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SUMMARY

This work addresses the problem of stabilizing uncertain systems with quantized outputs using the super-
visory control framework, in which a finite family of candidate controllers is employed together with an
estimator-based switching logic to select the active controller at every time. For static quantizers, we provide
a relationship between the quantization range and the quantization error bound that guarantees closed-loop
stability. Such a condition also implies a lower bound on the number of information bits needed to guaran-
tee stability of a supervisory control scheme with quantized information. For dynamic quantizers that can
vary the quantization parameters in real time, we show that the closed loop can be asymptotically stabilized,
provided that additional conditions on the quantization range and the quantization error bound are satisfied.
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1. INTRODUCTION

Control with limited information has attracted growing interest in the control research community
lately, largely motivated by the control over networks paradigm. Unlike the classical control setting
in which signals take values in a continuum and are available at every time, in networked control
systems, information is limited in the sense that control and sensor signals are quantized/digitized
before being sent over a communication channel, the information is only available at a certain rate
and with delay, and there is a possibility of information loss during data transmission (see, e.g., [1]
for a recent survey on networked control systems). In this paper, we focus on the scenario where
the system output is quantized, which is frequently considered in the literature as a way to model
communication constraints or limited sensing capabilities.

Most of the work concerning control with limited information deals with known plants (see the
references in [1,2]), and recently, work on the control of uncertain systems with limited information
has been started [3]. While there are several aspects in control with limited information as outlined
in the previous paragraph, dealing with both plant uncertainty and limited information at the same
time is rather challenging. As a first step, we treat limited information as quantization only, and fur-
ther, to make the problem manageable, we consider output quantization only (no input quantization
can be thought of as the controller and the plant being co-located). Quantized control systems with
known plants have been considered, for example, in [4–8]. In this paper, we consider the problem
of stabilizing uncertain systems with output quantization. A similar problem, adaptive control with
quantized input, has recently been studied by Hayakawa et al. in [3], where the authors provided a
solution using a (static) logarithmic quantizer and a Lyapunov-based adaptive algorithm. Here, we
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740 L. VU AND D. LIBERZON

consider output quantization. We use a different type of quantizers in a more general setting (the
quantizer is characterized only by the quantization error bound and the quantization range without
any specific structure) and a different adaptive control tool, namely supervisory control [9, 10]. We
will cover the supervisory control framework in Section 3 (see also, e.g., [11, Chapter 6] and the
references therein for further background on supervisory control and [12] for discussions on the
advantages and the drawbacks of supervisory control compared with other adaptive schemes).

For static quantizers, we want to find a relationship between the quantization range and the quan-
tization error bound to guarantee closed-loop stability. While it has been shown [10, Proposition 6;
17] that supervisory control is robust to measurement noise, extending this result to quantization is
far from trivial because one needs to ensure that the information to be quantized does not exceed the
quantization range. In this work, we give such a condition on the quantizer parameters with respect
to the supervisory control scheme’s design parameters to guarantee closed-loop stability.

To achieve asymptotic stability, we utilize the dynamic quantizers as in [13, 14], which have the
capability of varying the quantization parameters in real time (in particular, the quantizer can zoom
in and zoom out while keeping the number of alphabets fixed). In [13, 14], the authors have applied
dynamic quantization to asymptotically stabilize known plants (see also [15] for performance anal-
ysis of dynamic quantization). We will show that the dynamic quantizer can also be used with
unknown plants, in conjunction with supervisory control, to achieve asymptotic stability.

The contribution of our work is that we provide a new solution to the problem of stabilizing
uncertain systems with quantized information using supervisory control and dynamic quantization.
The implication of our work, in the context of control of uncertain systems and in addition to [3],
is that to deal with plants with parametric uncertainty, one does not need sensors and actuators with
infinite granularity and can use quantized information with finite, and possibly limited, bit rates in
combination with an adaptive control scheme (which is supervisory control in our case). Moreover,
asymptotic stability can be achieved with dynamic quantizers with finite quantization levels, which
is different from and complements the logarithmic quantizers with infinite levels of quantization
considered in [3].

The paper is organized as follows: In Section 2, we present the quantized control system. In
Section 3, we present a supervisory control scheme for the quantized control system in Section 2,
assuming that the parameter set is finite. In Section 4, we provide conditions for the quantizer’s range
and error bound in terms of the supervisory control design parameters in order to guarantee stability
and asymptotic stability of the closed-loop system. In Section 5, we extend the results in Section 4 to
the case with unmodeled dynamics. In Section 6, we discuss the case of continuum uncertainty sets.
We provide an illustrative example with the discussion in Section 7. We also provide in Section 8 a
discussion on the methodology to extend the results for linear plants in Section 4 to nonlinear ones,
using the input-to-state stability (ISS) framework. Finally, in Section 9, we conclude and discuss
future work.

2. QUANTIZED CONTROL SYSTEM

Consider an uncertain linear plant �.p/ parameterized by a parameter p and the true but unknown
parameter denoted by p�:

�.p�/ W

�
Px D Ap�xCBp�u

y D Cp�x,
(1)

where x 2 Rnx is the state, u 2 Rnu is the input, and y 2 Rny is the output. The parameter
p� 2Rnp belongs to a known finite set P WD fp1, : : : ,pmg, where m is the cardinality of P .

Assumption 1
.Ap ,Bp/ is stabilizable and .Ap ,Cp/ is detectable for every p 2 P .

A (static) quantizer is a map Q W Rny ! fq1, : : : , qN g, where q1, : : : , qN 2 Rny are quan-
tization points, and Q has the following properties: (1) jyj 6 M ) jQ.y/ � yj 6 � and (2)
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Figure 1. Quantized closed-loop system.

jyj > M ) jQ.y/j > M ��, where j � j denotes the Euclidean norm. The numbers M and � are
known as the range and the error bound of the quantizer Q. A dynamic quantizer Q� , having an
additional parameter � which can be changed over time, is defined as

Q�.y/ WD �Q.y=�/, (2)

where Q is a static quantizer with the range M and the error bound �. From the property (1) of the
quantizer, we have

jyj6 �M ) jQ�.y/� yj6 ��. (3)

The parameter � is known as a zooming variable: increasing � corresponds to zooming out and
essentially obtaining a new quantizer with a larger range and quantization error, whereas decreasing
� corresponds to zooming in and obtaining not only a quantizer with a smaller range but also a
smaller quantization error.

Remark 1
Similarly to the setting in the work [14], here we consider a very broad class of quantizers, which
is more general than the common bit digitizer, such as the q-bit quantizer Q.y/ D by � 2qc=2q .
We do not require the quantized values to be evenly spaced. The quantizer considered here can
be further relaxed by not requiring that the quantizer’s value mapping is fixed. For the same value
y, the value Q.y/ can be different at different times, as long as (3) holds. An example of such a
quantizer is Q.y, t / D byc if t 2 ŒkT , kT C T=2/ and jy.t/j 6 M , and Q.y, t / D byc C 1 if
t 2 ŒkT C T=2, kT C T / and jy.t/j 6 M , where k D 0, 1, : : : and T > 0, and Q.y, t / D M if
jy.t/j>M .

The quantized control system is depicted in Figure 1.
Assuming that the plant is unstable, the objective is to asymptotically stabilize the plant while the

information available to the controller is Q�.y/ instead of y. With a static quantizer, we would only
achieve practical stability but we will later show that one can indeed achieve closed-loop asymptotic
stability with dynamic quantization.

3. QUANTIZED SUPERVISORY CONTROL

Supervisory control [9, 12] employs multiple candidate controllers, and the choice of which con-
troller to connect to the plant is orchestrated by an estimator-based supervisor (see Figure 2 for
an illustration of the idea and for more detailed background on supervisory control, see, e.g.,
[11, Chapter 6] or [12] and the references therein).

We present one particular design of supervisory control for the linear plant (1), in which the con-
trollers are state feedback and utilize the multi-estimator’s state (more subsequent details). One can
also have more general forms of dynamic controllers which do not use the multi-estimator state, pro-
vided that the multi-controller and the multi-estimator combination (known as the injected system,
see (9) for more details) satisfy certain conditions [10].
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Figure 2. The supervisory control framework.

� The multi-estimator: A multi-estimator is a collection of dynamics, one for each fixed parame-
ter p 2 P . The multi-estimator takes in the input u and produces a bank of outputs yp ,p 2 P .
In this work, we use the following multi-estimator, whose state is xE D .xT1 , : : : , xTm/

T and
whose dynamics are

Pxp D Apxp CBpuCLp.yp �Q�.y//, (4)

yp D Cpxp , p 2 P ,

where Lp is such that Ap CLpCp is Hurwitz for every p 2 P . Let Qyp WD yp �Q�.y/ be the
output estimation errors with respect to the quantized output, Nye WD y � Q�.y/ be the actual
output quantization error, and Qxp WD xp � x be the state estimation errors. The multi-estimator
has the following property: there is Op 2 P such that

j Qx Op.t/j6 cee��e.t�t0/j Qx Op.t0/j C �e
Z t

0

e��e.t�s/j Nye.s/jds (5a)

jy Op � yj6 kcj Qx Opj (5b)

for all t > t0, for all u, for some ce > 1, f�e ,�eg > 0, and kc WD maxp2P jCpj. This property
is known as the matching property in supervisory control. The matching property (5a) is sat-
isfied with Op D p� because yp� � y D Cp�.xp� � x/ and because the dynamics of Qxp� are
.d=dt / Qxp� D .Ap�CLp�Cp�/ Qxp�CLp� Nye , where Ap�CLp�Cp� is Hurwitz by design. We
do not know Op but �e , ce , and �e can be calculated as �e WDminp2P �p , ce WDmaxp2P cp and
ge WDmaxp2P jLpjce , where cp and �p are such that je.ApCLpCp/t j6 cpe��pt for all t > 0.
� The multi-controller: A family of candidate feedback gains fKpg is designed such that
Ap CBpKp is Hurwitz for every p 2 P . Then the family of candidate controllers is

up DKpxp p 2 P . (6)

� The monitoring signals: The monitoring signals �p ,p 2 P are the exponentially weighted
norm of the output estimation errors plus an offset ":

�p D "C

Z t

0

e��.t��/� j Qyp.�/jd� (7)

for some design parameters f� , ",�g > 0. The monitoring signals can be implemented as the
outputs of the filter �=.sC �/ with the inputs j Qypj plus the offset ".
� The switching logic: A switching logic produces a switching signal that indicates at every time

the active controller. In this paper, we use the scale-independent hysteresis switching logic [16]:

	.t/WD

8̂<
:̂

argmin
q2P

�q.t/ if 9 q 2 P such that

.1Ch/�q.t/6��.t�/.t/,
	.t�/ else,

(8)

where h > 0 is a hysteresis constant and h is a design parameter.
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Overall, the control signal applied to the plant is

u.t/D u� .t/ WDK�.t/x�.t/.t/,

where 	 is generated by (8).

3.1. Design parameters

The design parameters � , ",�, and h are chosen in the following way. First, one constructs the so-
called injected systems by combining a fixed candidate controller with the multi-estimator, where
the injected system with index q is�

Pxq D .Aq CBqKq/xq CLq Qyq ,
Pxp D .Ap CLpCp/xp CBpKpxq �LpCqxq CLp Qyq , p ¤ q.

(9)

The injected system captures the switching mechanism of the closed-loop system (where the vari-
able q will be switching among the index set P) and plays a pivotal role in the analysis later (see,
e.g., [12] for more details on inject systems in switched system analysis). The foregoing dynamics
take the form

PxE D AqxECBq Qyq , (10)

where the definitions of Aq and Bq are obvious from (9) (see Appendix A for the explicit for-
mula of Aq and Bq). It is clear from (9) that if Qyq D 0, then xq! 0 by and then all xp! 0 for
all p, which means that Aq is Hurwitz (because the system is linear). Because Ap is Hurwitz for
all p, there exists a family of quadratic Lyapunov functions Vp.xE/D xTEPpxE, P Tp D Pp > 0,
xE D .x

T
1 , : : : , xTp /

T , p 2 P , such that

ajxEj
2 6 Vp.xE/6 ajxEj2 (11a)

@Vp.xE/

@x
.ApxECBp Qyp/6 �2�0Vp.xE/C �0j Qypj2 (11b)

for some constants fa, a,�0, �0g > 0 (the existence of such common constants for the family of
Lyapunov functions is guaranteed because P is finite). There exists a number �V > 1 such that

Vq.x/6 �V Vp.x/ 8x 2Rn,8p, q 2 P . (12)

We can always pick �V D a=a but there may be other smaller �V satisfying (12) (for example,
�V D 1 if Vp is the same for all p even though a=a > 1).

Now, the design parameters � , ", �, and h are chosen such that

0 < � < �0, (13)

ln.1C h/

�m
> ln�V
2.�0 � �/

, (14)

where �0 is as in (11b) and �V is as in (12).

4. STABILITY OF SUPERVISORY CONTROL WITH QUANTIZATION

4.1. Static quantization

The following theorem deals with the case where the quantizer is static (i.e., the zooming variable
� in Q� is a constant).

Theorem 1
Consider the uncertain system (1) with static output quantization, where the quantizer is as in (2)
with a fixed �, and with the supervisory control scheme described in Section 3. Suppose that the
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design parameters satisfy (13) and (14). Let " D 
e�� for some 
e > 0. Suppose that at the initial
time t0, jxE.t0/j 6 
0��, j Qxp.t0/j 6 
1�� for all p 2 P , and j� Op.t0/j 6 
2�� for some constants
f
0, 
1g> 0 and 
2 > 
e . There exist constants 
 > kc.
0C 
1/ and 
x > �e=�e such that if


� <M , (15)

then all the closed-loop signals are bounded, and for every �x > 0, 9T <1 such that

jx.t/j6 
x��C �x�� 8t > t0C T . (16)

Proof
Let Tmax WD supft 2 Œt0,1/ W jy.t/j 6 �M g. At time t0, in view of y D y � yp C yp and of
the bounds on jxp.t0/j and j Qxp.t0/j, we have jy.t0/j 6 kc
1��C kc
0�� < 
�� < �M and so,
Tmax > t0.

Boundedness of a monitoring signal

From the definition of �p in (7), for arbitrary t0 > 0, we have

�p.t/D .1� e
��.t�t0//"C e��.t�t0/�p.t0/C �

Z t

t0

e��.t�s/j Qyp.s/jds 8p 2 P , t > t0. (17)

From the property (3) of a quantizer, we have

j Nye.s/j D jy.s/�Q�.y.s//j6 �� 8s 2 Œt0,Tmax/. (18)

Because Qy Op D y Op � y C Nye , from (5) and (18), we obtain

j Qy Op.s/j6 kccee��e.s�t0/j Qx Op.t0/j C .1C kc�e=�e/�� 8s 2 Œt0,Tmax/. (19)

From (17) and (19), we obtain that 8t 2 Œt0,Tmax/,

� Op.t/6 "C e��.t�t0/.� Op.t0/� "/C �kccefe.t � t0/j Qx Op.t0/j C a3��DW N� Op.t � t0/, (20)

where a3 WD .1C kc�e=�e/�=�, and

fe.t � t0/ WD

Z t

t0

e��.t�s/e��e.s�t0/ds D

(
.e��e.t�t0/ � e��.t�t0//=.�� �e/ if �¤ 2�e
e��.t�t0/.t � t0/ if �D 2�e .

(21)
The function fe is decreasing, and fe.0/ D 1 and limt!1 fe.t/ D 0. For notational conve-

nience, denote by LŒb, a� W Œ0,1/ ! Œa, b� the class of functions such that if f 2 LŒa, b�,
then f .0/ D a and limt!1 f .t/ D b. Using this notation, fe 2 LŒ1, 0�. It follows that the
upper bound on the monitoring signal, the signal N� Op , with the nominal index Op satisfies N� Op 2
LŒ.
2C �kcce
1C a3/��, .
e C a3/���, in view of � Op.t0/6 
2�� and j Qx Op.t0/j6 
1��.

The switched injected system

(1) The switching signal 	 : The hysteresis switching lemma [10, Lemma 1] (see also [17,
Lemma 4.2]) with the scaled signals N�p.t/D e�t�p.t/, gives

N� .t , t0/6N0C
t � t0

�a
, (22)

where N� .t , t0/ is the number of switches in .t0, t �, and

N0 WDmC
m

ln.1C h/
ln.sup

t>0
� Op.t/="/ (23a)

�a WD ln.1C h/=.m�/. (23b)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2012; 26:739–756
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From (20) and (23a), in view of N� Op 2 LŒ.
2C �kcce
1C a3/��, .
e C a3/��� and the fact
that "D 
e��, we obtain

N0 WDmC
m

ln.1C h/
ln..
2C �kcce
1C a3/=
e/.

Because N0 is bounded, the switching signal 	 on the interval .t0,Tmax/ is an average
dwell-time switching signal with the average dwell time �a.

(2) The exponentially weighted integral norm of Qy� : Also, from the hysteresis switching lemma,
we have

N� .t ,t0/X
kD0

N��.tk/.tkC1/� N��.tk/.tk/6m..1C h/ N�`.t/�min
p2P
N�p.t0//, (24)

where tk is the switching times in .t0, t /. From (17), we obtain N�p.t/D e�t"�e�t0"Ce�t0�p.t0/CR t
t0
e�s� j Qyp.s/jds. We then have

N� .t ,t0/X
kD0

N��.tk/.tkC1/� N��.tk/.tk/>
N� .t ,t0/X
kD0

Z tkC1

t0

e�s� j Qy�.tk/.s/jds�
Z tk

t0

e�s� j Qy�.tk/.s/jds

D �

Z t

t0

e�sj Qy�.s/.s/jds.

Dividing both sides of the foregoing inequality by �e�t and then combining with (24), we obtain
the following inequality for the exponentially weighted integral norm of Qy� :Z t

t0

e��.t��/j Qy� .�/jd� 6
m.1C h/

�
�q.t/ 8q 2 P . (25)

Because the subsystems of the switched injected system are stable and because the condition
and (14) hold (the switching is slow enough), we have that ([10, Corollary 4]; see also [17,
Theorem 3.1])

jxE.t/j
2 6 .a=a/�1CN0V jxE.t0/j

2e�2�.t�t0/C
1

a
�
1CN0
V �0

Z t

t0

e�2�.t��/j Qy� .�/j
2d� 8t 2 Œt0,Tmax/,

(26)
because the design parameters satisfy (13) and (14) and the switching signal has the average dwell
time �a as in (23b). Using the Cauchy–Schwartz inequality

R
f 2.s/ds 6

�R
f .s/ds

�2
, we obtain

from (20) and (26):

jxE.t/j
2 6 c1jxE.t0/j2e�2�.t�t0/Cc2 N�2Op.t � t0/ 8t 2 Œt0,Tmax/, (27)

where c1 WD �
1CN0
V a=a, c2 WD �

1CN0
V .m.1C h/=�/2.�0=a/, and N� Op is as in (20).

The condition on M and �

From (27), in view of jxE.t0/j 6 
0�� and N� Op 2 LŒ.
2 C �kcce
1 C a3/��, .
e C a3/���, using
the fact that a2C b2 6 .aC b/2 for all fa, bg> 0, we have

jxE.t/j
2 6 .
p
c1
0C

p
c2.
2C �kcce
1C a3//

2�2�2 DW Nx2 8t 2 Œt0,Tmax/. (28)

Because y D y Op C .y � y Op/, in view of jy Opj6 kCp�kjxE.t/j6 kc Nx, from (5) and (28), we have

jy.t/j6 kc NxC kcce
1��C kc�e=�e��DW 
��, (29)

where 
 WD .kc
p
c1
0Ckc

p
c2.
2C�kcce
1Ca3/Ckcce
1Ckc�e=�e . Clearly, 
 > kc.
1C
0/

because ce > 1 and c1 > 1. Because �M > 
�� by the hypothesis of the theorem, from (29) and
the definition of Tmax, we must have Tmax D1.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2012; 26:739–756
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Ultimate boundedness of the plant state

Let �x > 0 be arbitrary. From (27), we have that

jxE.t/j6
p
c2.
e C a3/��C .�x=2/�� 8t > t0C T1, (30)

where T1 is such that
p
c1
0e

��T1 C
p
c2e
��T1
2C

p
c2�cefe.T1/ Ny0
1 6 �x=2. (31)

Such T1 always exists because the left-hand side of the foregoing inequality goes to 0 as T1!1.
Let T2 > 0 be such that

ce
1e
��eT2 6 �x=2. (32)

Then j Qxp.t/j 6 .�e=�e/�� C .�x=2/�� for all t > T2. Let T WD maxfT1,T2g. In view of
x D Qx Op C x Op , it follows that

jx.t/j6pc2.
e C a3/��C .�e=�e/��C �x��DW 
x��C �x�� 8t > t0C T . (33)

�

Remark 2
The condition (15) onM and� implies a lower bound on the number of quantization bits. Suppose
that each component of x has the same range M and is equally quantized into 2nQ regions using
nQ quantization bits. Then in Rn, � D

p
nM=2nQC1. Then the condition (15) implies that

nQ > log2d
p
n
e � 1, which is the lower bound on the number of bits needed.

4.2. Dynamic quantization

If one has state contraction at time T , then asymptotic stability can be achieved by using a dynamic
quantizer, varying the zooming variable � as well as the parameter " in the supervisory control
scheme as xE becomes closer to the origin. Unlike the case of known plants [14] where one only
needs to worry about the contraction of the plant state x, here one needs to take into account the
asymptotic behavior of other state variables coming from the supervisory control scheme such as
�p and Qyp . The following result says that using a dynamic quantizer together with a synchronously
scaling ", we can achieve closed-loop asymptotic stability.

Theorem 2
Consider the uncertain system (1) with static output quantization, where the quantizer is as in (2),
and with the supervisory control scheme described in Section 3. Suppose that the design parameters
satisfy (13) and (14). Let ".t/D 
e�.t/� for some 
e > 0 and suppose that � be a periodic scaling
signal with period Ts and the scaling factor 
 such that

�.t/ WD

(
�.kTs/ if t 2 ŒkTs , .kC 1/Ts/

k D 0, 1, : : : .

�.kTs/ if t D .kC 1/Ts ,

(34)

Suppose that at the initial time t0, jxE.t0/j < 
0�.t0/�, j Qxp.t0/j 6 
1�.t0/� for all p 2 P and
j� Op.t0/j 6 
2�.t0/� for some constants f
1, 
2g > 0. Let the constants f
, 
xg > 0 be as in
Theorem 1 and suppose that (15) holds. If further,


x � �e=�e < 
0, (35a)

�e=�e < 
1, (35b)


e C .1C kc�e=�e/.�=�/ < 
2, (35c)

then one can find the scaling factor 
 2 .0, 1/ and the period Ts < 1 for the zooming variable �
such that the plant state jx.t/j ! 0 as t !1, and that all the closed-loop signals are bounded.
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Proof
Pick 
 2 .0, 1/ such that


 >

�

x � �e=�e C �s


0
,
�e=�e C �x


1
,

e C .1C kc�e=�e/.�=�/C �s


2

�

for some �s > 0. The existence of such a constant 
 is guaranteed by the condition (35).
Let T1 be as in (31) where �x D 2�s . Let T2 and T3 be such that

ce
1e
��eT2 6 �s (36)

e��T
0
3
2C �kccefe.T

0
3/
1 6 �s (37)

Let Ts WDmaxfT1,Ts ,T3g. In Œt0,Ts/, � is constant and so,

jxE.t/j6 .
p
c2.
e C a3/C �s/�.t0/�D .
x � �e=�e C �s/�� < 
0
�.t0/� (38)

j Qx Opj6 .�e=�e C �s/�� < 
1
�.t0/� (39)

� Op.t/6 .
e C a3C �s/�� < 
2
�.t0/� (40)

for all t > t0CT . Therefore, if we reduce � by a factor of 
 at the time t0CTs , �.t0CTs/D 
�.t0/,
then (38) implies jxE.t/j 6 
1�.t0 C Ts/� for all t > t0 C Ts . Similarly, Qx Op.t/j 6 
1�.t0 C Ts/�
and � Op.t/ 6 
2�.t0 C Ts/� for all t > t0 C Ts . Thus, at the time t0 C Ts , we can repeat the same
analysis as the analysis starting at t0 and so on. It follows that we have

jxE.t/j6 
0�.t0C kTs/�
j Qx Opj6 
1�.t0C kTs/� 8t > t0C kTs .
Q� Op 6 
2�.t0C kTs/�

Because �.t0C kTs/D 
k�.t0/! 0 as k!1, we have that jxE.t/j ! 0 as t !1. In particular,
x Op ! 0. Similarly, Qx Op ! 0. Because x D �x Op � Qx Op , we have that jxj ! 0 (and hence, y ! 0).
Also, yp! 0 because xE! 0. It follows that �p is bounded for all p 2 P . �

Remark 3
For a fixed 
e , the condition (35) can always be satisfied for large enough 
0, 
1, and 
2.

Remark 4
If the initial state x.0/ is such that jxE.0/j> 
1�.0/�, where �.0/ is the initial zooming value, then
we can include a zooming-out stage at the beginning (see [14]) so that after a certain time t0, we
guarantee jx.t0/j< 
1�.t0/M . This means increasing � faster than the system can blow up (for any
value of p 2 P until the quantizer no longer saturates. For example, let �u be the largest real part
of the unstable eigenvalues of the open loop (we can obtain this for all the parameters over the finite
set P), then the state is bounded by jxE.t/6 c0jxE.0/je�ut . Then if � grows at the exponential rate
2�u, that is, � is double every period T D ln 2=.2�u/, then there is t0 such that jx.t0/j< 
1�.t0/M .

Remark 5
We cannot guarantee that the switching signal stops on the true parameter p� or stops at all, but the
proof shows that the overall system achieves asymptotic stability as desired.

5. ROBUSTNESS

Suppose that there are additive unmodeled dynamics so the actual plant is

Px D .Ap� C�A/xC .Bp� C�B/u

y D .Cp� C�C /x
(41)
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where �A,�B , and �C are matrices of appropriate dimensions. If �A,�B , and �C are small
enough in the sense of induced norm, then we still have the stability and asymptotic stability results
in the previous section. For a matrix A, denote by kAk the induced matrix norm of A.

Theorem 3
Consider the uncertain system (41) with static output quantization, where the quantizer is as in
(2) with a fixed �, and with the supervisory control scheme described in Section 3. Suppose that
the design parameters satisfy (13) and (14). Let " D 
e�.� C ı/ for some f
e , ıg > 0. Suppose
that at the initial time t0, jxE.t0/j 6 
0�.� C ı0/, j Qxp.t0/j 6 
1�.� C ı0/ for all p 2 P , and
j� Op.t0/j6 
2�.�C ı0/ for some constants f
0, 
1, 
2g> 0. There exist constants 
 > kc.
0C 
1/
and 
x > �e=�e , and ı > 0 such that if


.�C ı0/ <M , (42)

maxfk�Ak, k�Bk, k�C kg< ı, (43)

then all the closed-loop signals are bounded, and for every �x > 0, 9T <1 such that

jx.t/j6 
x��C �x�� 8t > t0C T . (44)

Proof
For the estimator with index p�, the error dynamics of Qxp� are

PQxp� D .Ap� CLp�Cp�/ Qxp� � .�ACLp��C /x ��BuCLp�.y �Q�.y//. (45)

Because Ap� C Lp�Cp� is Hurwitz, there exists ı1 such that if fk�Ak,�C kg < ı1, then NA D
Ap� CLp�Cp� C�A CLp��C is still Hurwitz. Note that x D �xp� � Qxp� and u D K�.t/x�.t/,
and so, (45) implies that

j PQxp�.t/j6 cee��e.t�t0/j Qxp�.t0/j C �e
Z t

t0

e��e.t�s/.j Nye.s/j C ıB jxE.s/j/ds, (46)

where ıB ! 0 as k�Bk! 0 (recall that Nye D y �Q�.y/). Also,

jy � yp� j6 Nkcj Qxp� j C ıC jxEj, (47)

where Nkc D kc Ck�C k, and ıC ! 0 as k�C k! 0.
Let N� D �C ı0. Let Tmax WD supt>t0fıB jxE.t/j 6 �ı0, jy.t/j 6 �M , ıC jxEj < �ı0g. Because
jxE.t0/j < 
1�.� C ı0/, if fıC , ıBg < ı0=.
1.� C ı0// DW ı2, then Tmax > t0. Then for all
t 2 Œt0,Tmax/, we have

j Nye.t/j C ıB jxE.t/j6 ��C �ı0 D � N�. (48)

From (46)–(48), in view of Qyp� D yp� � y C Nye , we have

j Qyp�.t/j6 Nkccee��e.t�t0/C Nkc.�e=�e/� N�C ıC jxEj C ��
6 Nkccee��e.t�t0/C .1C Nkc.�e=�e//� N�

(49)

for all t 2 Œt0,Tmax in view of ıC jxEj 6 �ı0. Repeat the analysis in the proof of Theorem 1 from
(19) but replace � in that proof by N� everywhere. All the other constants in the proof of Theorem 1
do not change. We then have that jy.t/j6 
 N� and jxE.t/j6 .

p
c1
0C

p
c2.
2C �kcce
1C 
e C

a3/�.�C ı0/DW Nx for all t 2 Œt0,Tmax/. Because ıB ! 0 as k�Bk! 0 and ıC ! 0 as k�C k! 0,
let ı2 > 0 be the number such that if fk�Bk, k�C kg < ı2, then ıB 6 �ı0= Nx and ıC 6 �ı0= Nx. Let
ı WD minfı1, ı2g. Because 
 N� <M and maxfk�Ak, k�Bk, k�C kg < ı by the theorem’s hypothe-
sis, we have that Tmax D 1 by the definition of Tmax. From here, proving ultimate boundedness is
the same as in the proof of Theorem 1. �

The following asymptotic stability result for the case of unmodeled dynamics is straightforward
from Theorems 2 and 4; the proof is exactly the same as the proof of Theorem 2.
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Theorem 4
Consider the uncertain system (41) with static output quantization, where the quantizer is as in (2)
with a fixed �, and with the supervisory control scheme described in Section 3. Suppose that the
design parameters satisfy (13) and (14). Let ".t/D 
e�.t/.�C ı0/ for some fı0, 
eg > 0, and sup-
pose that � be a periodic scaling signal with period Ts and the scaling factor 
 as in (34). Suppose
that at the initial time t0, jxE.t0/j< 
0�.t0/.�C ı0/, j Qxp.t0/j6 
1�.t0/.�C ı0/ for all p 2 P , and
j� Op.t0/j 6 
2�.t0/.�C ı0/ for some constants f
1, 
2g > 0. Let the constants f
, 
x , ıg > 0 be as
in Theorem 4, and suppose that (42), (43), and (35) hold true, then one can find the scaling factor

 2 .0, 1/ and the period Ts <1 for the zooming variable � such that the plant state jx.t/j ! 0 as
t !1, and that all the closed-loop signals are bounded.

6. CONTINUUM UNCERTAINTY SET

So far, we have assumed that the set P is finite. Now, assume that the uncertain parameter p�

belongs to an unknown continuum uncertainty set by � � Rnp . By continuum set, we mean that
for any p 2�, there exists an open ball centered at p that lies completely inside� (note that the set
� can be disconnected, containing two or more disjointed continuum sets).

We divide � into a finite number of subsets �i such that
S
i2P �i D �, i 2 f1, : : : ,mg DW Q.

The existence of �i and a finite set Q is guaranteed if, for example, � is compact. How to divide
� into �i and what is the number of subsets are interesting research questions of their own and are
not pursued here (see [18]). Intuitively, we want �i small in some sense (such as each � can be
enclosed in a ball of small radius). For every subset �i , i 2 Q, pick a nominal value pi 2 �i . By
this procedure, we obtain a finite family of nominal plants parameterized by p 2 P , fP.p/,p 2 Pg,
where P D fpi , i 2Qg. The difference between the case with a continuum uncertain set � and the
case with a finite uncertainty set P in Section 2 is that we may not have exact matching, that is, it
could be that p� … P . However, if the nominal value in the set containing p� is close to p� in some
sense, then the quantized supervisory control scheme still works, in view of the robustness property
proved in Section 5.

Assumption 2
Suppose that there exists Op 2 P such that the dynamics of the plant P. Op/ can be written as

Px D .Ap� C�A/xC .Bp� C�B/u

y D .Cp� C�C /x
(50)

and maxfk�Ak, k�Bk, k�Ckg< ı for the same ı as in (43).

The aforementioned robustness assumption is not very restrictive in the case of linear systems: if
the system matrices are continuous with respect to p, then ı can be as small as possible if jp�� Opj is
small enough (due to robustness and structural stability property of LTI systems). If Assumption 2
holds, in view of Section 5, all the reasoning and the results for linear systems with finite set P
in Section 5 hold for the continuum uncertainty set � without any modification; in particular, if
Assumption 2 holds and the set � is compact, the statements of all the theorems in Section 5
remain unchanged.

7. ILLUSTRATIVE EXAMPLE

We illustrate the methodology represented in this paper in a simple example in order to shed
light into our methodology and the quantized supervisory control approach. Consider the following
uncertain plant

Px D xC bu, y D Q�.2x/ (51)
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where b 2 f�1, 1g DW P . Not knowing the sign of b (the sign of high frequency gain) makes the
adaptive problem challenging in general. We design the multi-estimator with L1 D L2 D�4.5,

Px1 D x1C u� 4.5.2x1 �Q�.2x//

Px2 D x2 � u� 4.5.2x2 �Q�.2x//

y1 D 2x1

y2 D 2x2

and the multi-controller

u1 D�3x1

u2 D 3x2,

which places the closed-loop pole of the individual controller at �2 and the pole of the individual
estimator at �8. We calculate the system matrices of the injected systems

A1 D

�
�2 0

12 �8

�
, A2 D

�
�8 12

0 �2

�
, B1 D B2 D

�
�4.5
�4.5

�

Using LMI, we find that �0 D 0.25, �V D 2, �0 D 5, a D 0.1663, and a D 0.0433, where

P1 D

�
0.1344 �0.0539
�0.0539 0.0753

�
and P2 D

�
0.0753 �0.0539
�0.0539 0.1344

�
. Choose the design parameters

h D 1.1, � D 0.125 that satisfy the conditions (13) and (14). Choose � D 0.01. The numerical
values of the bounds critically depend on these design parameters (see Appendix B for a discussion
on how to select the design parameters).

We consider the floor function as the quantizer Q:

Q.y/ WD

(
�
jy
�

k
if jyj6M

M else,
(52)

which has the quantization error bound �D 1.

Static quantizer

Let 
0 D 0.1, 
1 D 2, 
2 D 
e D 0.1. Using the formula in the proof of Theorem 1, we calcu-
late that 
 D 22.77 � 103 and 
x D 9.91 � 103. For � D 1, the calculated upper bound on x is
Nx D 11.38�103 and the calculated lower bound on �M is 
��D 22.77�103 versus the simulated
values of 51.1 and 102.2, respectively. The actual performance of the supervisory control in this
example is much better than expected. The better performance is partly due to the ‘nice’ quantizer
(52) (we also observe that the state converges to the constant value ��=2 for this quantizer and that
switching stops in finite time) but mainly, our bounds are conservative because they do not assume
any structure on the quantizer and the characterization of the switching signal is conservative. It
is noted that conservativeness of performance of supervisory control is currently a drawback in all
supervisory control work, not just our work here, and improving the analysis of supervisory control
is one of the ongoing research efforts in this area.

A simulation with the static quantizer � D 1 and M D 1000 is plotted in Figure 3. We also ran
the simulation for various � from 0.01 to 100 and found the empirical peak output values for each
�; the result is plotted in Figure 4. An interesting observation from Figure 4 is that the output peak
values are not monotonic in �: a bigger �, corresponding to a coarser quantization, can result in a
smaller output peak value.

7.1. Dynamic quantizer

We simulate the supervisory control scheme with a dynamic quantizer with the re-scaling period
T D 5 and the scaling factor 
 D 0.6. To illustrate the usage of dynamic quantization, we start off
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Figure 3. Simulation with the static quantizer � D 1 and M D 1000.
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Figure 4. Output peak values ymax versus the quantization zoom �.
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Figure 5. Dynamic quantization state x versus time t .

with large quantization error �.0/ D 10 and with 
2 D 
e D 0.01, � D 0.05, and h D 0.289. Sim-
ulation shows convergence to zero (Figure 5). Similarly to the static quantizer case, our calculated
number in this case is also conservative compared with the simulation.
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8. A REMARK ON THE NONLINEAR CASE

We discuss in this section how the results for linear plants in the previous section could be general-
ized to certain classes of nonlinear plants by using the ISS framework (see [19] for the background
on the ISS framework). The methodology is as follows:

1. Setting up the nonlinear switching supervisory framework with quantized output.
2. Performing the analysis of the closed loop system using injected system analysis.
3. Establishing condition on the quantizer’s range M and the zooming variable � to ensure

practical stability.
4. Using dynamic zooming to obtain asymptotic stability.

The nonlinear supervisory framework with quantized output:

Consider the following uncertain nonlinear plant

�.p�/

�
Px D f .x,u,p�/
y D h.x,p�/

,p� 2 P (53)

parameterized by an unknown parameter p� 2 P , P is a finite set, where x 2 Rn is the state,
u 2 Rm is the input, and y 2 R` is the output. Assuming that the plant is open-loop unstable and
the information available to the controller is the quantized output, Q�.y/, as in (2), the goal is to
achieve closed-loop stability and asymptotic stability (see also Figure 1 for the control scheme).

The nonlinear supervisory control structure is similar to the linear case in Section 3 with the
difference that the multi-estimator can now have nonlinear forms.

� The multi-estimator: The nonlinear multi-estimator takes the form(
POxE D F. OxE , Q�.y/,u/,
Oyp DHp. Oxp/,

p 2 P , (54)

xE D .x1, : : : , xpm/, with the property that there is Op 2 P such that

j Qx Op.t/j6 ˇe.j Qx Op.t0/j, t � t0/C
Z t

t0

e��e.t�s/�e.j Nye.s/j/ds (55a)

jy Op � yj6 kc j Qx Opj (55b)

for all t > t0, for all u, and for some �s > 0, ˇe 2KL, �e 2K.
� The multi-controller: A family of candidate controller is designed such that the controller with

index p stabilizes the plant with the same parameter,�
PxC DG.xC ,Q�.y/,u/

up D rp.xC /
p 2 P . (56)

� The monitoring signals and the switching logic: The monitoring signals �p ,p 2 P are the
same as in (7), and the switching logic is the hysteresis switching logic (8).

The switched injected system is the combination of the multi-estimator and the multi-controller,
as in the case of linear systems, and is

PxCE D

�
gp.xC ,Hp.xE/� Qyp , rp.xC ,Hp.xE/� Qyp//

F.xE,Hp.xE/� Qyp , rp.xC ,Hp.xE/� Qyp//

�
DW fp.xCE, Qyp/, (57)

where xCE WD

�
xC
xE

	
is the state of the injected system.
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The matching condition as in (5) for the nonlinear multi-estimator can be generalized using the
class K and class KL functions‡. The following is an assumption on the injected systems (57)
(see also Remark 6).

Assumption 3
There exist continuously differentiable functions Vp W Rn ! Œ0,1/, p 2 P , class K1 functions
˛1,˛2, � , and numbers �0 > 0 such that 8� 2Rn, � 2R`, and 8p, q 2 P , we have

˛1.j�j/6 Vp.�/6 ˛2.j�j/, (58)

@Vp

@�
fp.� , �/6 ��0Vp.�/C �.j�j/, (59)

Vp.�/6 �V Vq.�/. (60)

Remark 6
If every subsystem is ISS, then for every p 2 P there exist class K1 functions ˛1,p ,˛2,p , �p ,
numbers �ı,p > 0, and ISS-Lyapunov functions Vp satisfying

˛1,p.j�j/6 Vp.�/6 ˛2,p.j�j/,

@Vp

@�
fp.�/6 ��ı,pVp.�/C ˛2�p.j�j/,

8� 2Rn, � 2R` (see [21,22]). If the set P is finite, then (58) and (59) are trivially satisfied. Also, if
the set P is compact, and suitable continuity assumptions on

˚
˛1,p ,˛2,p ,˛2�p



p2P and

˚
�ı,p



p2P

with respect to p hold, then (58) and (59) follow. We shall henceforth stipulate that our collection of
ISS-Lyapunov functions fVpgp 2 P satisfies (58) and (59). The set of possible ISS-Lyapunov func-
tions is restricted by the condition (60). This inequality does not hold, for example, if Vp is quadratic
for one value of p and quartic for another. If �V D 1, the relation (60) implies that V D Vp , p 2 P
is a common ISS-Lyapunov function for the family of the subsystems. In this case, the switched
system is ISS for arbitrary switching (also called uniformly input-to-state stable [23]).

Recall that a plant is input-output-to-state (IOSS) (see, e.g., [19]) if the state x of the (open-loop)
plant satisfies the following property

jx.t/j6 ˇ.jx.t0/j, t � t0/C �u.kukŒt0,t /C �y.kykŒt0,t / (61)

for all t > t0 for some ˇ 2KL, �u, �y 2K1.
For nonlinear systems, if the matching Assumption 3 holds and the plant is IOSS, we would

expect that there exist functions f
, 
xg 2K1 such that if


.�/ <M , (62)

then all the closed-loop signals are bounded, and for every �x > 0, 9T <1 such that

jx.t/j6 
x.��/C �x�� 8t > t0C T . (63)

The analysis would follow similar steps as in the linear case but utilize the ISS framework to relate
between Lyapunov functions and states, similarly to the approach in [17]. In [17], we establish
robustness of supervisory control to bounded noise, and here one can think of the quantization errors
playing a similar role as a noise in the proof in [17]. We also expect that under some additional strict
(nonlinear) conditions on the quantizer rangeM and the quantizer error bound�, one can use linear
zooming with period Ts and the scaling factor 
 as in (34) to obtain closed-loop asymptotic stabil-
ity. There could also be a case for nonlinear zooming which needs further exploration. We have not

‡Recall that (see, e.g., [20]) a continuous function ˛ W Œ0,1/ ! Œ0,1/ is of class K if ˛ is strictly increasing, and
˛.0/D 0, and further, ˛ 2 K1 if ˛.r/!1 as r!1. A function ˇ W Œ0,1/� Œ0,1/! Œ0,1/ is of class KL
if ˇ.�, t/ 2K for every fixed t , and ˇ.r , t/ decreases to 0 as t!1 for every fixed r .
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yet finalized the nonlinear results but still included the methodology for the nonlinear case here for
a complete picture of the problem of supervisory control with quantized information and also for
showing the flexibility of the approach beyond the linear cases.

9. CONCLUSIONS

In this paper, we have treated the problem of stabilizing uncertain systems with output quantization
using supervisory control. For a static quantizer, we provided a condition between the quantization
range and the quantization error bound to guarantee closed-loop stability. With a dynamic quantizer,
we provided a zooming strategy on the quantization zooming variable � and on the parameter " of
the supervisory control scheme to achieve asymptotic stability for the closed loop. Future research
aims to obtain tighter bounds for various quantities in the quantized supervisory control scheme.
Other direction is to consider other types of limited information, such as sampling, delay, or pack-
age loss, or a combination of those with quantization. In this direction, it may be fruitful to combine
the approach in this paper with the result in [24].

APPENDIX

A. Formula for Aq and Bq

Pick an ordering of the set P , P WD fp1, : : : ,pmg. The formula for Aq and Bq , q 2 P , is

AqjqDpj WD
mM
iD1

.Api CLpiCpi /C

2
64
0mn�.j�1/n Bp1Kpj �Lp1Cpj 0mn�.m�j�1/n

...
...

...

0mn�.j�1/n BpmKpj �LpmCpj 0mn�.m�j�1/n

3
75
(64)

Bq WD

2
64
Lp1

...
Lpm

3
75 8q 2 P ,

where
L

is the Kronecker product.

B. Choosing the design parameters

The value of various constants used in the design of a supervisory control is critical to ensure small
bounds. Unfortunately, how to chose the design parameters in supervisory control to minimize the
bounds is still an open question. The design parameters are chosen heuristically and the design
procedure is trial and error, but here, we discuss the effect of various constants and provide some
guidelines and numerical tools for obtaining smaller bounds.

� Usually we want small �, small �0, �0. If one chooses the positive definite matrices Pp for the
Lyapunov functions Vp.x/D xTPpx of the p-th injected system using the Lyapunov equation
ATpPp C PpAp D �Q for some positive definite Q, then it is likely that the common �0 will
be small and the common �0 will be large, and the Lyapunov gain �V among Vp will be large.
To find small � and �0 and large �0, one can use LMI to solve for Pi in the following way: we
write (11b) as follows:

PVp D x
T
E .A

T
pPp CPpAp/xEC xTEPpBp Qyp C QyTp BTpPp 6 ��0xTEPpxEC �0 QyTp Qyp

,
�
xE Qyp

� " ATpPp CPpAp C �0Pp PpBp

BTpPp ��0I

#�
xE

Qyp

�
6 0.
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Because the foregoing inequality is true for all xE and all Qyp , it is equivalent to"
ATpPp CPpAp C �0Pp PpBp

BTpPp ��0I

#
6 0.

We then have the following LMIs:"
ATpPp CPpAp C �0Pp PpBp

BTpPp ��0I

#
6 0

Pp > 0 p D 1, : : : ,m. (65)

The aforementioned set of LMIs can be solved numerically for given Ap , Bp ,�0, � . For our
analysis in this work, we also want the ratio a=a small, where a and a are as in (11a). This can
be achieved by adding the following LMIs into (65)

Pp > aI , Pp 6 aI . (66)

One then iteratively try various sets of �, �0, �0 while the LMI (65) is still feasible.
� We want h small because small h allows for fast detection; a larger h means that the estima-

tor could stay on the wrong controller for longer time, resulting in a larger empirical bound.
However, a smaller h implies a larger N0 and hence, a larger c1 and c2 and a larger calculated
bound. Thus, there is a trade-off here for h and one can try to tune h starting from the smallest
value.
� We want � small because that means smallN0 and hence, smaller calculated bounds. However,

a larger � means larger monitoring signals �p and that in turn implies faster switching (or
detection). So there is also a trade-off here between for � .
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