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a b s t r a c t

We consider a linear uncertain system with an unknown bounded disturbance under a passification-
based adaptive controller with quantized measurements. First, we derive conditions ensuring ultimate
boundedness of the system. Then we develop a switching procedure for an adaptive controller with a
dynamic quantizer that ensures convergence to a smaller set. The size of the limit set is defined by the
disturbance bound. Finally, we demonstrate applicability of the proposed controller to polytopic-type
uncertain systems and its efficiency by the example of a yaw angle control of a flying vehicle.
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1. Introduction

Adaptive control plays an important role in the real world prob-
lems, where exact system parameters are often unknown. One of
the possible methods for adaptive control synthesis is the pas-
sification method [1]. Starting from the works [2,3] this method
proved to be very efficient and useful. Nevertheless, while imple-
menting passification-based adaptive control, several issues may
arise. First of all, disturbances inherent in most systems can cause
infinite growth of the control gain. This issue may be overcome
by introducing the so-called ‘‘σ -modification’’ [4,5]. Secondly, the
measurements can experience time-varying unknown delay. This
problem has been recently studied in [6]. In this paper we consider
passification-based adaptive control in the presence of measure-
ment quantization and propose a switching procedure for the con-
troller parameters that ensures the convergence of the systemstate
to an ellipsoid whose size depends on the upper bound of the dis-
turbance.
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Control with limited information has attracted growing interest
in the control research community lately [7–10]. Due to limited
sensing capabilities, defects of sensors and limited communication
channel capacities it is reasonable to assume that only approximate
value of the output is available to a controller. These sensor
and communication imposed constraints can be modeled by
quantization [11].

Although adaptive control of uncertain systems received con-
siderable interest and has been widely investigated, there are few
works devoted to adaptive control with quantized measurements.
In [12] the performance of an adaptive observer-based chaotic syn-
chronization system under information constrains has been an-
alyzed. A binary coder–decoder scheme has been proposed and
studied in [13] for synchronization of passifiable Lurie systems via
limited-capacity communication channel. In [14] a direct adap-
tive control framework for systems with input quantizers has
been developed. In [15] a supervisory control scheme for uncer-
tain systems with quantized measurements has been proposed. In
supervisory control schemes usually a finite family of candidate
controllers is employed together with an estimator-based switch-
ing logic to select the active controller at every time.

Differently from theseworks, the control schemeproposed here
does not require any estimator or observer. Unlike [15] we con-
sider adaptive tuning of the controller gain, rather than switching
between several known controllers. At the same time, to ensure
convergence to a smaller set, our controller switches parameters
of the adaptation law.

http://dx.doi.org/10.1016/j.sysconle.2015.12.001
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Notations. By ∥ · ∥ we denote Euclidean norm for vectors and
spectral norm for matrices. For P ∈ Rn×n notation P > 0 means
that P is symmetric and positive-definite, λmax(P), λmin(P) are
themaximum andminimum eigenvalues, respectively, PT denotes
transposed matrix P .

2. System description

Consider an uncertain linear system

ẋ(t) = Ax(t) + Bu(t) + w(t),
y(t) = Cx(t)

(1)

with state x ∈ Rn, control input u ∈ R, output y ∈ Rl, and constant
uncertain matrices A, B, C of appropriate dimensions. Unknown
disturbance w(t) ∈ Rn has a bounded norm:
∥w(t)∥ ≤ ∆w, t ≥ 0.
Following [1] we introduce the notion of hyper-minimum-phase
(HMP) systems.

Definition 1. For a given g ∈ Rl the transfer function gTW (s) =

gTC(sI − A)−1B is called hyper-minimum-phase (HMP) if gTW (s)
det(sI − A) is a Hurwitz polynomial with a positive leading
coefficient gTCB > 0.

Assumption 1. There exists g ∈ Rl such that ∥g∥ = 1 and the
transfer function gTW (s) = gTC(sI − A)−1B is HMP.

The condition ∥g∥ = 1 is imposed only to simplify calculations
and is not restrictive since if gTW (s) is HMP then ∥g∥−1gTW (s) is
also HMP.

Remark 1. The search of the vector g satisfying Assumption 1 in
general is a difficult problem. It is equivalent to the search of a
Hurwitz polynomial in an affine family of polynomials which is
probablyNP-hard (cannot be solved in a polynomial time, see [16]).
One approach based on Monte-Carlo method can be found in [17].

2.1. Passification lemma

Our results are based on the following lemma [3,18].

Lemma 1 (Passification Lemma). The rational function gTW (s) =

gTC(sI − A)−1B is HMP if and only if there exist a matrix P, a vector
θ∗ ∈ Rl, and a scalar ε > 0 such that

P > 0, PĀ + ĀTP < −εP, PB = CTg, (2)

where Ā = A − Bθ T
∗
C.

Remark 2. If gTW (s) = gTC(sI − A)−1B is HMP then there exists
θ such that the input u = −θ Ty + v makes the system

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t)

strictly passive with respect to a new input v, i.e. there exist
functions V (x) = xTPx, with P > 0, and ϕ(x) ≥ 0, where ϕ(x) > 0
for x ≠ 0, such that

V (x(t)) ≤ V (x(0)) +

 t

0


yT (s)gv(s) − ϕ(x(s))


ds.

Remark 3. Passification lemma is also contained in [19] (implic-
itly) and in [20] (explicitly). This lemma provides conditions for
existence of an output static feedback u = −θ Ty that renders
the closed-loop system strictly positive real (SPR). If no such con-
stant output feedback exists, then no dynamic output feedback
with a proper transfer matrix exists to make the closed-loop sys-
temSPR [21].More subtle results for the case of non-strict passivity
can be found in [22].
2.2. Quantizer model

Further we will assume that the controller receives quantized
measurements. Following [7] we introduce a quantizer with a
quantization range M and a quantization error bound ∆e as a
mapping q: y → q(y) from Rl to a finite subset of Rl such that

∥y∥ ≤ M ⇒ ∥q(y) − y∥ ≤ ∆e.

We will refer to the quantity e = q(y) − y as the quantization
error. The concrete codomain of q is not important for our further
analysis, therefore, can be chosen arbitrary. The value of M is
usually dictated by the effective range of a sensor.

By dynamic quantizer we will mean the mapping

qµ(y) = µq


y
µ


, (3)

where µ > 0. For each positive µ one obtains a quantizer with the
quantization rangeµM and the quantization error boundµ∆e. We
can think of µ as the ‘‘zoom’’ variable: increasing µ corresponds
to zooming out and essentially obtaining a new quantizer with
larger quantization range and quantization error bound, whereas
decreasing µ corresponds to zooming in and obtaining a quantizer
with a smaller quantization range but also a smaller quantization
error bound. A useful example to keep in mind is a camera with
optical zooming capability: one can zoom in and out while the
number of photodiodes in the image sensor is fixed. Another
example is the system with digital communication channel that
can transmit a finite number of bytes. In this case one needs
to encode all possible values of the output signal to transmit it
through a communication channel. Obviously, in such case one can
reduce the quantization error by reducing the range.

3. Ultimate boundedness

Together with the system (1) that satisfies Assumption 1 with
some g we consider the adaptive controller

u(t) = −θ T (t)q(y(t)),

θ̇ (t) = γ q(y(t))qT (y(t))g − aθ(t),
(4)

where γ > 0 is a controller gain parameter and a > 0 is
a regularizing parameter. Since q(y(t)) is piece-wise continuous
we consider right-hand side derivative. As it has been previously
shown [23] adaptive controllers similar to (4) without quantiza-
tion (q(y) = y) can ensure ultimate boundedness of the sys-
tem (1). Here we analyze this controller in the case of quantized
measurements.

We will derive our results using the following Lyapunov
function

V (x, θ) = xTPx + γ −1
∥θ − θ∗∥

2, (5)

where P , θ∗ satisfy (2). For convenience define the following
quantities:

ΛC = ∥C∥, λP = λmin(P), ΛP = λmax(P). (6)

Remark 4. Since chattering on the boundaries between the quan-
tization regions is possible, solutions to differential equation (1),
(4) are to be interpreted in the sense of Filippov. However, this is-
sue will not play a significant role in the subsequent stability anal-
ysis. Indeed, all upper bounds on V̇ that we will establish remain
valid (almost everywhere) along Filippov’s solutions (cf. [24]).
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First we prove the following lemma.

Lemma 2. Under Assumption 1 consider the system (1), (4) with a
quantization range M > 0. Denote

α = ε − ν − 2σ−1λ−1
P Λ2

C ,

a = α + γ (σ + ∥θ∗∥
−1)∆2

e ,

β = ν−1ΛP∆
2
w + aγ −1

∥θ∗∥
2
+ (σ∥θ∗∥

2
+ ∥θ∗∥)∆

2
e ,

(7)

where ε is from (2) and ν > 0, σ > 0 are such that α > 0. If ∆e and
∆w are such that

β

α
<

M2λP

Λ2
C

(8)

and

V (x(t∗), θ(t∗)) <
M2λP

Λ2
C

(9)

then for t ≥ t∗

V (x(t), θ(t)) ≤


V (x(t∗), θ(t∗)) −

β

α


e−α(t−t∗)

+
β

α
, (10)

where t∗ ≥ 0 is arbitrary time instant.
Proof. See Appendix A.

The following remark will be useful later.

Remark 5. One can easily see that
β

α
= cγ + cw∆2

w + ce∆2
e ,

where

cγ = γ −1
∥θ∗∥

2,

cw = α−1ν−1ΛP ,

ce = 2α−1(∥θ∗∥ + ∥θ∗∥
2σ).

(11)

Remark 6. Lemma 2 asserts that the state of the system (1), (4)
converges from the ellipsoid V (x, θ) < M2λPΛ

−2
C to a smaller

ellipsoid V (x, θ) ≤ cγ + cw∆2
w + ce∆2

e . The size of the initial
ellipsoid is such that y(t∗) is in the quantization range. The
condition (8) guarantees that the values ∆w , ∆e are small enough
so that the limit ellipsoid is smaller than the initial one and,
therefore, y(t) is in the quantization range for t ≥ t∗.

The next theorem follows directly from Lemma 2, Remark 5,
and the fact that cγ can be made arbitrary small by increasing the
controller gain parameter γ .

Theorem 1. Consider the system (1), (4) under Assumption 1 with a
quantization rangeM and a controller parameter a given by (7). If ∆e
and ∆w are such that

cw∆2
w + ce∆2

e <
M2λP

Λ2
C

,

where cw , ce are given by (11) with positive ν , σ such that α > 0,
then for γ > 0 such that cγ + cw∆2

w + ce∆2
e < M2λPΛ

−2
C ,

the trajectories of the system are ultimately bounded for any initial
conditions satisfying

ΛP∥x(0)∥2
+ γ −1

∥θ(0) − θ∗∥
2 <

M2λP

Λ2
C

.

Corollary 1. The system (1), (4) under Assumption 1 is ultimately
bounded for any controller parameters γ > 0 and a > 0 if the
quantization error bound ∆e > 0 and ∥x(0)∥ are sufficiently small.
4. Switching control

Under conditions of Lemma 2 the state of the system (1), (4)
converges from the ellipsoid (9) to a smaller ellipsoid V (x, θ) ≤

cγ +cw∆2
w +ce∆2

e . Consequently, the output converges to a smaller
set and if the controller ‘‘zooms in’’ onto this smaller set it will
reduce the maximum quantization error ∆e. This, in turn, will
decrease the value cγ + cw∆2

w + ce∆2
e and ensure convergence

to an even smaller set. By repeating this zooming procedure one
will obtain a sequence of converging ellipsoids. Below we give a
mathematical description of this idea.

Consider the following controller

u(t) = −θ T (t)qµ(t)(y(t)),

θ̇ (t) = γ qµ(t)(y(t))qTµ(t)(y(t))g − a(t)θ(t),
(12)

where qµ(t) is a dynamic quantizer, µ(t), a(t) are piecewise
constant (switching) parameters to be determined later.

Suppose there is a known V0 such that

V (x(0), θ(0)) < V0.

Let us choose a zooming parameter µ0 > 0 such that

V0 ≤
µ2

0M
2λP

Λ2
C

.

This will ensure that ∥y(0)∥ < µ0M , that is y(0) is in the quantiza-
tion range. Assume that∆w and∆e are such that cw∆2

w+ceµ2
0∆

2
e <

V0. From (11) one can see that cγ can be made arbitrary small by
choosing a large enough controller gain parameter γ > 0. Let us
fix some γ > 0, ϵ > 0 such that

cγ + cw∆2
w + ceµ2

0∆
2
e + ϵ < V0.

Following (7) we choose

a0 = α + γµ2
0∆

2
e (σ + ∥θ∗∥

−1).

Let us require the quantizer to change its zoomwhen V (x(t), θ(t))
< V1 = cγ + cw∆2

w + ceµ2
0∆

2
e + ϵ. Then (10) suggests that the first

switching instance should have the form

t1 = t0 +
1
α

ln
V0 − cγ − cw∆2

w − ceµ2
0∆

2
e

ϵ
,

where t0 = 0 and α is defined in (7). Inequality V (x(t1), θ(t1)) <
V1 implies

∥y(t1)∥ < ΛC


V1λ

−1
P = µ1M,

where µ1 = µ0


V1V−1

0 . Then one should recalculate the regular-
izing parameter

a1 = α + γµ2
1∆

2
e (σ + ∥θ∗∥

−1).

Since the maximum quantization error µ0∆e has changed to a
smaller quantity µ1∆e, the limit value for V (x(t), θ(t)) is now
given by

cγ + cw∆2
w + ceµ2

1∆
2
e .

By repeating the procedure described above one obtains the fol-
lowing sequence of parameters for i = 1, 2, . . .

Vi = cγ + cw∆2
w + ceµ2

i−1∆
2
e + ϵ,

µi = µ0


ViV−1

0 ,

ai = α + γµ2
i ∆

2
e (σ + ∥θ∗∥

−1),

ti = ti−1 +
1
α

ln
Vi−1 − cγ − cw∆2

w − ceµ2
i−1∆

2
e

ϵ
.

(13)
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Note that the parameters of switching are predefined. To switch
the zooming variable µ one needs to guarantee that the output y
does not leave some compact set. This can be done in terms of the
state x(t) using Lyapunov function (5). Since x(t) is not known, the
value of V cannot be calculated. Therefore, we use known upper
bounds Vi for V on [ti, ti+1) that can be calculated ‘‘a priori’’. The
next lemma gives the limit value for Vi.

Lemma 3. For any positive scalars cγ , cw , ce, ∆w , ∆e, ϵ, V0, µ0 if

cγ + cw∆2
w + ceµ2

0∆
2
e + ϵ < V0

then the sequence

Vi+1 = cγ + cw∆2
w + ce

Vi

V0
µ2

0∆
2
e + ϵ

monotonically decreases to the value

V∞ =
cγ + cw∆2

w + ϵ

1 − ceµ2
0∆

2
eV

−1
0

.

Proof. See Appendix B.

Now we minimize the quantity V∞ by choosing appropriate σ ,
ν. The values cγ and ϵ can be chosen arbitrary small. Byminimizing
the quantity cw/(1 − ceµ2

0∆
2
eV

−1
0 ) with respect to σ , ν one finds

that

σ =
ΛC

µ0∆e∥θ∗∥


V0λ

−1
P ,

ν =
ε

2
− ∥θ∗∥µ

2
0∆

2
eV

−1
0 − 2

µ0∆e∥θ∗∥ΛC
√

λPV0
.

(14)

Then

V∞ =
cγ + ϵ

1 − ceµ2
0∆

2
eV

−1
0

+
ΛP∆

2
w

ν2
. (15)

Remark 7. By substituting σ , ν given by (14) into (7) we obtain

α =
ε

2
+ ∥θ∗∥µ

2
0∆

2
eV

−1
0 > 0.

Relation ceµ2
0∆e < V0 is equivalent to (∥θ∗∥+∥θ∗∥

2σ)µ2
0∆

2
eV

−1
0 <

α/2, therefore,

ν =
ε

2
− σ−1λ−1

P Λ2
C − (∥θ∗∥ + ∥θ∗∥

2σ)µ2
0∆

2
eV

−1
0

>
ε

2
− σ−1λ−1

P Λ2
C −

α

2
=

ν

2
.

That is ν given in (14) is positive.

Remark 8. In [25] for a linear system without disturbances it has
been shown that adaptive controller (12) can ensure convergence
of V given by (5) to any vicinity of the origin. The quantity
ΛP∆

2
wν−2 that appears in (15) is the one that cannot be improved

due to unknown disturbance inherent in the system.

One could note that according to (13) theremay exist such finite
t∞ that ti → t∞. That is the controller should be able to switch
infinitely often. To avoid this issue we choose some value ζ > 0
and stop switching when Vi < V∞ + ζ .

The next theorem summarizes the aforementioned ideas.

Theorem 2. Under Assumption 1 consider the system (1), (12) with
quantizer range M. If ∆e, ∆w are such that

cw∆2
w + ceµ2

0∆
2
e < V0, (16)
where cw , ce are given by (11) with σ , ν given by (14) and α given
by (7), then for any δ there exists a positive integer l such that adaptive
controller (12) with positive γ and ϵ satisfying

cγ + ϵ

1 − ceµ2
0∆

2
eV

−1
0

< δλP , cγ + cw∆2
w + ceµ2

0∆
2
e + ϵ < V0

and switching parameters

a(t) =


ai, t ∈ [ti, ti+1), 0 ≤ i < l,
al, t ≥ tl,

µ(t) =


µi, t ∈ [ti, ti+1), 0 ≤ i < l,
µl, t ≥ tl,

where ai, µi, ti are given in (13), ensures that

∥x(t)∥2 <
ΛP∆

2
w

λPν2
+ δ, t ≥ tl (17)

for initial conditions that satisfy

ΛP∥x(0)∥2
+ γ −1

∥θ(0) − θ∗∥
2 < V0 ≤

µ2
0M

2λP

Λ2
C

. (18)

Moreover, ∥θ(t)∥ is a bounded function.

Proof. See Appendix C.

Remark 9. To obtain convergence conditions for the system (1),
(12) without quantization one can use Theorem 2 with ∆e → 0,
M → ∞. Then (16), (18) are always true, switching procedure (13)
vanishes and (17) in view of (14) transforms to

∥x(t)∥2 <
4ΛP

ε2λP
∆2

w + δ. (19)

This estimate coincides with [26, Theorem 2.13].

Remark 10. The value of ε from (2) is the stability level that can be
achieved by using the control law u(t) = −θ∗y(t). Larger ε leads to
smaller ce and, therefore, (16) is satisfied with a larger maximum
quantization error ∆e.

Remark 11. Our results are applicable to the system (1) with
uncertain A that resides in the polytope

A = Aξ =

N
i=1

ξiAi, 0 ≤ ξi,

N
i=1

ξi = 1. (20)

If gTWξ (s) = gTC(sI − Aξ )
−1B is HMP for all ξ from (20), then (2)

are feasible for each ξ with some θξ and Pξ . To apply the results of
this paper one should take

ε = min
ξ∈Ξ

εξ , θ∗ = argmax
θξ ,ξ∈Ξ

∥θξ∥,

λP = min
ξ∈Ξ

λmin(Pξ ), ΛP = max
ξ∈Ξ

λmax(Pξ ).
(21)

The existence of these quantities follows from Lemma 1, compact-
ness of a set of ξ , and continuity of the matrix Aξ in ξ .

The relations (2) are feasible for θξ = k∗g with large enough
k∗ [1]. Since (2) are affine in Aξ , to obtain the values from (21) one
can solve linear matrix inequalities

P > 0, P(Ai − Bk∗gTC) + (Ai − Bk∗gTC)TP < −εP,

PB = CTg, i = 1, . . . ,N,

with a decision variable P and tuning parameters ε, k∗. To find
appropriate tuning parameters one should first set ε = 0 and find
the minimum k∗ such that LMIs are feasible. Then by increasing k∗

one will obtain larger allowable values for ε.
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Fig. 1. (a) Norm of the state; (b) Lyapunov function (5).
Table 1
Parameters of switching: ti—instants of switching,Vi—upper bound forV (x(t), k(t))
on [ti, ti+1), µi—zooming parameter, ai—regularizing parameter.

i ti Vi µi ai

0 0 1000 1 311.67
1 90.85 144.66 0.38 45.19
2 165.98 24.89 0.158 7.88
3 225.38 8.12 0.09 2.66
4 269.08 5.78 0.076 1.92
5 297.27 5.45 0.074 1.82

5. Example: yaw angle control

We demonstrate applicability of our results by an example of
a yaw angle control. Under several simplifying assumptions [27]
dynamics of the lateral motion of an aircraft can be described by
(1) with

A =

a11 1 0
a21 a22 0
0 1 0


, B =

b1
b2
0


, C =


0 1 0
0 0 1


,

where x1 is a sideslip angle, x3 and x2 are the yaw angle and its
rate, respectively, u(t) is the rudder angle. Following [27] we take
a22 = 1.3, b1 = 19/15, b2 = 19 and suppose that a11, a21 are
uncertain parameters:

a11 ∈ [0.1, 1.5], a21 ∈ [25, 40]. (22)

For g =

√
2
2 (1, 1)T the transfer function

gTW (s) =
b2s2 + (b1a21 − b2a11 + b2)s + b1a21 − b2a11

s
√
2(s2 − (a11 + a22)s + a11a22 − a21)

is HMP for all a11, a21 from (22). Using Remark 11 we find that (2)
are satisfied with ε = 0.25, θ∗ = 5.3g ,

P ≈

 2.3 −0.15 −2
−0.15 0.05 0.17
−2 0.17 5.15


,

where P is given up to hundredth. We take

V0 = 103, µ0 = 1, ∆w = 0.1, ∆e = 0.01.

For these parameters (16) is satisfied and, therefore, Theorem2 can
be applied. For δ = 2 it is sufficient to take γ = 103 and ϵ = 10−2.

The results of numerical simulations for a11 = 0.75, a21 = 33
are presented in Fig. 1. Initial conditions were chosen randomly
such that θ(0) = (0, 0)T , V (x(0), θ(0)) ≤ V0. The values of
all switching parameters are presented in Table 1. The switching
procedure stops after 5 switches. As one can see µi is decreasing,
this corresponds to ‘‘zooming in’’.

6. Conclusions

We considered hyper-minimum-phase uncertain linear system
with bounded disturbance. First we proved that if the disturbance
and quantization error bounds are small enough the standard
passification-based adaptive controller ensures ultimate bounded-
ness of the closed-loop system. Then we showed that by using a
dynamic quantizer with switching ‘‘zoom’’ variable one can en-
sure convergence to a smaller ellipsoid. The size of this ellipsoid is
defined by the disturbance bound. Finally, we demonstrated ap-
plicability of the proposed controller to polytopic-type uncertain
systems and its efficiency by the example of a yaw angle control of
a flying vehicle.

Appendix A. Proof of Lemma 2

Under Assumption 1 it follows from Lemma 1 that relations
(2) are valid for some matrix P and vector θ∗, therefore, Lyapunov
function (5) can be constructed. Its derivative along the trajectories
of the system (1), (4) has the form

V̇ = 2xTP[Ax − Bθ Tq(y)] + 2xTPw

+ 2(θ − θ∗)
Tq(y)qT (y)g − 2aγ −1(θ − θ∗)

T θ

= 2xTP[Ax − Bθ T
∗
Cx] + 2qT (y)g(θ∗ − θ)Tq(y)

− 2eT (t)g(θ∗ − θ)Tq(y) − 2yTgθ T
∗
e + 2xTPw

+ 2(θ − θ∗)
Tq(y)qT (y)g − 2aγ −1(θ − θ∗)

T θ.

Here we used the relation PB = CTg from (2) and notation e =

q(y) − y. Condition (9) implies ∥y(t∗)∥ < M . Since y(t) is continu-
ous in t , ∥y(t)∥ < M on [t∗, T ) for some T > t∗. Thus ∥e(t)∥ ≤ ∆e
for t ∈ [t∗, T ). Since ∥g∥ = 1 and 2aTb ≤ aTQa + bTQ−1b for any
vectors a, b and a matrix Q > 0, for t ∈ [t∗, T ) we obtain

−2eT (y)g(θ∗ − θ)Tq(y) ≤ 2∆e|(θ∗ − θ)Tq(y)|
≤ 2∆e|(θ∗ − θ)Ty| + 2∆e|(θ∗ − θ)T e|
≤ (σ + ∥θ∗∥

−1)∆2
e∥θ∗ − θ∥

2
+ σ−1

∥y∥2
+ ∥θ∗∥∆2

e ,

−2yTgθ T
∗
e ≤ σ−1xTCTggTCx + σ∆2

e∥θ∗∥
2,

2xTPw ≤ νxTPx + ν−1ΛP∆
2
w,

−2aγ −1(θ − θ∗)
T θ = −2aγ −1

∥θ − θ∗∥
2
− 2aγ −1(θ − θ∗)

T θ∗

≤ −aγ −1
∥θ − θ∗∥

2
+ aγ −1

∥θ∗∥
2.

Then

V̇ + αV − β ≤ −(ε − ν − 2σ−1λ−1
P Λ2

C − α)xTPx

− (a − γ σ∆2
e − γ ∥θ∗∥

−1∆2
e − α)γ −1

∥θ∗ − θ∥
2

+ ν−1ΛP∆
2
w + aγ −1

∥θ∗∥
2
+ σ∆2

e∥θ∗∥
2
+ ∥θ∗∥∆2

e − β.

By substituting values from (7) we find that V̇ ≤ −αV + β . It fol-
lows from the comparison principle [28] that for t ∈ [t∗, T )

V (x(t), θ(t)) ≤


V (x(t∗), θ(t∗)) −

β

α


e−α(t−t∗)

+
β

α
.

The latter together with (8), (9) implies T = ∞.

Appendix B. Proof of Lemma 3

For i = 0 we have

V1 = cγ + cw∆2
w + ceµ2

0∆
2
e + ϵ < V0.
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Suppose that i > 0 and for j < i it has been proved that Vj < Vj−1.
Then

Vi = cγ + cw∆2
w + ce

Vi−1

Vi−2

Vi−2

V0
µ2

0∆
2
e + ϵ

< cγ + cw∆2
w + ce

Vi−2

V0
µ2

0∆
2
e + ϵ = Vi−1.

Therefore Vi is a monotonically decreasing sequence of positive
numbers, and, therefore, it has a limit value, which is a solution of
the equation

V = cγ + cw∆2
w + ce

V
V0

µ2
0∆

2
e + ϵ,

i.e. V = V∞.

Appendix C. Proof of Theorem 2

Let us choose ζ > 0 such that
cγ + ϵ

1 − ceµ2
0∆

2
eV

−1
0

+ ζ ≤ δλP .

Under conditions of Theorem 2, Lemma 2 implies (10) for t ∈

[t0, t1], t∗ = t0, therefore,

V (x(t), θ(t)) < V0, ∀t ∈ [t0, t1].

Consider t ∈ [ti, ti+1] and assume that for j < i it has been proved
that

V (x(t), θ(t)) < Vj, ∀t ∈ [tj, tj+1].

By applying Lemma 2 on [ti−1, ti] with t∗ = ti−1 and substituting
t = ti into (10) one arrives at

V (x(ti), θ(ti)) < cγ + cw∆2
w + ceµ2

i−1∆
2
e + ϵ = Vi.

Moreover,

Vi = µ2
i V0 =

µ2
i M

2λP

Λ2
C

=
M2

i λP

Λ2
C

,

where Mi = µiM . Thus, (9) is satisfied with M = Mi, t∗ = ti.
Relation (13) implies

cγ + cw∆2
w + ceµ2

i ∆
2
e < Vi =

M2
i λP

Λ2
C

.

That is (8) is true with β = ν−1ΛP∆
2
w + aiγ −1

∥θ∗∥
2
+ (σ∥θ∗∥

2
+

∥θ∗∥)µ
2
i ∆

2
e , M = Mi, t∗ = ti. Therefore, Lemma 2 can be applied

on [ti, ti+1]. By induction we conclude that

V (t) < Vi, ∀t ∈ [ti, ti+1).

Since Vi → V∞ there exists l such that

Vl ≤ V∞ + ζ ≤
ΛP∆

2
w

ν2
+ δλP .

Thus, if switching stops after tl, one obtains that for t ≥ tl

V (x(t), θ(t)) <
ΛP∆

2
w

ν2
+ δλP ,

therefore, for t ≥ tl

∥x(t)∥2 <
ΛP∆

2
w

λPν2
+ δ.

Function ∥θ(t)∥ is bounded since V (x(t), θ(t)) is bounded.
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