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Abstract: We study the stabilization of a switched linear system with unknown disturbance
using sampled and quantized state feedback. The switching is slow in the sense of combined
dwell-time and average dwell-time, while the active mode is unknown except at sampling times.
Each mode of the switched system is stabilizable, and the disturbance admits an unknown
bound. A communication and control strategy is designed to achieve practical stability and
exponential convergence w.r.t. the initial state with a nonlinear gain on the disturbance, provided
the data-rate meets given lower bounds. Compared with previous results, a more involved
algorithm is developed to handle effects of the unknown disturbance based on employing an
iteratively updated estimate of the disturbance bound and expanding the over-approximations
of reachable sets over sampling intervals from the case without disturbance.
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1. INTRODUCTION

Feedback control problems with limited information have
been an active research area for years, as surveyed in Nair
et al. (2007). In many application-related scenarios, the
information flow in a feedback loop is an important factor
due to cost concerns, physical restrictions, security consid-
erations, etc. Besides the practical motives, the question
of how much information is needed to achieve a certain
control objective is quite fundamental and intriguing from
the theoretical viewpoint. In this paper, a finite data trans-
mission rate is achieved by generating the control input
based on sampled and quantized measurements, which is
a standard modeling framework in the literature (see, e.g.,
Hespanha et al. (2002); Tatikonda and Mitter (2004)).

This paper considers a finite date-rate feedback control
problem in the presence of external disturbances. In this
context, Hespanha et al. (2002); Tatikonda and Mitter
(2004) assumed known bounds on the disturbances and ad-
dressed asymptotic stabilization with minimum data-rate,
while Liberzon and Nešić (2007); Sharon and Liberzon
(2012) avoided such assumptions by switching repeatedly
between the “zooming-out” and “zooming-in” processes
and achieved input-to-state stability (ISS) Sontag (1989).

The study of switched and hybrid systems has attracted
lots of attention lately (particularly relevant results in-
clude Liberzon (2003b); Shorten et al. (2007) and many
references therein). In stabilization of switched systems,
a standard approach is to impose suitable slow-switching
conditions, especially in the sense of dwell-time from Morse
(1996) and average dwell-time (ADT) from Hespanha and
Morse (1999), which also plays a crucial role in this work.

? This work was supported by the NSF grants CNS-1217811 and
ECCS-1231196.

On stabilizing switched systems with disturbances, Hes-
panha and Morse (1999) showed that one can achieve ISS
under the same ADT condition as for the case without
disturbance. Their result was made explicit only for the
case of switched linear systems, and many similar results
for switched nonlinear systems have been established since
then (see, e.g., Xie et al. (2001) for ISS with dwell-time, Vu
et al. (2007) for ISS with ADT, and Müller and Liberzon
(2012) for input/output-to-state stability with ADT).

Early works on control with limited information in the con-
text of switched systems were devoted to quantized control
of Markov jump linear systems, e.g., Zhang et al. (2009).
However, the discrete modes in those results were always
known to the controller, which would remove most of the
difficulties in our formulation. The problem of asymptoti-
cally stabilizing a switched linear system using sampled
and quantized state feedback was studied in Liberzon
(2014), which serves as the basis of this work. In Liberzon
(2014), the controller had only partial knowledge of the
switching; namely, the switching signal satisfied a mild
slow-switching condition described by combined dwell-
time and ADT, but the active mode was unknown except
at sampling times. Provided the data-rate met certain
lower bounds, stabilization was achieved via propagating
over-approximations of reachable sets.

This work generalizes the main result in Liberzon (2014)
to the scenario where an unknown disturbance is present.
The sensor and controller possess no knowledge of the
disturbance except that it admits an unknown bound. A
communication and control strategy is designed to achieve
practical stability and exponential convergence w.r.t. the
initial state, provided that the data-rate meets given lower
bounds. While such bounds are derived via the concept
of reachable set propagation from Liberzon (2014), a
more involved algorithm is needed to handle effects of
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the disturbance. Due to the unknown disturbance, the
possibility of the state becoming lost (i.e., outside the
approximations of reachable sets) cannot be eliminated.
Consequently, the closed-loop system progresses in two
stages—the stabilizing stage when the state is visible, and
searching stage when it is lost—alteratively. An iteratively
updated estimate of the disturbance bound is employed to
ensure that there is a finite number of searching stages in
total, and eventually the system stays in the stabilizing
stage. The preliminary case where the disturbance bound
is known was studied in Yang and Liberzon (2015).

This paper is structured as follows. Section 2 introduces
the problem formulation and basic assumptions. Our main
result is presented in Section 3. Section 4 describes the
communication and control strategy, and Section 5 con-
structs the approximations of reachable sets and distur-
bance bound. In Section 6 we provide the stability analysis
with several major steps summarized as technical lemmas.

2. PROBLEM FORMULATION

2.1 System description

We study the stabilization of a switched linear system with
state x ∈ Rnx , control u ∈ Rnu and disturbance d ∈ Rnd :

ẋ = Aσx+Bσu+Dσd, x(0) = x0, (1)

where {(Ap, Bp, Dp)}p∈P is a collection of matrix triples
with suitable dimensions defining the subsystems (modes),
P is a finite index set, and σ : R≥0 → P is a right-
continuous, piecewise constant switching signal which
specifies the index σ(t) of the active mode at time t. The
solution x(·) is absolutely continuous and satisfies (1) away
from discontinuities of σ (in particular, there are no state
jumps). An admissible disturbance d(·) is a measurable
and locally essentially bounded function. The switching
signal σ is fixed but unknown to the controller a priori.
Discontinuities of σ are called switching times, or simply
switches. The number of switches on a time interval (τ, t]
is denoted by Nσ(t, τ).

First, the switching is assumed to be slow in the sense of
combined dwell-time and average dwell-time:

Assumption 1. (Switching). The switching has

1) a dwell-time τd such that Nσ(t, τ) ≤ 1 for all τ ≥ 0 and
t ∈ (τ, τ + τd]; and

2) an average dwell-time (ADT) τa > τd such that

Nσ(t, τ) ≤ N0 + (t− τ)/τa ∀ t > τ ≥ 0 (2)

with an integer N0 ≥ 1.

The notions of dwell-time from Morse (1996) and ADT
from Hespanha and Morse (1999) are standard in the
switched system context. In Assumption 1, item 1) can
be rewritten in the form of (2) with τa = τd and N0 = 1;
and item 2) would be implied by item 1) without τa >
τd. Switching signals satisfying Assumption 1 were called
“hybrid dwell-time” signals in Vu and Liberzon (2011).

Second, we assume all individual modes are stabilizable:

Assumption 2. (Stabilizability). For each p ∈ P, there is a
state feedback gain matrix Kp s.t. Ap +BpKp is Hurwitz.

In this work, it is assumed that such a collection of gain
matrices {Kp : p ∈ P} is selected and fixed. However, even

Fig. 1. Information structure

in the case without disturbance, and all individual modes
are stabilized via feedback (or stable without feedback),
stability of the switched system is not guaranteed in
general (Liberzon, 2003b, Part II).

We use ‖ · ‖ to denote the∞-norm of a vector or a matrix,
that is, ‖v‖ := max1≤i≤n |vi| for v ∈ Rn, and ‖M‖ :=
max1≤i≤n

∑n
j=1 |Mij | for M ∈ Rn×n. The right-sided limit

of a piecewise absolutely continuous function z is denoted
by z(t−) := lims↗t z(s). The essential supremum ∞-norm
of d on an interval I is denoted by ‖d‖I .
Third, we assume the disturbance d is essentially bounded.

Assumption 3. (Disturbance). The disturbance d is essen-
tially bounded, namely, there is a disturbance bound

δd := ‖d‖R≥0
<∞.

The value of δd is unknown to the sensor and controller.

2.2 Information structure

The feedback loop consists of a sensor and a controller.
The sensor transmits two sequences of data, indices of the
active modes σ(tk) and quantized measurements (samples)
of the state x(tk), at sampling times tk = kτs, k = 0, 1, . . .,
where τs > 0 is the sampling period. Each sample is
encoded by an integer ik from 0 to Nnx , where N is an
odd integer. The controller generates the control input u
to the switched linear system (1) based on the decoded
data. As σ(tk) ∈ P and ik ∈ {0, 1, . . . , Nnx}, the data
transmission rate between the encoder and decoder is
(log2 |Nnx + 1| + log2 |P|)/τs bits per time unit, where
|P| denotes the number of modes. Fig. 1 demonstrates
the information structure. The communication and control
strategy is explained in detail in Section 4.

We take the sampling period τs to be no larger than the
dwell-time τd in Assumption 1, namely,

τs ≤ τd, (3)

so that there is at most one switch in any sampling
interval (tk, tk+1]. Since the ADT τa > τd in Assumption 1,
switches actually occur less often than once per τs.

Our last basic assumption sets a lower bound on data-rate:

Assumption 4. (Data-rate). Sampling period τs satisfies

Λp := ‖eApτs‖ < N ∀ p ∈ P. (4)

The inequality in (4) assigns a lower bound on the data-
rate as it requires τs to be small enough w.r.t. N . This
bound is the same as the one from the case without distur-
bance (Liberzon, 2014, Assumption 3), and similar data-
rate bounds appeared in Hespanha et al. (2002); Liberzon
(2003a); Tatikonda and Mitter (2004) for stabilizing non-
switched linear systems; cf. (Liberzon, 2014, Section 2.2).
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3. MAIN RESULT

Theorem 1. Consider the switched linear system (1). Sup-
pose Assumptions 1–4 and (3) hold. Provided that the
ADT τa is sufficiently large, there exists a communication
and control strategy that yields:

Exponential Convergence: There exist λ,C > 0 and
g : R≥0 → R>0 and h : R≥0 → R≥0 such that for all initial
states x0 ∈ Rnx and disturbance bounds δd ≥ 0 we have

‖x(t)‖ ≤ e−λtg(‖x0‖) + h(δd) + C ∀ t ≥ 0. (5)

Practical Stability: There exists a C ′ > 0 such that
for each ε > 0, there exists a δ > 0 such that if ‖x0‖ ≤ δ
and δd ≤ δ then ‖x(t)‖ ≤ ε+ C ′ for all t ≥ 0.

The lower bounds on τa are given by (28) for exponential
convergence, and by (39) for practical stability; cf. (Yang
and Liberzon, 2015, Remark 2) for their relation. The
exponential decay rate λ and the constant C are given by
(37), and the gains g and h by (38). From the proof it will
be clear that g(s) does not go to 0 as s → 0 and grows
superlinearly as s → ∞. Consequently, practical stability
does not follow from exponential convergence, and needs
to be established separately. Meanwhile, h is superlinear
and positive definite. The constant C ′ is given by (40).

Compared to the result in Liberzon (2014) in the same
setting, we see that both properties in (Liberzon, 2014,
Theorem 1) are extended to the versions with disturbance.
Moreover, when the disturbance d ≡ 0, the sensor and
controller still use an arbitrarily selected δ0 > 0 as
the initial estimate of the disturbance, which leads to
the additional positive constants C and C ′. By virtue
of (Sontag and Wang, 1996, Theorem 1), the properties
established in Theorem 1 is closely related to the input-
to-state practical stability property in Jiang et al. (1994).

4. COMMUNICATION AND CONTROL STRATEGY

In this section we explain the communication and control
strategy, assuming that suitable approximations of the
disturbance bound and reachable sets of the state are
available at all sampling times. (Such approximation are
constructed in Section 5.) More specifically, at each sam-
pling time tk, the disturbance bound δd is approximated by
a positive number δk, and the reachable set by a hypercube
Rk of radius Ek > 0 centered at x∗k, namely,

Rk := {v ∈ Rnx : ‖v − x∗k‖ ≤ Ek}.
The values of x∗k, Ek, δk are synchronized between the
sensor and the controller at each sampling time tk.

At t = 0, the initial state x0 is unknown, and both the
sensor and the controller are given x∗0 = 0 and arbitrarily
selected initial values E0, δ0. Starting from k = 0, at each
sampling time tk, the sensor first determines if

‖x(tk)− x∗k‖ ≤ Ek, (6)

that is, if the state x(tk) is inside the hypercube Rk. If
so, we say the state is visible, and the sensor proceeds
to the stabilizing stage; otherwise the state is lost, and
the sensor proceeds to the searching stage. The system
alternates between stabilizing and searching stages, both
of which may consist of multiple sampling periods. For a j
such that x(tj−1) ∈ Rj−1 and x(tj) /∈ Rj , we say the state
escapes at tj ; likewise, for an i such that x(ti−1) /∈ Ri−1

and x(ti) ∈ Ri, we say the state is recovered at ti.

4.1 Stabilizing stage

In a stabilizing stage, the encoder divides the hypercube
Rk into Nnx equal hypercubic boxes, N per dimension,
encodes each box by a unique index from 1 to Nnx , and
transmits the index ik of the hypercubic box containing
x(tk) to the decoder, along with the index σ(tk) of the
active mode. The controller knows that (6) holds upon
receiving ik ∈ {1, . . . , Nnx}. Following the same pre-
defined indexing protocol with the encoder, the decoder
is able to reconstruct the center ck of the hypercubic box
containing x(tk) from ik. Simple calculation shows that

‖x(tk)− ck‖ ≤ Ek/N, ‖ck − x∗k‖ ≤ (1− 1/N)Ek. (7)

The controller sets the control u(t) = Kσ(tk)x̂(t) for t ∈
[tk, tk+1), where Kσ(tk) is the gain matrix in Assumption 2,
and x̂ is the solution to the auxiliary system

˙̂x = Aσ(tk)x̂+Bσ(tk)u = Aσ(tk)x̂+Bσ(tk)Kσ(tk)x̂ (8)

with x̂(tk) = ck (i.e., x̂ is readjusted to ck at each tk).
Both the sensor and the controller maintain an identical
copy of the auxiliary system (8) to calculate

x∗k+1 := F (σ(tk), σ(tk+1), ck),

Ek+1 := G(σ(tk), σ(tk+1), x∗k, Ek, δk)
(9)

for the next sampling time tk+1 individually. The functions
F and G are designed so that

‖x(tk+1)− x∗k+1‖ ≤ G(σ(tk), σ(tk+1), x∗k, Ek, δd), (10)

and G is increasing in its last argument, which is δk in (9)
and δd in (10). Hence the sensor learns that δk < δd if the
state escapes at tk+1. The formulas for F and G are given
in Subsection 5.1.

4.2 Escape

When the state escapes at tj , the sensor learns that δj−1 <
δd, and sets δj = (1 + εδ)δj−1 with an arbitrarily selected
design parameter εδ > 0. Estimates of the disturbance
bound are unchanged in all other cases (in particular, they
are increased just once per searching stage). Note that x∗j
and Ej are still calculated according to (9), and

Ej < ‖x(tj)− x∗j‖ ≤ G(σ(tj−1), σ(tj), x
∗
j−1, Ej−1, δd).

4.3 Searching stage

In a searching stage, there exists an unknown D̂k so that

Ek < ‖x(tk)− x∗k‖ ≤ D̂k (11)

(if the state is lost at t0 = 0 then D̂0 = ‖x0‖; if it escapes

at tj then D̂j = G(σ(tj−1), σ(tj), x
∗
j−1, Ej−1, δd)). The

encoder sends 0, the “overflow symbol”, to the decoder,
which consequently lets the controller set the control input
u(t) ≡ 0 on [tk, tk+1). Similar to the stabilizing stage, both
the sensor and the controller calculate

x∗k+1 := x∗k, Ek+1 := Ĝ(x∗k, (1 + εE)Ek, δk) (12)

individually, where εE > 0 is a arbitrarily selected design
parameter. The function Ĝ is designed so that

‖x(tk+1)− x∗k+1‖ ≤ Ĝ(x∗k, D̂k, δd). (13)

Note the second argument of Ĝ in (12) is (1 + εE)Ek,

whereas the one in (13) is D̂k. Introducing the coefficient
1+εE ensures that the growth rate of Ek dominates that of
D̂k, and consequently the state is recovered in finite time,
as shown in Subsection 5.2 following the formula for Ĝ.
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5. GENERATING APPROXIMATIONS

Now we derive the recursive formulas needed to implement
our communication and control strategy. In Subsection 5.1
we consider the stabilizing stage and obtain F,G in (9). In
Subsection 5.2 we consider the searching stage and obtain
Ĝ in (12), together with the proof of finite time recovery.

5.1 Stabilizing stage

Sampling interval without switch When

σ(tk) = p = σ(tk+1) (14)

for p ∈ P, by (3) there is no switch on (tk, tk+1]. Combining
(1) and (8) shows that the error e := x− x̂ satisfies

ė = Ape+Dpd, ‖e(tk)‖ = ‖x(tk)− ck‖ ≤ Ek/N
on [tk, tk+1), where the boundary condition follows from
x̂(tk) = ck and (7). Thus by variation of constants we get

‖e(t−k+1)‖ ≤ ΛpEk/N + Φp(τs)δd =: D̂k+1 (15)

with Λp in (4) and Φp : [0, τs] → R defined by Φp(t) :=∫ t
0
‖eApsDp‖ds. Therefore, we let

Ek+1 = G(p, p, x∗k, Ek, δk) := ΛpEk/N + Φp(τs)δk.

Since x is continuous, the inequality in (10) holds with

x∗k+1 = F (p, p, ck) := e(Ap+BpKp)τsck =: Spck. (16)

Sampling interval with switch When

σ(tk) = p 6= q = σ(tk+1) (17)

for p, q ∈ P, by (3) there is exactly one switch on (tk, tk+1].
Let tk + t̄ with t̄ ∈ (0, τs] denote the unknown switching
time. Then σ(t) = p for t ∈ [tk, tk + t̄) and σ(t) = q for
t ∈ [tk + t̄, tk+1]. Before the switch, we proceed as in the
previous case and get that the error e = x− x̂ satisfies

‖e(tk + t̄)‖ ≤ ‖eAp t̄‖Ek/N + Φp(t̄)δd (18)

with Φp in (15). Since t̄ is unknown, we estimate the
value of x(tk + t̄) by comparing it with the value of x̂
at an arbitrarily selected t + t′ ∈ [tk, tk+1). As x̂(tk +

t′) = e(Ap+BpKp)t′ck for all t′ ∈ [0, τs), from (7), (18) and
the triangle inequality we get

‖x(tk + t̄)− x̂(tk + t′)‖
≤ ‖e(tk + t̄)‖+ ‖x̂(tk + t̄)− x̂(tk + t′)‖
≤ ‖e(Ap+BpKp)t̄ − e(Ap+BpKp)t′‖(‖x∗k‖+ (1− 1/N)Ek)

+ ‖eAp t̄‖Ek/N + Φp(t̄)δd

=: D̂′k+1(t′, t̄).

After the switch, combining (1) in mode q and (8) in mode
p gives that ż = Āpqz + D̄qd with z := (x>, x̂>)> and

Āpq :=

(
Aq BqKp

0nx×nx
Ap +BpKp

)
, D̄q =

(
Dq

0nx×nd

)
.

Consider a second auxiliary system ˙̂z = Āpq ẑ with ẑ(tk +
t′) = (x̂(tk+t′)>, x̂(tk+t′)>)>, and the error ē(t) := z(t)−
ẑ(t− t̄+ t′). Since the ∞-norm satisfies

‖(v>, w>)>‖ = max{‖v‖, ‖w‖} ∀ v, w ∈ Rn, (19)

we get ‖ē(tk + t̄)‖ ≤ D̂′k+1(t′, t̄). Hence

‖ē(t−k+1)‖ ≤ ‖eĀpq(τs−t̄)‖D̂′k+1(t′, t̄) + Φ̄pq(τs − t̄)δd (20)

by variation of constants with Φ̄pq : [0, τs] → R defined

by Φ̄pq(t) :=
∫ t

0
‖eĀpqsD̄q‖ds. Again, we estimate the

value of z(t−k+1) by comparing it with the value of ẑ at
an arbitrarily selected tk + t′′ ∈ [tk, tk+1). As ẑ(tk +

t′′) = eĀpq(t′′−t′)ẑ(tk + t′) for all t′′ ∈ [0, τs), from (7),
(19), (20) and the triangle inequality we get

‖x(t−k+1)− x̂(tk + t′′)‖ ≤ ‖z(t−k+1)− ẑ(tk + t′′)‖
≤ ‖ē(t−k+1)‖+ ‖ẑ(t−k+1 − t̄+ t′)− ẑ(tk + t′′)‖
≤ ‖eĀpq(τs−t̄)‖D̂′k+1(t′, t̄) + Φ̄pq(τs − t̄)δd + ‖eĀpq(τs−t̄)

− eĀpq(t′′−t′)‖‖e(Ap+BpKp)t′‖(‖x∗k‖+ (1− 1/N)Ek)

=: D̂′′k+1(t′, t′′, t̄).

To eliminate the dependence on the unknown t̄, we take the
maximum over t̄ (with fixed t′, t′′) and get ‖x(t−k+1)−x̂(tk+

t′′)‖ ≤ maxt̄∈[0,τs] D̂
′′
k+1(t′, t′′, t̄) =: D̂k+1. Therefore, we

define Ek+1 by replacing δd in D̂′′k+1(t′, t′′, t̄) with the
estimate δk and then taking the maximum over t̄ (with
the same fixed t′, t′′). (Clearly, the design parameters t′, t′′

should be selected so that Ek+1 is minimized. However,
their optimal values cannot be determined without impos-
ing further constraints on the matrices {Ap, Bp, Dp,Kp :
p ∈ P}.) Since x is continuous, (10) holds with

x∗k+1 = F (p, q, ck) := Hpqck

:= (Inx×nx 0nx×nx)eĀpqt
′′
(
e(Ap+BpKp)t′

e(Ap+BpKp)t′

)
ck.

(21)

A more computation-friendly upper bound is derived as

Ek+1 ≤ αpq‖x∗k‖+ βpqEk + γpqδk (22)

with

αpq := ‖e(Ap+BpKp)t′‖e‖Āpq‖max{τs,2(t′′−t′),τs+2(t′−t′′)}

× ‖Āpq‖max{t′′ − t′, τs + t′ − t′′}+ ‖Ap +BpKp‖
× e‖Āpq‖τse‖Ap+BpKp‖max{τs,2t′}max{τs − t′, t′},

βpq := (1− 1/N)αpq + e‖Āpq‖τs+‖Ap‖τs/N,

γpq := e‖Āpq‖τsΦp(τs) + Φ̄pq(τs).

5.2 Searching stage

Recall that the control input u ≡ 0 in searching stages.
From (11) and variation of constants we get that

‖x(t)− x∗k‖ ≤ ᾱ‖x∗k‖+ β̄D̂k + γ̄δd =: D̂k+1 (23)

for all t ∈ (tk, tk+1], where

ᾱ := (Λ̂ + 1)Γ̂, β̄ := Λ̂2 γ̄ := (Λ̂ + 1)Φ

with Γ̂ := maxp e
‖Ap‖τs‖Ap‖τs, Λ̂ := maxp e

‖Ap‖τs , Φ :=
maxp Φp(τs). Hence we let

Ek+1 = Ĝ(x∗k, (1+εE)Ek, δk) := ᾱ‖x∗k‖+(1+εE)β̄Ek+γ̄δk

with an arbitrarily selected design parameter εE > 0.

Finite time recovery Suppose the state escaped at sam-
pling time tj . Consider two increasing sequences (D̃l

j)
∞
l=0

and (Ẽlj)
∞
l=0 defined by

D̃l+1
j := Ĝ(x∗j , D̃

l
j , δd), D̃0

j := D̂j ,

Ẽl+1
j := Ĝ(x∗j , (1 + εE)Ẽlj , δj), Ẽ0

j := Ej .
(24)

Straightforward calculation gives that

D̃l
j = β̄lD̂j + (β̄l − 1)(ᾱ‖x∗j‖+ γ̄δd)/(β̄ − 1),

Ẽlj = β̂lEj + (β̂l − 1)(ᾱ‖x∗j‖+ γ̄δj)/(β̂ − 1)
(25)
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with β̂ := (1 + εE)β̄. Define

Lj := dmax{Lxj , Ldj}e (26)

with Lxj := log(D̂j/Ej)/ log(1 + εE), and Ldj := log(((β̂ −
1)δd)/((β̄−1)δj))/ log(1+εE) if δd > δj ; else Ldj := 0. (Here
d·e : R → Z is the ceiling function.) It is straightforward

to verify that Ẽ
Lj

j ≥ D̃
Lj

j , and hence the state will
be recovered in finite time. Moreover, when the state is
recovered at sampling time ti, we get i− j ≤ Lj .
Remark 1. By letting j = 0 and D̂0 = ‖x0‖ we see that
the analysis above also applies to the case when the state
is lost at t0 = 0. However, the state escapes at tj only if
δj−1 < δd, while it is lost at t0 = 0 if and only if ‖x0‖ > E0.

6. STABILITY ANALYSIS

In this section we show that the communication and
control strategy described in Section 4 fulfills Theorem 1.

6.1 Stabilizing stage

Stability analysis for stabilizing stages essentially follows
from (Yang and Liberzon, 2015, Subsections VI-A–VI-D).

First consider a sampling interval [tk, tk+1] without switch.
For Sp = e(Ap+BpKp)τs in (16), as Ap + BpKp is Hurwitz,
there exist Pp, Qp > 0 such that S>p PpSp−Pp = −Qp < 0.

Let λ(·) and λ(·) denote the largest and smallest eigenval-
ues of a matrix, and define χp := 2n2

x‖S>p PpSp‖2/λ(Qp) +

nx‖S>p PpSp‖. The inequality in (4) implies that there exist

a sufficiently small φ > 0 such that (1 + φ)Λ2
p/N

2 < 1 for
all p ∈ P, and a sufficiently large ρp > 0 such that

(1− 1/N)2χp/ρp + (1 + φ)Λ2
p/N

2 < 1.

Define a family of functions {Vr : Rnx × R→ R}r∈P by

Vr(x,E) := x>Prx+ ρrE
2. (27)

Lemma 2. For all k ≥ 0 such that (6) and (14) hold, the
function Vp defined according to (27) satisfies

Vp(x
∗
k+1, Ek+1) ≤ νVp(x∗k, Ek) + νdδ

2
k

with ν := maxp{(1 − 1/N)2χp/ρp + (1 + φ)Λ2
p/N

2, 1 −
λ(Qp)/(2λ(Pp))} and νd := maxp(1 + 1/φ)ρpΦp(τs)

2,
where Λp and Φp are in (4) and (15), respectively.

Second, consider sampling interval [tk, tk+1] with switch.
Let hpq be the largest singular value of Hpq in (21).

Lemma 3. For all k ≥ 0 such that (6) and (17) hold, the
functions Vp, Vq defined according to (27) satisfy

Vq(x
∗
k+1, Ek+1) ≤ µVp(x∗k, Ek) + µdδ

2
k

with µ := maxp,q{(2λ(Pq)h
2
pq+(2+ζ)α2

pqρq)/λ(Pp), (2(1−
1/N)2nxλ(Pq)h

2
pq+(2+ζ)β2

pqρq)/ρp} and µd := maxp,q(1+

2/ζ)ρqγ
2
pq, where αpq, βpq, γpq are in (22), and ζ > 0 is an

arbitrarily selected design parameter.

By varying the design parameters t′, t′′, ζ we can ensure
µ ≥ 1 > ν and µd ≥ νd, which are assumed to hold in the
following proof; cf. (Yang and Liberzon, 2015, Remark 1).

Next we derive a lower bound on ADT τa in Assumption 1
that ensures exponential convergence at sampling times.

Lemma 4. Suppose the state is visible at consecutive sam-
pling times ti, . . . , tk−1. If the ADT τa satisfies

τa > (1 + log(µ)/ log(1/ν))τs, (28)

then there exists a sufficiently small ω ∈ (0, 1) such
that Vσ(tk)(x

∗
k, Ek) < θk−iΘN0Vσ(ti)(x

∗
i , Ei) + ΘN0+1(1 +

ν/(ω(1 − ν)))νdδ
2
i with Θ := (µ + ω(1 − ν)µd/νd)/(ν +

ω(1− ν)), θ := Θτs/τa(ν + ω(1− ν)) < 1 and N0 in (2).

Then the bounds for x∗k, Ek at sampling times in stabilizing
stages can be derived via the triangle inequality as

‖x∗k‖ ≤ θ(k−i)/2(ā1‖x∗i ‖+ b̄1Ei) + c̄1δi,

Ek ≤ rE(θ(k−i)/2(ā1‖x∗i ‖+ b̄1Ei) + c̄1δi)
(29)

for all k > i with ā1 := ΘN0/2
√
λM/λm, b̄1 := ā1

√
ρ/λM ,

c̄1 := Θ(N0+1)/2
√

(1 + ν/(ω(1− ν)))νd/λm and rE :=√
λm/ρm, where λM = maxp λ(Pp), λm = minp λ(Pp),

ρ = maxp ρp and ρm = minp ρp.

Finally, we derive the inter-sample bound for x in stabiliz-
ing stages. Similar analysis to Subsection 5.1.2 gives

‖x(t)‖ ≤ (α0 + 1)‖x∗k‖+ (β0 + (1− 1/N))Ek + γδd.

with (α0, β0, γ) := maxp,q(αpq, βpq, γpq) with t′ = t′′ = 0.
Combining the previous inequality with (29) gives that

‖x(t)‖ ≤ rS(θ(t/τs−i−1)/2(ā1‖x∗i ‖+ b̄1Ei) + c̄1δi) + γδd
(30)

for all t ∈ [ti, tj ] with rS := α0 + 1 + rE(β0 + (N − 1)/N).

6.2 Searching stage

Consider the case when the state escaped at sampling time
tj and is recovered at ti. Let r = σ(tj−1), p = σ(tj). Then

D̂j and Ej in (11) are given by D̂j = G(r, p, x∗j−1, Ej−1, δd)
and Ej = G(r, p, x∗j−1, Ej−1, δj−1). From the formula for

G we see that D̂j/Ej < δd/δj−1 = (1 + εδ)δd/δj . Define

η(δd/δj) := (log(δd/δj) + log(rd(δd/δj)))/ log(1 + εE) + 1
(31)

with rd(δd/δj) := max{1 + εδ, (β̂ − 1)/(β̄ − 1)} if δd > δj ;
else rd(δd/δj) := 1 + εδ. Then

i− j ≤ Lj = dmax{Lxj , Ldj}e < η(δd/δj). (32)

From (24) we see that D̂k = D̃k−j
j and Ek = Ẽk−jj for all

k = i, . . . , j. Hence Ei = Ẽi−jj ≤ Ẽ
Lj

j , and (23) implies

that ‖x(t) − x∗i ‖ ≤ D̂i = D̃i−j
j ≤ D̃Li

j ≤ ẼLi
j for all

t ∈ [tj , ti]. Finally, (25) and (32) implies Ẽ
Lj

j = β̂LjEj +

(β̂Lj − 1)(ᾱ‖x∗j‖+ γ̄δj)/(β̂ − 1) < b̄
η(δd/δj)
2 (ā2‖x∗j‖+Ej +

c̄2δj) with ā2 := ᾱ/(β̂ − 1), b̄2 := β̂ and c̄2 := γ̄/(β̂ − 1).
Hence for all t ∈ [tj , ti] we have

‖x(t)− x∗i ‖ < b̄
η(δd/δj)
2 (ā2‖x∗j‖+ Ej + c̄2δj),

Ei < b̄
η(δd/δj)
2 (ā2‖x∗j‖+ Ej + c̄2δj).

(33)

The case when there is a searching stage at t0 = 0 can be
treated in a similar manner. Let L′0 = dmax{Lx0 , Ld0}e if
‖x0‖ > E0; else L′0 = 0, where Lx0 , L

d
0 are defined in the

same ways as Lxj , L
d
j in (26) with D̂0 = ‖x0‖. Define

ηx0 (‖x0‖/E0) := Lx0 , ηd0(δd/δ0) := Ld0 + 1. (34)

By virtue of Remark 1, we see that the previous analysis
also applies to the case where j = 0 by letting D̂0 = ‖x0‖
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and substituting ηx0 (‖x0‖/E0) + ηd0(δd/δ0) for η(δd/δ0).
Hence when the state is initially captured at ti0 we get

i0 ≤ L′0 < ηx0 (‖x0‖/E0) + ηd0(δd/δ0), (35)

and for all t ∈ [0, ti0 ] we have

‖x(t)‖ < b̄
ηx0 (‖x0‖/E0)+ηd0 (δd/δ0)
2 (E0 + c̄2δ0),

Ei0 < b̄
ηx0 (‖x0‖/E0)+ηd0 (δd/δ0)
2 (E0 + c̄2δ0).

(36)

6.3 Exponential convergence

In this subsection we establish the first claim of Theorem 1.

The system alternates between searching and stabilizing
stages. The number of searching stages are finite as there
will be no more escape once δk ≥ δd. Let 0 = j0 ≤ i0 <
· · · < jNs < iNs be such that [tik , tjk+1

) are stabilizing
stages, and [tjk , tik) are searching stages. If δd > δ0 then
Ns ≤ d(log(δd/δ0))/(log(1 + εδ))e; else Ns = 0.

Combining the bounds (32), (33), (35), (36) for search-
ing stages, and (29), (30) for stabilizing stages shows

that ‖x(t)‖ < ψη
d
0 (δd/δ0)+η(δd/δj1 )+···+η(δd/δjk )ΨkrSθ

−1/2×
(ψη

x
0 (‖x0‖/E0)θt/(2τs)b̄1(E0+c̄2δ0)+(1+· · ·+(rε/Ψ)k)(c̄2b̄1+

c̄1)δ0) + γδd for all t ∈ [tjk , tjk+1
) and k = 0, . . . , Ns with

ψ := b̄2θ
−1/2, Ψ := ā1 +ā2b̄1 +rE b̄1 and rε := (1+εδ)/(1+

εE). Define Nd : R≥0 → Z by Nd(s) := dlog(s/δ0)/ log(1+
εδ)e if s > δ0; and Nd(s) := 0 if s ∈ [0, δ0], and Lx, Ld :
R≥0 → R≥0 by Lx(s) := ηx0 (s/E0) and Ld(s) := ηd0(s/δ0)+∑Nd(s)
l=1 η((1 + εδ)

−ls/δ0) with η in (31) and ηx0 , η
d
0 in (34).

Then Ns ≤ Nd(δd), and Lx(‖x0‖) + Ld(δd) is an upper
bound on the total length of all searching stages. Hence

‖x(t)‖ < ψLd(δd)ΨNd(δd)rSθ
−1/2

(
ψLx(‖x0‖)θt/(2τs)b̄1

× (E0 + c̄2δ0) +
1− (rε/Ψ)Nd(δd)+1

1− rε/Ψ
(c̄2b̄1 + c̄1)δ0

)
+ γδd

for all t ∈ R≥0. By applying Young’s inequality with
arbitrarily selected design parameters κx, κd > 0 such that
1/κx + 1/κd = 1 we obtain (5) with

λ := − log(θ)/(2τs) > 0,

C := ψκdrSθ
−1/2b̄1(E0 + c̄2δ0)/κd

+ ψrSθ
−1/2(c̄2b̄1 + c̄1)δ0,

(37)

and g : R≥0 → R>0 and h : R≥0 → R≥0 defined by

g(s) := ψκxLx(s)rSθ
−1/2b̄1(E0 + c̄2δ0)/κx,

h(s) := ψκdLd(s)ΨκdNd(s)rSθ
−1/2b̄1(E0 + c̄2δ0)/κd

+ (1− (rε/Ψ)Nd(δd)+1)ψLd(s)ΨNd(s)rSθ
−1/2

× (c̄2b̄1 + c̄1)δ0/(1− rε/Ψ) + γs− C.

(38)

6.4 Practical stability

In this subsection we establish the second claim of Theo-
rem 1, which essentially follows from (Yang and Liberzon,
2015, Subsection VI-E).

Lemma 5. Suppose the average dwell-time τa satisfies

τa > (1 + log(β)/ log(N/Λ))τs (39)

with β := maxp,q βpq and Λ := maxp Λp. Then the
practical stability property in Theorem 1 holds with

C ′ :=

(
rS b̄1ΘN0+1

B

(
1 +

Λ/N

ωB(1− Λ/N)

)
Φ + rS c̄1

)
δ0.

(40)
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