P
(

A + α

2
I
)

− 2P B R−1B� P ≤ 0. (38)

For each ρ ∈ ]0,α[, if λ satisfies (35) with

C0 := 2σmax
(
P1/2B R−1B� P1/2) and

C1 := σmax
(
P1/2 AP−1 A� P1/2

)
,

then (36) holds.

The bounds in Corollary5.7 are obtained by observing that the choice of K =
−R−1B� P leads to Ỹ = Ỹ �, which simplifies the expression for C0 and C1 to some
extent.

Proof of Theorem5.4 We choose a quadratic function ψ : Rd × R
d → R�0 of the

form
(x, e) �→ ψ(x, e) := 〈x, Px x〉 + 〈e, Pee〉 , (39)

where Px and Pe are symmetric positive-definite matrices. Using (9) from Proposi-
tion2.2, we obtain

Lψ(x, e) = 〈(Px + P�
x )x + (Pe + P�

e )e, (A + BK )x − BK e
〉

+ λ (〈x, Px x〉 − 〈e, Pee〉 − 〈x, Px x〉)
= 〈(Pe + P�

e )e, (A + BK )x − BK e
〉

+ 〈(Px + P�
x )x, (A + BK )x − BK e

〉− λ 〈e, Pee〉
= −λ 〈e, Pee〉 + 〈x, Px (A + BK )x + (A + BK )� Px x

〉

− 〈e, (Pe BK + K � B� Pe)e
〉+ 2 〈e, Pe(A + BK )x〉

− 2 〈x, Px BK e〉 .

Letting Px = Pe = P and AK := A + BK , we get

Lψ(x, e)

= −
〈(

x
e

)
,

( −P AK − A�
K P P BK − A�

K P
−P AK + K � B� P λP + P BK + K � B� P

)(
x
e

)〉

≤ −
〈(

x
e

)
,

(
αP P BK − A�

K P
−P AK + K � B� P λP + P BK + K � B� P

)

︸ ︷︷ ︸
=:M(λ)

(
x
e

)〉

.

We next analyze the matrix M(λ) and show that for λ large enough, M(λ) is positive
definite and see how the minimum eigenvalue of M(λ) varies with λ. We first write
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M(λ) as
M(λ) := M0 + M1(λ)

where for a fixed ρ ∈ ]0,α[,
M0 :=

(
ρP 0
0 ρP

)
(40)

and

M1(λ) :=
(

(α − ρ)P P BK − A�
K P

−P AK + K � B� P (λ − ρ)P + P BK + K � B� P

)
.

Using Schur complements [48, §7.4] and introducing the notation Y := P BK it is
seen that

M1(λ) � 0

⇔ (λ − ρ)P + Y + Y � �
(
Y � − Y − P A

)
P−1

(
Y − Y � − A� P

)

α − ρ
.

Let P1/2 denote the positive square root of P . Also, let Ỹ := P1/2BK P−1/2, and
Ã := P1/2 AP−1/2. Then, conjugation by P−1/2 yields

M1(λ) � 0

⇔ (λ − ρ)I + Ỹ + Ỹ � � 1

α − ρ

(
Ỹ � − Ỹ − Ã

)(
Ỹ − Ỹ � − Ã�).

Using Weyl’s inequality [21, Theorem4.3.1], we obtain

σmax

(
1

α − ρ

(
Ỹ � − Ỹ − Ã

)(
Ỹ − Ỹ � − Ã�)− (Ỹ + Ỹ �)

)

≤ σmax

(
1

α − ρ

(
Ỹ � − Ỹ − Ã

)(
Ỹ − Ỹ � − Ã�)

)
+ σmax(−Ỹ − Ỹ �)

= 1

α − ρ
σmax

((
Ỹ � − Ỹ − Ã

)(
Ỹ − Ỹ � − Ã�))+ σmax(−Ỹ − Ỹ �)

=: 1

α − ρ
C1 + C0

where we introduced the constants C0, C1 given in (37). It is now observed that
M1 � 0 for each λ > ρ + C0 + C1/(α − ρ), and hence

Lψ(x, e) ≤ −
〈(

x
e

)
, M0

(
x
e

)〉
= −ρψ(x, e).

The assertion of Theorem5.4 follows. �
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It must be noted that the condition (35) is only sufficient for stability in second
moment because in the notation of (S3) of Theorem5.1, the proof was worked out by

choosing P =
(

P 0
0 P

)
. This choice indeed makes our estimates of λ conservative.

In the next section, we study stability of closed-loop systems for smaller values of λ
by addressing the converse question of designing static feedbacks for linear systems.

6 Converse Question and Feedback Design

In contrast to finding lower bounds on the sampling rate for a given feedback law in
previous sections, we are now interested in designing the feedback laws for a fixed
sampling rate. The problem of interest is thus formalized as follows:

Problem 2 Consider the system (14), with
(
Nt
)

t�0 a Poisson process of intensity

λ. If λ > 0 is given, does there exist a matrix K ∈ R
m×d such that (14) is globally

exponentially stable in second moment?

Preparatory to addressing this problem, we first observe that the search space
for the feedback gain K is constrained by the sampling rate even in the setting of
deterministic sampling—see Sect. 6.1 for the relevant discussion. Moreover, in the
setting of Poisson sampling, there is a lower bound on the sampling rate that must
be satisfied for the expectation to be well defined; see Sect. 6.2 for the corresponding
details. These two observations are then employed to provide a partial answer to
Problem 2.

6.1 Using the Scalar Deterministic Case as a Guideline

Before addressing this question with random sampling, let us have a quick look at
the deterministic sampling case and observe how one would choose a feedback gain
in that case. Consider the scalar system

ẋ(t) = ax(t) + u(t), t � 0,

with a given a > 0. Our objective is to asymptotically stabilize this system at the
origin, and the state measurements are available only periodically at (τi )i∈N∗ ⊂
[0,+∞[, where τi+1 − τi = T for some fixed T > 0; in other words, τn = nT . We
aim to design a controller u(t) = κx(τNt ), with an appropriately chosen κ depending
on the sampling period T . Elementary calculations yield
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x(τi+1) = exp (aT )x(τi ) +
∫ τi+1

τi

exp (a(τi+1 − s))κx(τi ) ds

=
(
exp (aT ) + κ

a

(
exp (aT ) − 1

))
x(τi ),

and for a fixed sampling period T > 0, the closed-loop system is asymptotically
stable if and only if the sequence (x(τn))n∈N∗ converges to 0. The latter holds if and
only if ∣

∣∣exp (aT ) + κ

a

(
exp (aT ) − 1

)∣∣∣ < 1,

or equivalently, if and only if

−a
(exp (aT ) + 1

exp (aT ) − 1

)
< κ < −a.

We observe two key facts:

• The inequality κ < −a is necessary for the stability of the continuous-time
system. The other inequality gives a lower bound on the value of κ, and shows
that for a fixed sampling rate, one can not choose |κ| to be very large.

• On the one hand, as T goes to zero (the case of fast sampling), this lower bound
goes to−∞. On the other hand, as T grows large (the case of slow sampling), this
lower bound approaches−a from below, and the admissible set of the stabilizing
gain κ becomes smaller.

In dimensions larger than 1, the problem of selecting a suitable control gain K
becomes more delicate, as we shall momentarily see.

6.2 Necessary Lower Bounds for the Sampling Rate

We turn our attention back to the system

ẋ(t) = Ax(t) + BK x(τNt ), x(0) given, t � 0, (41)

where we recall that
(
Nt
)

t�0 defined in (3) is a Poisson process of intensity λ which
determines the sampling times. We assume for the sake of simplicity that A is in its
complex-Jordan normal form and that it is non-singular. It can be easily verified that,
for each sample path, and i ∈ N

∗, we have

x(τi+1) = A−1
(
eA(τi+1−τi )

(
A + BK

)− BK
)

x(τi ). (42)
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If the linear system (41) is exponentially stable in the second moment, then the
discrete-time system (42) must also be exponentially stable in the second moment,5

and therefore, there exist [34, Theorem9.4.2] a symmetric positive definite matrix
Pd ∈ R

d×d and γ ∈ [0, 1[ such that for each i ∈ N
∗,

E
[〈x(τi+1), Pdx(τi+1)〉

∣∣x(τi )
] ≤ γE

[〈x(τi ), Pdx(τi )〉
∣∣x(τi )

]
.

With AK := (A + BK ) and P̃d := A−1Pd A−1, time-invariance of the data leads to

A�
KE
[
eS A�

P̃de
S A
]

AK − A�
KE
[
eS A�]

P̃dBK

− (BK )� P̃dE
[
eS A
]

AK + (BK )� P̃dBK ≤ γ AP̃d A,

where S is an exponential random variable with parameter λ. The matrix on the left-

hand side is well defined if and only if E
[
eS A�

P̃deS A
]
and E

[
eS A
]
are well-defined.

The ( j, k)th entry of the matrix E
[
eS A�

P̃deS A
]
is

E

[
d∑

�=1

d∑

m=1

(eS A�
) j�
(
P̃d
)
�m(eS A)mk

]

.

Since eS A is in the block-diagonal form with the eigenvalues of A on the diagonal,
this expectation is of the form E

[
p jk(S)eS(σ j +σk )

]
for 1 ≤ j, k ≤ d, where σ j ,σk

are the j th and kth diagonal entries (eigenvalues) of A, and p jk(·) is a polynomial
of degree at most 2d. This expectation is finite only if λ > �σ j + �σk , and there-

fore, E
[
eS A�

P̃deS A
]
is well-defined whenever λ > 2max{�σ j (A) | j = 1, . . . , d}.

Similarly, E
[
eS A
]
is well-defined only for λ > max{�σ j (A) | j = 1, . . . , d}.

We conclude from this discussion that

λ > 2max{�σ j (A) | j = 1, . . . , d}

is a necessary condition for asymptotic stability in the secondmoment of the sampled
process

(
x(τn)

)
n∈N∗ , and seek to resolve the following conjecture:

Conjecture 6.1 Consider the system (41), where
(
Nt
)

t�0 is a Poisson process of
given intensity λ > 0. For each λ > 2max{�σ j (A) | j = 1, . . . , d}, there exists a
feedback matrix K ∈ R

m×d such that (41) is globally asymptotically stable in the
second moment.

5The definition of exponential stability in the secondmoment for the discrete-time case is analogous
to the continuous-time version that we have quoted above.
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6.3 The Scalar Case with Poisson Sampling

We proceed to verify that the Conjecture6.1 holds in the scalar case.

Proposition 6.2 Conjecture6.1 holds when the system dimension d = 1.

Proof Without loss of generality, we look at the scalar plant

ẋ(t) = ax(t) + u(t)

with a > 0 and are interested in choosing the scalar feedback gain κ such that u(t) =
κx(τNt ), t � 0, results in mean-squared asymptotic stability. Recalling that e(t) =
x(t) − x(τNt ) for t � 0, we pick

ψ(x, e) := px2 + e2

for some p > 0 to be specified later. Using (9), we get

Lψ(x, e) = −
〈(

x
e

)
,

( −2(a + κ)p pκ − (a + κ)

pκ − (a + κ) λ + 2κ

)

︸ ︷︷ ︸
=:M

(
x
e

)〉

.

If we show that there exist p > 0 and κ < 0 such that M is positive definite, our
proof will be complete. Toward this end, we first look at the determinant of M :

det(M) = −2p(a + κ)(λ + 2κ) − (a + κ)2 − p2κ2 + 2pκ(a + κ)

= −(p + 1)2(a + κ)2 + 2p(a + κ)(ap + a − λ) − a2 p2.

Defining θ := −(a + κ), we observe that det(M) > 0 if and only if

(p + 1)2θ2 − 2pθ(ap + a − λ) + a2 p2 < 0.

The left-hand side of the inequality is a convex function of θ, and it attains its global
minimum at

θ∗ = p(λ − a(1 + p))

(p + 1)2
.

It is then readily verified that the value of det(M) with θ = θ∗ is

det(Mθ=θ∗) = p2(λ − a(p + 1))2

(p + 1)2
− a2 p2,

so that det(Mθ=θ∗) > 0 whenever

0 < p <
δ

2a
, where δ := λ − 2a. (43)
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Fixing θ = θ∗ and letting p satisfy (43), we next look at the trace of M :

trace(Mθ=θ∗) = λ − 2a + 2θ∗(p − 1)

= δ + 2p
λ − a(p + 1)

(p + 1)2
(p − 1).

Since trace(Mθ=θ∗) is a continuous function of p and trace(M) = δ > 0when p = 0,
it follows that for p > 0 sufficiently small, it is possible to make both trace(M) and
det(M) strictly positive. The resulting feedback law is

κ = −a − p(2a − δ − a(1 + p))

(p + 1)2
,

with p > 0 chosen such that trace(Mθ=θ∗) > 0. The proof is complete. �

Remark 6.3 In the proof of Proposition6.2 we selected the function ψ from (39)
with Px = p and Pe = 1. An interesting observation is that if we select Px = Pe (as
we did in the proof of Theorem5.4), and λ is fixed, it is not possible to choose a
feedback gain K such that Lψ(x, e) < 0. To see this, we observe again in the scalar
case that by letting px = pe = p,

Lψ(x, e) = −
〈(

x
e

)
,

(−2(a + κ)p −ap
−ap (λ + 2κ)p

)(
x
e

)〉
.

Wecan chooseκ < −a so that both the diagonal terms of thematrix becomenegative,
and by looking at the determinant of the matrix, it is seen that Lψ(x, e) < 0, if and
only if,

2θ(λ − 2a − 2θ) > a2,

where θ = −(a + κ) > 0. For a given value of a, one can find λ > 2a, such that the
foregoing inequality is infeasible, regardless of the values of θ, or κ.

6.4 The Multidimensional Case

We employ the guidelines from the previous subsections to address Conjecture6.1
for systems with dimension greater than 1. As already mentioned, our results here
are not quite complete, and we require an additional assumption on the class of linear
control systems:

Assumption 1 The matrix pair (A, B) is such that, there exist positive-definite
matrices R and P , which solve the algebraic Riccati equation

A� P + P A − 2P B R−1B� P = −αP, (44)
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and (A − B R−1B� P) is Hurwitz. Moreover, the matrix P has the property that for
some C > 0 and p > 2

3 ,

lim
α↓0

σmax(P)

αp
≤ C. (45)

Assumption1 requires that σmax(P) = O(αp) when α ↓ 0. There exist linear
systems that satisfy this Assumption; indeed, consider A and B given by

A =
⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠ , B =
⎛

⎝
1 0
0 0
0 1

⎞

⎠ , (46)

and choose R = 2 I , with I denoting the identity matrix (of appropriate dimension).
Then (44) admits a unique solution P , with (A − B R−1B� P) Hurwitz, and the
(i, j)th entry of P has the form

[P]i j = pi j (α)

1 + α4

where pi j are functions satisfying limα↓0
pi j (α)

α
= 0 when (i, j) �= (3, 3), and for

(i, j) = (3, 3) we have limα↓0
pi j (α)

α
= 3. A crisp characterization of the class of

systems that satisfy Assumption1 is under investigation.

Remark 6.4 System (46) is a particular example of null-controllable systems where
the eigenvalues of A are on the imaginary axis. In general, we do not expect Assump-
tion1 to hold for systems with eigenvalues of A in open right-half complex plane.
This can be seen for the scalar systems ẋ = ax + u, for which the solution of (44)
with R = 1 is p = 2a + α, and clearly (45) holds only with a = 0 for 0 < p ≤ 1.

The followingTheoremprovides a recipe for designing feedback controllers under
Assumption1.

Theorem 6.5 Consider the system (41) where
(
Nt
)

t�0 is a Poisson process of given
intensity λ > 0, and suppose that Assumption1 holds. Then there exists α > 0 (suf-
ficiently small) such that the feedback gain

K = −R−1B� P with P solving(44)

renders the system (41) globally asymptotically stable in the second moment.

Proof of Theorem6.5 For α > 0 we let P denote the solution of (44), and choose

ψ(x, e) := ηe 〈e, Pe〉 + ηx 〈x, Px〉 for (x, e) ∈ R
d × R

d ,

where the positive scalars ηe, ηx will be specified later. The expression in (9) with
the above choice of ψ yields
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Lψ(e, x) = −
〈(

x
e

)
, M(α,λ)

(
x
e

)〉
,

where

M(α,λ) :=
( −ηx (A�

K P + P AK ) ηx P BK − ηe A�
K P

ηx K � B� P − ηe P AK ηe(λP + P BK + K � B� P)

)
,

in which AK = A + BK , and dependence on α is through the matrix P . It follows
that M is positive definite if M0 and M1 are positive definite, where

M0 :=
(

α
2 ηx P −ηe A�

K P
−ηe P AK

λ
2 ηe P

)

M1 :=
(

α
2 ηx P ηx P BK

ηx K � B� P λ
2 ηe P + ηe P BK + ηe K � B� P

)
.

We first treat M0. Using Schur complements [48, §7.4] followed by conjugation
with η

−1/2
e P−1/2, we get

M0 > 0 ⇔ λ

2
I > 2

ηe

ηxα
P1/2(A + BK )P−1(A + BK )� P1/2. (47)

In view of Assumption1, for a p > 2
3 satisfying σmax(P) = O(αp), we pick ε > 0

such that 0 < ε < p − 2
3 , and select ηe, ηx > 0 such that

ηe

ηx
= O(α1+ε). (48)

By lettingα ↓ 0,we see thatσmax(P1/2) = O(αp/2), which also yields that P1/2(A +
BK )P−1(A + BK )� P1/2 = O(1). Thus, the term on the right-hand side of the
inequality (47) is bounded by O(αε). This shows that for α sufficiently small,
M0 > 0.

We next analyze M1. Substituting K = −R−1B� P into M1, using Schur com-
plements [48, §7.4], and conjugating by η

−1/2
e P−1/2, we get

M1 > 0 ⇔
λ

2
I > 2αP1/2B R−1B� P1/2 + 2

ηx

ηeα
P1/2B R−1B� P2B R−1B� P1/2. (49)

Letting α ↓ 0, in view of Assumption 1 we have σmax(P) = O(αp). The first term
on the right-hand side is O(αp+1). For our choice of ηe and ηx in (48), we get

ηx

ηeα
= O(α−2−ε). (50)
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Thisway, the second term on the right-hand side of the inequality (49) is O(α3p−2−ε),
which under the assumption p > 2

3 + ε, converges to zero as α ↓ 0. We conclude
that M1, and hence M = M0 + M1, are positive definite for sufficiently small α > 0.

7 Conclusions

This chapter provided an overview on the problem of stabilization of deterministic
control systems under random sampling. Although the problem was first introduced
almost 60 years ago, the earlier efforts did not createmany inroads. The use ofmodern
tools from the literature on stochastic systems has indeed brought a constructive
solution to this problem. In particular, this chapter provided the solution to this
problem using the extended generator and Volterra integral techniques, and also
developed connections between these two approaches. One particular question that
needs further investigation is the design of feedback laws for fixed sampling rates.
In this direction, Conjecture6.1 is shown to hold for scalar systems and to some
extent for multidimensional systems under a strong assumption. Investigating design
techniques for constructing feedback gains in linear case for given sampling rates is
indeed relevant for several applications.

As it is naturally the case, the problem has been studied with more depth in
the case of linear systems which lead to Theorem5.1 and quantitative estimates in
Theorem5.4. Extending such results for the case when the sampling process in not
necessarily Poisson, but governed by some other distribution needs to be investi-
gated. In general, one can also apply the extended generator approach to the case
where transition rates are state dependent and locally bounded [20], but the stabil-
ity conditions need to be worked out more explicitly for such cases. Another set of
problems that emerges from these results is to develop their analogue counterparts
for nonlinear systems. It is not immediately clear how the Volterra integral technique
used in Theorem5.1 could be generalized in nonlinear setting. Hence, it needs to
be seen whether a converse Lyapunov theorem can be proven for nonlinear PDMPs.
Also, at this moment, Theorem5.4 shows that faster sampling in the limit leads to the
same convergence rate as one obtains for the unsampled system. To extend this line
of thought, we are currently looking into whether for randomly sampled processes,
the expected value of the random variable at each time converges to the value of the
function obtained as a solution to the unsampled process, as the mean sampling rate
grows.

While this chapter addressed the problem of stabilization with random sampling
using static time-invariant state feedback controllers, one can also explore the pos-
sibility of considering dynamic controllers with output feedback. Going beyond the
realm of conventional dynamic controllers, more recently in [45], the authors work
with discontinuous, or hybrid controllers, and consider the effect of random perturba-
tions in communication of discrete and continuous state to the controller. Addressing
similar questions, as the ones confronted in this chapter, for a more general class of
controllers is likely to bring significant contributions to the currently active field of
stochastic hybrid systems [12, 20, 44].
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Appendix

A: Proof of Proposition2.2

Proof The fact that
(
x(t), e(t)

)
t�0 is Markovian follows from the observation that

the future of x(t) depends on x(τNt ) and, therefore, equivalently on e(t).
Let Rd × R

d � (y, z) �→ ψ(y, z) ∈ R denote a function with at most polynomial
growth as ‖(y, z)‖ → +∞. Since the system under consideration is well-posed, we
have, for h > 0 small,

E
[
ψ
(
x(t + h), e(t + h)

)∣∣x(t) = y, e(t) = z
]

= E
[
ψ
(
x(t + h), e(t + h)

)(
1{Nt+h=Nt } + 1{Nt+h=1+Nt }

+ 1{Nt+h−Nt �2}
) ∣∣ x(t), e(t)

]
. (51)

We now compute the conditional probability distribution of
(
x(t + h), e(t + h)

)
for

small h > 0 given
(
x(t), e(t)

)
. Since the sampling process is independent of the joint

process
(
x(τNt ), x(t)

)
t�0, by definition of the sampling (Poisson) process we have,

for h ↓ 0, ⎧
⎪⎨

⎪⎩

P
(
Nt+h − Nt = 0

∣
∣Nt , e(t), x(t)

) = 1 − λh + o(h),

P
(
Nt+h − Nt = 1

∣∣Nt , e(t), x(t)
) = λh + o(h),

P
(
Nt+h − Nt � 2

∣∣Nt , e(t), x(t)
) = o(h).

Using these expressions we develop (51) further for h ↓ 0 as

E
[
ψ
(
x(t + h), e(t + h)

)∣∣x(t) = y, e(t) = z
]

= E
[
ψ
(
x(t + h), e(t + h)

)(
1{Nt+h=Nt } + 1{Nt+h=1+Nt }

) ∣∣ x(t), e(t)
]+ o(h)

= E
[
ψ
(
x(t + h), e(t + h)

)∣∣x(t), e(t), Nt+h = Nt
] · (1 − λh + o(h)

)

+ E
[
ψ
(
x(t + h), e(t + h)

)∣∣x(t), e(t), Nt+h = 1 + Nt
] (

λh
)+ o(h). (52)

The two significant terms on the right-hand side of (52) are now computed separately.
For the event Nt+h = Nt , given x(t) = y, e(t) = z, we have for h ↓ 0,

ψ
(
x(t + h), e(t + h)

) = ψ
(
y, z
)+ h

〈∇yψ
(
y, z
)
, f
(
y,κ
(
x(τNt )

)))〉

+ h
〈∇zψ

(
y, z
)
, f
(
y,κ
(
x(τNt )

)))〉+ o(h),

leading to the first term on the right-hand side of (52) having the estimate
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E
[
ψ
(
x(t + h), e(t + h)

)∣∣Nt+h = Nt , x(t) = y, e(t) = z
] · (1 − λh + o(h)

)

= ψ
(
y, z
)+ h

〈∇yψ
(
y, z
)+ ∇zψ

(
y, z
)
, f
(
y,κ
(
x(τNt )

)))〉

− (λh)ψ
(
y, z
)+ o(h) for h ↓ 0.

Concerning the second term on the right-hand side of (52), we observe that condi-
tional on Nt+h = 1 + Nt , the probability distribution of τNt+h is [39, Theorem2.3.7]
uniform over [t, t + h[ by definition of the sampling (Poisson) process, i.e.,

P
(
τNt+h ∈ [s, s + s ′[∣∣Nt+h = 1 + Nt

) = 1

h
s ′ for [s, s + s ′[ ⊂ [t, t + h[.

Since the sampling process is independent of the state process, the preceding condi-
tional probability is equal to

P
(
τNt+h ∈ [s, s + s ′[∣∣Nt+h = 1 + Nt , x(t) = y, e(t) = z

)
.

Wedefine θ ∈ [0, 1[ such that τNt+h = t + θh, x(t) = y, e(t) = z; then θ is uniformly
distributed on [0, 1[ given Nt+h = 1 + Nt . We also have, conditioned on the same
event,

e(τNt+h ) = e(t + θh) = 0,

and
x(τNt+h ) = x(t + θh) = x(t) + θh f

(
x(t),κ

(
x(τNt )

)))+ o(h).

The above expressions then lead to, conditioned on the event Nt+h = 1 + Nt , x(t) =
y, e(t) = z and for h ↓ 0,

x(t + h) = x(t + θh) + (1 − θ)h f
(
x(t + θh),κ(x(t + θh))

)+ o(h)

= x(t) + θh f
(
x(t),κ

(
x(τNt )

)))+ (1 − θ)h f
(
x(t + θh),κ(x(t + θh))

)+ o(h)

= x(t) + θh f
(
x(t),κ

(
x(τNt )

)))+ (1 − θ)h f
(
x(t),κ(x(t))

)+ o(h).

Similarly, it can be verified directly from the differential equation governing e that
conditioned on the same event,

e(t + h) = (1 − θ)h f (x(t),κ(x(t))) + o(h) for h0.

Therefore, for h ↓ 0,

E
[
ψ
(
x(t + h), e(t + h)

)∣∣x(t) = y, e(t) = z, Nt+h = 1 + Nt
] · (λh)

=
∫ 1

0
ψ
(

y + θh f
(
x(t),κ

(
x(τNt )

)))+ (1 − θ)h f
(
x(t),κ(x(t))

)+ o(h),

(1 − θ)h f
(
x(t),κ(x(t))

)+ o(h)
)
dθ · (λh)
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=
∫ 1

0

(
ψ
(
y, 0
)+ h

〈∇yψ
(
y, 0
)
, θh f

(
x(t),κ

(
x(τNt )

)))+ (1 − θ)h f
(
x(t), k(x(t), 0)

〉

+ h
〈∇zψ

(
y, 0
)
, (1 − θ)h f

(
x(t),κ(x(t))

)〉+ o(h)

)
dθ · (λh)

=
(
ψ
(
y, 0
)+ O(h)

)
· (λh)

= (λh)ψ
(
y, 0
)+ o(h).

Putting everything together, we arrive at

Eψ
(
x(t + h), e(t + h)

)∣∣x(t) = y, e(t) = z

= ψ(y, z) + h
(〈∇yψ(y, z) + ∇zψ(y, z), f

(
y,κ
(
y − z

))〉)

− (λh)
(
ψ(y, z) − ψ(y, 0)

)+ o(h).

Substituting these expressions in (8), we see that for each (y, z) ∈ R
d × R

d ,

Lψ(y, z) = 〈∇yψ(y, z) + ∇zψ(y, z), f
(
y,κ
(
y − z)

))〉

− λ
(
ψ(y, z) − ψ(y, 0)

)
,

as asserted. �

B: Proofs of Lemmas5.2 and 5.3

Proof of Lemma5.2 The desired expression for d
dt W (t) is obtained by differentiating

W (t) =
+∞∑

j=0

K j (H)(t)

where we recall that K is given in (25) and K0 is the identity operator. To do so,
we basically compute d

dt K j (H)(t) for each j � 0. SinceK0(H)(t) = H(t), we first
observe that

d

dt
H(t) = F� H(t) + H(t)F − λH(t).

Similarly, we compute

d

dt
K(H)(t) = λet F�

G�(H)(0)Get Fe−λt

+ λ

∫ t

0
es F�

G�
(
d

dt
H(t − s)

)
Ges Fe−λs ds

= λJ (t) + K(F� H + H F − λH)(t).
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Next, to compute d
dt K j (H)(t), for j � 2, we use the induction principle. Let us

assume that, for some j � 2,

d

dt
K j−1(H)(t) = λK j−2(J )(t) + K j−1(F� H + H F − λH)(t).

It then follows that

d

dt
K j (H)(t) = λet F�

G�K j−1(H)(0)Get Fe−λt

+ λ

∫ t

0
es F�

G� d

dt
K j−1(H)(t − s)Ges Fe−λs ds

= λK j−1(J )(t) + K j (F� H + H F − λH)(t).

Using this last expression and recalling the definition of W from (27), we obtain

d

dt
W (t) =

+∞∑

j=1

K j (F�H + H F + λ(J − H))(t) + (F�H + H F + λ(J − H))(t),

which is the desired statement. �
Proof of Lemma5.3 We first verify the desired expression (31) for j = 1. It is seen
that

λJ (t) − λG� H(t)G = λeF�t G� QGeFte−λt − λG� H(t)G

= λ

∫ t

0

∂

∂s

(
eF�s G� H(t − s)GeFse−λs

)
ds

= F�K(H)(t) + K(H)(t)F − λK(H)(t)

+ λ

∫ t

0

(
eF�s G� ∂

∂s
H(t − s)GeFse−λs

)
ds

= F�K(H)(t) + K(H)(t)F − λK(H)(t)

− K(F� H + H F − λH)(t),

and hence (31) holds for j = 1.
Proceeding by induction, we assume that for some j � 1

F�K j (H)(t) + K j (H)(t)F − λK j (H)(t) = −λG�K j−1(H)(t)G

+K j (F� H + H F − λH) + λK j−1(J )(t). (53)

We then observe that

− λG�K j (H(t))G = λ

∫ t

0

∂

∂s j

(
eF�s j G�K j (H)(t − s j )GeFs j e−λs j

)
ds j (54)
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because K j (H)(0) = 0 for each j � 1. To compute the expression in the integrand
on the right-hand side, we observe that

∂

∂s j
K j (H)(t − s j ) = −λK j−1(J )(t − s j ) − K j (F� H + H F − λH)(t − s j ),

which results in

∂

∂s j

(
eF�s j G�K j (H)(t − s j )GeFs j e−λs j

)
ds j

= −λeF�s j G�K j−1(J )(t − s)GeFs j e−λs j

− eF�s j G�K j (F� H + H F − λH)(t − s j )GeFs j e−λs j

+ F�(eF�s j G�K j (H)(t − s j )GeFs j e−λs j )

+ (eF�s j G�K j (H)(t − s j )GeFs j e−λs j )F

− λ(eF�s j G�K j (H)(t − s j )GeFs j e−λs j ).

Substituting this last equality in (53), we get

λK j (J (t)) − λG�K j (H(t))G = F�K j+1(H)(t) + K j+1(H)(t)F − λK j+1(H)(t)

− K j+1(F� H + H F − λH)(t),

and the assertion follows. �
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