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Abstract— We study the feedback stabilization of intercon-
nected switched control-affine systems with both input-to-state
stable (ISS) and non-ISS modes. Provided that the switching is
slow in the sense of average dwell-time and the active time of
non-ISS modes is short in proportion, suitable feedback controls
are designed to achieve input-to-state practical stability (ISpS)
with an arbitrarily small constant. We devise such feedback
controls by extending a previous small-gain theorem on stability
of interconnected switched systems to the ISpS context, and
proposing a novel Lyapunov-based gain-assignment scheme.

I. INTRODUCTION

In studying real-world phenomena, one usually finds it
effective to transform a complex system into an interconnec-
tion of simpler subsystems, and establish stability based on
properties of the constituents via small-gain theorems. In the
input-output context, classical small-gain theorems for linear
systems were summarized in [1], and their generalizations for
nonlinear feedback interconnections were established in [2],
[3]. In recent works on interconnections, the notion of input-
to-state stability (ISS) [4] was widely used as it naturally uni-
fies the concepts of internal and external stability. Nonlinear
small-gain theorems for interconnections of ISS subsystems
were established and extended to the ISpS (input-to-state
practical stability) context in [5]; and a Lyapunov-based
formulation was introduced in [6]. Summaries of various
nonlinear small-gain theorems can be found in [7], [8].

On stabilizing interconnected control systems, in [5] a
gain-assignment scheme was proposed to render feedback
controls so that the small-gain condition holds in closed-
loop. Similar techniques were employed in [9] for nonlinear
cascaded systems with dynamic uncertainties, and in [10]
for nonlinear feedforward systems with input unmodeled
dynamics. See [8, Sec. 2.3] for an overview of the small-
gain control design.

In this paper, we study the stabilization of interconnected
switched systems. Switched systems have become a popular
topic in recent years (see, e.g., [11] and references therein).
It is well-known that, in general, a switched system does
not inherit stability properties of the individual modes. For
example, a switched system with two asymptotically stable
modes may not even be stable [11, Part II]. In [12] it was
proved that such a switched linear system is asymptotically
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stable provided that the switching admits a large enough
dwell-time. This approach was generalized to the context
of switched nonlinear systems and to the notion of average
dwell-time (ADT) in [13]. A similar result was developed
for switched linear systems with both stable and unstable
modes in [14] by restricting in proportion the active time
for unstable modes. Stability analysis of switched nonlinear
systems was extended to the ISS context in [15], and to
the IOSS (input/output-to-state stability) context in [16],
which also considered non-IOSS modes. The stabilization
of switched systems in the strict-feedback form was studied
in [17]. In [18] a small-gain theorem for interconnected
switched nonlinear systems with both ISS and non-ISS
modes were established, assuming that the switching is slow
in the sense of ADT and the active time of non-ISS modes is
short in proportion. However, in [18] the Lyapunov gains of
both switched systems were increased due to the switching
and the non-ISS modes, making the small-gain condition
more restrictive than the one for the case without switching.

Motivated by this undesirable effect, we study the feed-
back stabilization of interconnected switched control-affine
systems with both ISS and non-ISS modes. ISpS of the
interconnection with an arbitrarily small constant is achieved
by establishing a Lyapunov-based small-gain theorem, and
proposing a Lyapunov-based gain-assignment scheme. More
specifically, we first extend the small-gain theorem [18,
Th. 1] to the case of switched subsystems with both ISpS
and non-ISpS modes, which allows us to select suitable gains
and constants in the ISpS conditions on subsystems, for each
arbitrarily small but fixed constant in the ISpS estimate for
the interconnection. Then a Lyapunov-based gain-assignment
approach inspired by [9] is developed to derive feedback
controls for the required ISpS conditions.

In establishing the small-gain theorem for ISpS of inter-
connections of switched systems, we adopt various hybrid
system techniques. Hybrid systems are dynamic systems ex-
hibiting both continuous and discrete behaviors. Trajectory-
based small-gain theorems for interconnections of hybrid
systems were first reported in [19], [20], while Lyapunov-
based formulations were introduced in [21]. In this work, we
follow the modeling framework for hybrid systems in [22],
which proved to be general and natural from the viewpoint of
Lyapunov stability theory [23], [24]. Results on Lyapunov-
based small-gain theorems using this modeling framework
can be found in [25], [26], [27].

This paper is structured as follows. In Section II we
introduce the system and stability notions. The problem
formulation and the main result are presented in Section III.
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The main result is proved based on the small-gain theorem
for ISpS of interconnections of switched systems in Sec-
tion IV-A and the Lyapuov-based gain-assignment scheme
in Section IV-B. Section V concludes the paper with a brief
summary and an outlook on future research.

II. PRELIMINARIES

Consider a family of dynamical systems with the state
x ∈ Rn, disturbance w ∈ Rm and index set P (which can
in principle be arbitrary) modeled by

ẋ = fp(x,w), p ∈ P. (1)

The corresponding switched system is defined by

ẋ = fσ(x,w), x(0) = x0 (2)

with a piecewise constant, right-continuous switching signal
σ : R≥0 → P that specifies the active mode σ(t) at each time
t. For each p ∈ P , the function fp is locally Lipschitz and
satisfies fp(0, 0) = 0. The solution x(·) is absolutely con-
tinuous and satisfies the differential equation (2) away from
discontinuities of σ (in particular, there is no state jump).
An admissible disturbance w(·) is a Lebesgue measurable,
locally essentially bounded function. Discontinuities of σ are
called switching times, or simply switches. It is assumed that
the set of switches contains no accumulation points (thus
there is at most one switch at any time and finitely many
switches on any finite time interval).

We say that the switching signal σ admits a dwell-time
[12] τd > 0 if all consecutive switches t′, t′′ satisfy

t′′ − t′ ≥ τd; (3)

and σ admits an average dwell-time (ADT) [13] τa > 0 if

N(t2, t1) ≤ t2 − t1
τa

+N0 ∀ t2 > t1 ≥ 0 (4)

with an integer N0 ≥ 1, where N(t2, t1) denotes the number
of switches on a time interval (t1, t2]. Note that (3) can be
rewritten in the form of (4) with τa = τd and N0 = 1.

For two vectors v1, v2, let (v1, v2) := (v>1 , v
>
2 )> denote

their concatenation. For a vector v, let |v| denote its Eu-
clidean norm, and |v|A its Euclidean distance to a set A.
For a function w : R≥0 → Rn, let ‖w‖ denote its essential
supremum Euclidean norm.

Let C1 denote the class of continuously differentiable
functions. A function α : R≥0 → R≥0 is of class K if
it is continuous, strictly increasing and positive definite.
It is of class K∞ if α ∈ K and limr→∞ α(r) = ∞
(in particular, this implies that it is globally invertible). A
function β : R≥0×R≥0 → R≥0 is of class KL if β(·, t) ∈ K
for each fixed t, and β(r, ·) is continuous, strictly decreasing
and limt→∞ β(r, t) = 0 for each fixed r > 0.

A system in (1) is input-to-state practically stable (ISpS)
[5] if there exist β ∈ KL, γ ∈ K∞ and ε ≥ 0 such that

|x(t)| ≤ β(|x0|, t) + γ(‖w‖) + ε ∀ t ≥ 0 (5)

for all initial states x0 and admissible disturbances w. When
ε = 0, ISpS becomes input-to-state stability (ISS) [4], which

is equivalent to the standard notion of global asymptotic sta-
bility (GAS) for the case without disturbance [28, Prop. 2.5].
The same definitions of ISpS, ISS and GAS also apply to
the switched system (2).

III. MAIN RESULT

Consider an interconnection of two switched subsystems
Σi (each with the state xi ∈ Rni , index set Pi and switching
signal σi) for i = 1, 2 modeled by

Σi : ẋi = fi,σi(x,w), xi(0) = xi,0, (6)

where x = (x1, x2) denotes the state of the interconnection,
and w ∈ Rm the external disturbance. Each subsystem Σi
switches independently and treats the state xj of the other
one as the internal disturbance.1 We are interested in the
scenario that both subsystems are in the control-affine form

Σi : ẋi = f0
i,σi

(x,w) +Gi,σi(x,w)ui, xi(0) = xi,0 (7)

with the control ui ∈ Rni . For each pi ∈ Pi, the open-loop
dynamics f0

i,pi
fulfills the same assumption as those imposed

on fp in Section II, and the matrix-valued function Gi,pi is
locally Lipschitz. An admissible feedback control is of the
form ui = κi,σi

(xi) with a family of positive definite, locally
Lipschitz functions κi,pi for pi ∈ Pi. Our goal is to construct
suitable feedback controls u1, u2 such that (7) is ISpS (w.r.t.
the external disturbance w) with an arbitrarily small ε > 0.

We consider the general scenario where both open-loop
subsystems in (7) contain ISS and non-ISS modes. Let Ps,i
and Pu,i denote the index sets of ISS and non-ISS modes,
respectively. Then (Ps,i,Pu,i) forms a partition of Pi (i.e.,
Ps,i∪Pu,i = Pi and Ps,i∩Pu,i = ∅). Following [16], we let
Ts,i(t2, t1) denote the total active time of ISS modes on a
time interval (t1, t2], and Tu,i(t2, t1) that of non-ISS modes.
Then Ts,i(t2, t1) + Tu,i(t2, t1) = t2 − t1.

Our first assumption is that each ISS mode admits an ISS-
Lyapunov function, each non-ISS mode admits a candidate
ISS-Lyapunov function, and the (candidate) ISS-Lyapunov
functions are uniform in the following sense.

Assumption 1 (Generalized ISS-Lyapunov). For the subsys-
tem Σi of (7) in open-loop, there exists a family of positive
definite and C1 functions Vi,pi : Rni → R≥0 for pi ∈ Pi
such that their gradients ∇Vi,pi are locally Lipschitz and
nowhere vanishing except at the origin, and that
1. there exist bounds α1,i, α2,i ∈ K∞ such that

α1,i(|xi|) ≤ Vi,p(x) ≤ α2,i(|xi|) ∀xi, ∀ p ∈ Pi; (8)

2. there exist internal gain φi ∈ K∞, external gain χwi ∈ K∞
and rate coefficients λs,i, λu,i > 0 such that

|xi| ≥ χwi (|w|)⇒{
∇Vi,ps(xi) · f0

i,ps(x,w) ≤ −λs,iVi,ps(xi) + φi(|xj |),
∇Vi,pu(xi) · f0

i,pu(x,w) ≤ λu,iVi,pu(xi) + φi(|xj |)
(9)

1Throughout this paper, we always follow the convention that i ∈ {1, 2}
and j ∈ {1, 2}\{i}.
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for all xi, xj , w and all ps ∈ Ps,i, pu ∈ Pu,i;
3. there exists a ratio µi ≥ 1 such that

Vi,p(xi) ≤ µiVi,q(xi) ∀xi, ∀ p, q ∈ Pi. (10)

Remark 1. For each ps ∈ Ps,i (ISS mode), the assumption
that ∇Vi,ps(xi) 6= 0 when xi 6= 0 is guaranteed by the first
inequality in (9), which cannot hold with xi 6= 0, xj = 0,
w = 0 and ∇Vi,ps(xi) = 0.

Also, we assume that the switching is slow in the sense
of ADT, and the active time of non-ISS modes is short in
proportion.

Assumption 2 (ADT). The switching signal σi satisfies (4)
with an ADT τa,i > 0 and an integer N0,i ≥ 1.

Assumption 3 (Time-ratio). There exist a time-ratio ρi ∈
[0, 1) and a constant T0,i ≥ 0 such that

Tu,i(t2, t1) ≤ T0,i + ρi(t2 − t1) ∀ t2 > t1 ≥ 0.

Finally, the matrix-valued functions Gi,pi : Rni × Rm →
Rni×ni for pi ∈ Pi satisfy the following condition.

Assumption 4. For each pi ∈ Pi,

Gi,pi(x,w)+Gi,pi(x,w)>−2εGi,piI ≥ 0 ∀x, ∀w (11)

(i.e., the matrix on the left-hand side is positive semi-definite)
with a constant εGi,pi > 0.

This assumption ensures that it does not require arbitrarily
large controls to achieve stabilization.2 Similar assumptions
can be seen in the literature such as [9, Assumptions 5 and 9].

Our main result is stated as the following theorem:

Theorem 1. Consider the interconnection (7). Suppose that
for each subsystem Σi, Assumptions 1–4 hold with

(1− ρi)λs,i − ρiλu,i − (lnµi)/τa,i > 0. (12)

Then for each ε > 0, there exist suitable feedback controls
u1, u2 such that (7) is ISpS with the constant ε, that is, there
exist β ∈ KL and γ ∈ K∞ such that (5) holds.

IV. PROOF OF THE MAIN RESULT

A. A Lyapunov-based small-gain theorem

First, we extend [18, Th. 1] to establish a small-gain
theorem for ISpS of the interconnection (6).

Assumption 1′ (Generalized ISpS-Lyapunov). For the sub-
system Σi of (6), there exists a family of positive definite
and C1 functions Vi,pi : Rni → R≥0 for pi ∈ Pi such that
1. there exist bounds α1,i, α2,i ∈ K∞ such that (8) holds;
2. there exist internal gain χi ∈ K∞, external gain χwi ∈
K∞, constant δi > 0 and rate coefficients λs,i, λu,i > 0
such that
|xi| ≥ max{χi(|xj |), χwi (|w|), δi}

⇒

{
∇Vi,ps(xi) · fi,ps(x,w) ≤ −λs,iVi,ps(xi),

∇Vi,pu(xi) · fi,pu(x,w) ≤ λu,iVi,pu(xi)

(13)

2Our result also applies to the case that Gi,pi +G>
i,pi
≤ −2εGi,pi < 0

everywhere, by changing the signs of the feedback controls in (34) below.

for all xi, xj , w and all ps ∈ Ps,i, pu ∈ Pu,i;
3. there exists a ratio µi ≥ 1 such that (10) holds.

The following proposition provides the small-gain con-
dition for ISpS of the interconnection (6), and the relation
between ε in (5) and δi in (13) for i = 1, 2.

Proposition 2. Consider the interconnection (6). Suppose
that for each Σi, Assumptions 1′, 2, 3 and (12) hold. Let

Θi := N0,i lnµi + T0,i(λs,i + λu,i), i = 1, 2 (14)

and consider the Lyapunov gains ψ1, ψ2 ∈ K∞ defined by

ψi(r) := α2,i(χi(α
−1
1,j(r)))e

Θi , i = 1, 2. (15)

Then (6) is ISpS if ψ1, ψ2 satisfy the small-gain condition

ψ1(ψ2(r)) < r ∀ r > 0. (16)

In particular, (5) holds for all constants ε satisfying

ε ≥
√

2 max
{
α−1

1,1(α2,1(δ1)eΘ1), χ−1
1 (δ1),

α−1
1,2(α2,2(δ2)eΘ2), χ−1

2 (δ2)
}
.

(17)

Proof. See Appendix I for the proof of Proposition 2.

B. Gain assignment
Next, we extend the techniques in [9] (cf. [8, Sec. 2.3])

to develop a Lyapunov-based gain-assignment scheme that
renders suitable feedback controls for each fixed internal gain
and constant. While both methods require partial knowledge
of the dynamics, apart from being developed for switched
systems, ours is different in the sense that we assume
knowledge of the gradients of the ISS-Lyapunov functions
instead of the K∞ bounds of the dynamics as in [9].

Proposition 3. Consider the subsystem Σi in (7). Suppose
that Assumptions 1, 4 hold. Given arbitrary χi ∈ K∞ and
δi > 0, there exists a feedback control ui = κi,σi

(xi) (given
in (34) below) such that (13) holds in closed-loop.

Proof. See Appendix II for the proof of Proposition 3.

C. Control synthesis
Now we combine the results above to prove Theorem 1.
First, select χ1, χ2 ∈ K∞ such that (16) holds with ψ1, ψ2

defined by (15).
Second, given an arbitrary ε > 0, select small enough

δ1, δ2 > 0 so that (17) holds, such as

δi = min
{
α−1

2,i (α1,i(ε/
√

2)/eΘi), χi(ε/
√

2)
}
, i = 1, 2.

Finally, for each subsystem Σi in (7), invoke Proposition 3
to obtain the suitable feedback control ui such that (13),
and hence Assumption 1′, holds in closed-loop. Then from
Proposition 2 it follows that (7) is ISpS with the constant ε.

V. CONCLUSION

We studied the stabilization of interconnected switched
control-affine systems with both ISS and non-ISS modes.
Based on a small-gain theorem and a Lyapunov-based gain-
assignment scheme, suitable feedback controls were designed
to achieve ISpS with an arbitrarily small constant. Future
work will focus on extending the results to more general
types of interconnections.
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APPENDIX I
PROOF OF PROPOSITION 2

A. Preliminaries for hybrid systems

Following [24], a hybrid system with the state x ∈ X ⊂
Rn and input w ∈ W ⊂ Rm is modeled by

ẋ ∈ F (x,w), (x,w) ∈ C,
x+ ∈ G(x,w), (x,w) ∈ D.

(18)

We call C ⊂ X ×W the flow set, D ⊂ X ×W the jump set,
F : X ×W ⇒ Rn the flow map3, and G : X ×W ⇒ X the
jump map. In this model, the state x follows the continuous
flow if (x, u) ∈ C\D, and the discrete jump if (x, u) ∈ D\C.
If (x, u) ∈ C∩D then it may either flow or jump. A solution
of (18) is defined on a hybrid time domain E ⊂ R≥0×Z≥0,
which is a union of a finite or infinite sequence of intervals
[tk, tk+1] × {k}, with the last one (if existent) possibly of
the form [tk, T ) × {k} with T ∈ R or T = ∞. A hybrid
input is a function w : domw →W defined on a hybrid time
domain such that w(·, k) is Lebesgue measurable and locally
essentially bounded on {t : (t, k) ∈ domw} for each fixed
k. A solution x : domx → X of (19) with a hybrid input
w : domw → W satisfies that x(·, k) is locally absolutely
continuous on {t : (t, k) ∈ domx} for each fixed k, and4

• domx = domw;
• (x(t, k), w(t, k)) ∈ C and ẋ(t, k) ∈ F (x(t, k), w(t, k)) for

all k and almost all t such that (t, k) ∈ domx;
• (x(t, k), w(t, k)) ∈ D and x(t, k+1) ∈ G(x(t, k), w(t, k))

for all (t, k) ∈ domx such that (t, k + 1) ∈ domx.
With suitable assumptions on H = (C, F,D, G), one can es-
tablish local existence of solutions, which are not necessarily
unique (see, e.g., [22, Sec. 2]). A solution is maximal if it
cannot be extended, and complete if its domain is unbounded.

For a hybrid input w : domw → Rm, its essential
supremum Euclidean norm is defined by

‖w‖ := max

{
ess sup

(s,l)∈domw

|w(s, l)|, sup
(s,l)∈J (w)

|w(s, l)|
}
,

where J (w) := {(s, l) ∈ domw : (s, l + 1) ∈ domw}.5
For a locally Lipschitz function V : Rn → R, its Clarke

derivative [29] at x in the direction v ∈ Rn is defined by

V ◦(x; v) := lim sup
s↘0, y→x

V (y + sv)− V (y)

s
.

B. Auxiliary timers and hybrid systems

We augment each switched subsystem Σi in (6) with an
auxiliary timer incorporating the conditions on switching to
obtain a corresponding hybrid system. Consider a hybrid
system with the state zi = (x̃i, σ̃i, τi) ∈ Rni×Pi×[0,Θi] =:
Zi and the input di = (ṽi, w̃i) ∈ Rnj × Rm modeled by

żi ∈ Fi(zi, di), (zi, di) ∈ Ci,
z+
i ∈ Gi(zi), (zi, di) ∈ Di

(19)

3We use “⇒” to denote a set-valued mapping.
4Here x(t, k) represents the state of (19) at time t and after k jumps.
5Note that the set of hybrid jump times J (w) with measure 0 cannot be

ignored when computing the essential supremum norm.

with

Fi(zi, di) :=



 {fi,σ̃i(x̃i, di)}
{0}

[0, θi]

 , σ̃i ∈ Ps,i; {fi,σ̃i
(x̃i, di)}
{0}

{θi − (λs,i + λu,i)}

 , σ̃i ∈ Pu,i,

Ci := Rni × Pi × [0,Θi]× Rnj × Rm,
Gi(zi) := {x̃i} × (Pi\{σ̃i})× {τi − lnµi},
Di := Rni × Pi × [lnµi,Θi]× Rnj × Rm,

where Θi is defined by (14) and

θi := (lnµi)/τa,i + ρi(λs,i + λu,i) < λs,i. (20)

Note the inequality in (20) follows from (12). The following
lemma characterizes the correspondence between solutions
of Σi in (6) and complete solutions of (19).

Lemma 1. Let xi be a solution of the switched subsystem Σi
in (6) with the internal disturbance xj , external disturbance
w and switching signal σi. Suppose that Assumptions 1′, 2, 3
and (12) hold. Then there exists a complete solution zi =
(x̃i, σ̃i, τi) of the hybrid system (19) with the hybrid input
di = (ṽi, w̃i) such that for all (t, k) ∈ dom zi,

ṽi(t, k) = xj(t), w̃i(t, k) = w(t), x̃i(t, k) = xi(t). (21)

Proof. The proof is similar to that of [18, Prop. 1] and is
omitted here.

C. Hybrid ISpS-Lyapunov functions

Consider the function Vi : Zi → R≥0 defined by

Vi(zi) := Vi,σ̃i
(x̃i)e

τi

with the family of functions Vi,pi for pi ∈ Pi in Assump-
tion 1′. As all Vi,pi are C1, it follows that Vi is C1 in x̃i and
τi. Moreover, it satisfies the following conditions.

Lemma 2. Suppose Assumptions 1′, 2, 3 and (12) hold. Then
1. for the bounds α̃1,i, α̃2,i ∈ K∞ defined by

α̃1,i(r) := α1,i(r), α̃2,i(r) := α2,i(r)e
Θi

and the set Ai := {0} × Pi × [0,Θi] ⊂ Zi, it holds that

α̃1,i(|zi|Ai
) ≤ Vi(zi) ≤ α̃2,i(|zi|Ai

) ∀ zi ∈ Zi;

2. for the rate coefficient λi > 0 defined by λi := λs,i−θi, it
holds that for all (zi, ṽi, w̃i) ∈ Ci and vi ∈ Fi(zi, ṽi, w̃i),

|zi|Ai
≥ max{χi(|ṽi|), χwi (|w̃i|), δi}

⇒ ∇Vi(zi) · vi ≤ −λiVi(zi);
(22)

3. it holds that

Vi(z
+
i ) ≤ Vi(zi) ∀ (zi, ṽi, w̃i) ∈ Di, ∀ z+

i ∈ Gi(zi).

Proof. The proof of is similar to that of [18, Prop. 2] and is
omitted here.
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D. ISpS of the interconnection

Following [6, Lemma A.1], if (16) holds then there exists
a gain ψ ∈ K∞ such that ψ ∈ C1 with ψ′ > 0 on R>0 and

ψ−1
1 (r) > ψ(r) > ψ2(r) ∀ r > 0. (23)

Let z = (z1, z2) ∈ Z1 ×Z2 =: Z and consider the function
V : Z → R≥0 defined by

V (z) := max{ψ(V1(z1)), V2(z2)}.

As both Vi are C1 in x̃i and τi, and ψ ∈ C1 on R>0, it follows
that V is locally Lipschitz and hence absolutely continuous
and almost everywhere differentiable away from its zero set
(Rademacher’s theorem [30]). Moreover, based on Lemma 2
it satisfies the following conditions.

Lemma 3. Suppose Assumptions 1′, 2, 3 and (12) hold. Then
1. for the bounds α1, α2 ∈ K∞ defined by

α1(r) := min{ψ(α̃1,1(r/
√

2)), α̃1,2(r/
√

2)},
α2(r) := max{ψ(α̃2,1(r)), α̃2,2(r)}

(24)

and the set A := A1 ×A2, it holds that

α1(|z|A) ≤ V (z) ≤ α2(|z|A) ∀ z ∈ Z; (25)

2. for the gain χw ∈ K∞, constant δ > 0 and positive
definite, continuous rate h : R≥0 → R≥0 defined by

χw(r) := max{ψ(α̃2,1(χw1 (r))), α̃2,2(χw2 (r))},
δ := max{ψ(α̃2,1(δ1)), α̃2,2(δ2)},

h(r) := min{ψ′(ψ−1(r))λ1ψ
−1(r), λ2r},

(26)

it holds that for all z ∈ Z , w̃ ∈ Rm and v ∈
F1(z1, x̃2, w̃)× F2(z2, x̃1, w̃),

V (z) ≥ max{χw(|w̃|), δ} ⇒ V ◦(z; v) ≤ −h(V (z));
(27)

3. it holds that for all z ∈ Rn1 ×P1 × [lnµ1,Θ1]×Rn2 ×
P2 × [lnµ2,Θ2] and z+ ∈ G1(z1) × G2(z2), or z ∈
Z1×Rn2 ×P2× [lnµ2,Θ2] and z+ ∈ {z1}×G2(z2), or
z ∈ Rn1×P1× [lnµ1,Θ1]×Z2 and z+ ∈ G1(z1)×{z2},

V (z+) ≤ V (z). (28)

Proof. The proof of item 1 and 3 are the same as that
of the corresponding conditions in [18, Sec. 4.5] and are
omitted here. For item 2, let v = (v1, v2) be such that
vi ∈ Fi(zi, x̃j , w̃) and consider the following three cases:
1. If ψ(V1(z1)) > V2(z2) then V (z) = ψ(V1(z1)). Hence

|z1|A1 ≥ α̃−1
2,1(ψ1(α̃1,2(|z2|A2))) = χ1(|z2|A2) (29)

following (15). If V (z) ≥ max{χw(|w̃|), δ} then

|z1|A1
≥ α̃−1

2,1(V1(z1)) ≥ max{χw1 (|w̃|), δ1)}. (30)

Therefore from (22) with i = 1 and (26) it follows that

V ◦(z; v) = ψ′(V1(z1))∇V1(z1) · v1 ≤ −h(V (z)).

2. If ψ(V1(z1)) < V2(z2) then V (z) = V2(z2). Hence

|z2|A2
≥ α̃−1

2,2(ψ2(α̃1,1(|z1|A1
))) = χ2(|z1|A1

) (31)

following (15). If V (z) ≥ max{χw(|w̃|), δ} then

|z2|A2
≥ α̃−1

2,2(V2(z2)) ≥ max{χw2 (|w̃|), δ2)}. (32)

Therefore from (22) with i = 2 and (26) it follows that

V ◦(z; v) = ∇V2(z2) · v2 ≤ −λ2V2(z2) ≤ −h(V (z)).

3. Otherwise V (z) = ψ(V1(z1)) = V2(z2). Then V (z) ≥
max{χw(|w̃|), δ} implies that (29)–(32) all hold. By
virtue of [27, Lemma II.1], V ◦(z; v) is well-defined, and
from the proof of the first two cases it follows that

V ◦(z; v) ≤ max{ψ′(V1(z1))∇V1(z1) · v1,∇V2(z2) · v2}
≤ −h(V (z)).

Let x = (x1, x2) be a solution of the interconnection (6)
with the external disturbance w and switching signals σ1, σ2.
Following Lemma 1, for each i there exists a complete
solution z̄i = (x̃i, σ̃i, τi) of the hybrid system (19) with
the hybrid input di = (ṽi, w̃i) such that (21) holds for all
(t, k) ∈ dom z̄i. As σ1, σ2 are independent, dom z̄1,dom z̄2

are different in general. Define a hybrid time domain E so
that for each (t, k) ∈ E, (t, k+1) ∈ E if and only if there are
i ∈ {1, 2} and ki ∈ Z≥0 so that (t, ki), (t, ki + 1) ∈ dom z̄i.
Define z = (z1, z2) : E → Z as follows: for each (t, k) ∈ E,
1. when (t, k − 1), (t, k + 1) /∈ E, for each i let zi(t, k) =
z̄i(t, ki) for the unique ki such that (t, ki) ∈ dom z̄i;

2. when (t, k + 1) ∈ E, for each i if there is a ki such that
(t, ki), (t, ki+1) ∈ dom z̄i then let zi(t, k) = z̄i(t, ki) and
zi(t, k+1) = z̄i(t, ki+1); else let zi(t, k) = zi(t, k+1) =
z̄i(t, ki) for the unique ki such that (t, ki) ∈ dom z̄i.

Define w̃ : E → Rm from w̃1, w̃2 in a similar manner. Then

|z(t, k)|A = |x(t)|, w̃(t, k) = w(t) ∀ (t, k) ∈ E. (33)

Consider the hybrid time (t0, k0) defined by

(t0, k0) := argmin
(s,l)∈E

{s+l : V (z(s, l)) ≤ max{χw(‖w̃‖), δ}}.

From (27) and (28) it follows that

V (z(t, k)) ≤ V (z(t0, k0)) ≤ max{χw(‖w̃‖), δ}

for all (t, k) ∈ E with t+ k > t0 + k0. Moreover, following
similar arguments as in [18, Sec. 4.5], (27) and (28) also
imply that there exists a function βV ∈ KL such that

V (z(t, k)) ≤ βV (V (z(0, 0)), t)

for all (t, k) ∈ E with t+k ≤ t0+k0. Then for all (t, k) ∈ E,

V (z(t, k)) ≤ max{βV (V (z(0, 0)), t), χw(‖w̃‖), δ}.

Following (25) and (33), the solution x of the interconnection
(6) satisfies (5) with β ∈ KL and γ ∈ K∞ defined by

β(r, t) := α−1
1 (βV (α2(r), t)), γ(r) := α−1

1 (χw(r)),

and for all ε ≥ α−1
1 (δ). We conclude the proof of Propo-

sition 2 by noting that (17) implies ε ≥ α−1
1 (δ). More
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specifically,

α−1
1 (δ) ≤

√
2 max

{
α̃−1

1,2(ψ(α̃2,1(δ1))), α̃−1
1,2(α̃2,2(δ2)),

α̃−1
1,1(ψ−1(ψ(α̃2,1(δ1)))), α̃−1

1,1(ψ−1(α̃2,2(δ2)))
}

≤
√

2 max
{
α̃−1

1,1(α̃2,1(δ1)), α̃−1
1,2(α̃2,2(δ2)),

α̃−1
1,2(ψ−1

1 (α̃2,1(δ1))), α̃−1
1,1(ψ−1

2 (α̃2,2(δ2)))
}

=
√

2 max
{
α−1

1,1(α2,1(δ1)eΘ1), χ−1
1 (δ1),

α−1
1,2(α2,2(δ2)eΘ2), χ−1

2 (δ2)
}
,

following (15), (23), (24) and (26).

APPENDIX II
PROOF OF PROPOSITION 3

Let arbitrary χi ∈ K∞ and δi > 0 be given and fixed. For
each pi ∈ Pi, define the function ξi,pi : R≥0 → R≥0 by

ξi,pi(r) :=


min

δi≤|y|≤r
|∇Vi,pi(y)|2, r > δi;

min
|y|=δi

|∇Vi,pi(y)|2, r ≤ δi,

where Vi,pi is as in Assumption 1. Then ξi,pi is continuous,
decreasing and (strictly) positive. Hence the function ν̄i,pi :
R≥0 → R≥0 defined by

ν̄i,pi(r) := φi(χ
−1
i (r))/ξi,pi(r)

is of class K∞. Following [9, Lemma 1], there exists a
smooth function νi,pi ∈ K∞ such that

νi,pi(r) ≥ ν̄i,pi(r) ∀ r ≥ δi.

Consider the feedback control ui = κi,σi
(xi) with the family

of functions κi,pi : Rni → R≥0 for pi ∈ Pi defined by

κi,pi(xi) := −νi,pi(|xi|)
εGi,pi

∇Vi,pi(xi), (34)

with the constant εGi,pi in (11). If |xi| ≥ max{χi(|xj |), δi}
then

∇Vi,pi(xi) ·Gi,pi(xi)ui

= −∇Vi,pi(xi)
>Gi,pi(xi)∇Vi,pi(xi)

εGi,pi
νi,pi(|xi|)

≤ −∇Vi,pi(xi)
>Gi,pi(xi)∇Vi,pi(xi)

εGi,pi minδi≤|y|≤|xi| |∇Vi,pi(y)|2
φi(χ

−1
i (|xi|))

≤ −φi(|xj |)

for all pi ∈ Pi, where the last inequality follows partially
from (11). Combining the previous implication with (9)
yields (13), which concludes the proof of Proposition 3.
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