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SUMMARY

This paper addresses the problem of controlling a continuous-time linear system with large modelling errors.
We employ an adaptive control algorithm consisting of a family of linear candidate controllers supervised by
a high-level switching logic. Methods for constructing such controller families have been discussed in the
recent paper by the authors. The present paper concentrates on the switching task in a multiple model
context. We describe and compare two di!erent switching logics, and in each case study the behaviour of the
resulting closed-loop hybrid system. Copyright � 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper we study the problem of controlling a continuous-time SISO linear system in the
presence of large-scale modelling uncertainty, noise, and disturbances. The main idea behind the
supervisory control approach to this problem is to employ logic-based switching among a family
of candidate controllers. The need for switching stems from the fact that typically no single
controller can guarantee a desired behaviour when connected with the poorly modelled process.
Such switching schemes provide an alternative to more traditional continuously tuned adaptive
control algorithms. The switching control methodology considered here is &estimator-based', as it
relies on an estimation procedure in carrying out on-line controller selection. For background on
this subject, see References [1, 2].
In addition to the given process and a family of candidate controllers, the overall supervisory

control system contains three other subsystems: a multi-estimator, a monitoring signal generator,
and a switching logic. The task of the switching logic is to generate a switching signal which
determines, at each instant of time, the candidate controller that is to be placed in the feedback
loop. Controller selection is based on the values of monitoring signals, which are obtained by



taking integral norms of suitably de"ned estimation errors produced by the multi-estimator. The
basic idea behind the switching strategy is to determine which of the monitoring signals is the
smallest, and then choose the corresponding candidate controller. This amounts to applying
a controller designed for the model that best "ts the available data (&certainty equivalence').
This is the second in the series of two papers examining the state-of-the-art of supervisory

control methods for uncertain linear systems. The previous paper [3] has addressed various
aspects of the problem of choosing the family of candidate controllers. The focus of this paper is
on switching between such controllers. The closed-loop systems arising in the supervisory control
framework are hybrid systems, as they combine discrete dynamics associated with the switching
logic and continuous dynamics associated with the rest of the system. In what follows, we describe
two di!erent switching logics, and in each case analyze the behavior of the overall hybrid system.
One of these switching logics is new, and enables us to overcome technical di$culties in those
situations where the parameter space is a continuum.
The supervisory control design procedure outlined above is &modular', in the sense that the

principles governing the design of the switching logic, of the multi-estimator, and of the candidate
controllers are essentially independent of each other. The analysis of the overall system relies on
basic properties of its di!erent parts, but not on a particular way in which they are implemented.
As a result, one gains the advantage of being able to use &o!-the-shelf ' control laws, rather than
having to design control laws tailored to the speci"cs of the switching algorithm. Our goal
therefore is to make maximal use of relevant concepts from non-adaptive control theory. While
the class of systems treated in this paper can also be handled by the control algorithm described in
References [1, 2] which uses a di!erent switching logic, the switching control design and analysis
tools presented here are potentially applicable in a broader context; in fact, they have already
been applied to certain classes of nonlinear systems in References [4}6]. In addition, the proofs
are considerably simpli"ed compared to the ones given in earlier work.

2. PROBLEM FORMULATION

Suppose that the uncertain process � to be controlled admits the model of a SISO "nite-
dimensional stabilizable and observable linear system with control input u and measured output
y, perturbed by a bounded disturbance input d and a bounded output noise signal n. It is assumed
known that the transfer function of � from u to y belongs to a family of admissible process model
transfer functions

�
��P

F(p)

where p is a parameter taking values in some index setP. Here, for each p,F(p) denotes a family
of transfer functions &centred' around some known nominal process model transfer function �

�
(cf. below). Throughout the paper, we will take P to be a compact subset of a "nite-dimensional
normed linear vector space.
The problem of interest is to design a feedback controller that achieves output regulation, i.e.

drives the output y of � to zero, whenever the noise and disturbance signals are zero. Moreover,
all system signals must remain (uniformly) bounded in response to arbitrary bounded noise and
disturbance inputs. Everything that follows can be readily extended to the more general problem
of set-point control (i.e. tracking an arbitrary constant reference r) with the help of adding an
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integrator in the feedback loop, as in References [1, 2]. Such a modi"cation would not introduce
any signi"cant changes as far as the principal developments of this paper are concerned. Control
algorithms of the type described here can also be applied to the problem of disturbance
suppression [7].
The setP can be thought of as representing the range of parametric uncertainty, while for each
"xed p3P the subfamily F(p) accounts for unmodelled dynamics. There are several ways of
specifying allowable unmodelled dynamics around the nominal process model transfer functions
�
�
. For example, take two arbitrary numbers �'0 and �

�
*0. Then we can de"ne

F(p) :"��
�
(1#��

�
)#��

�
:���

�
�
����

)�, ���
�
�
����

)��, p3P (1)

where � ) �
����

denotes the e�� �-weighted H
�

norm of a transfer function: ���
����

"sup���
	�( j
!�

�
)	. This yields the class of admissible process models treated in References [1, 2].

Alternatively, one can de"ne F(p) to be the ball of radius � around �
�
with respect to the

Vinnicombe metric [8]. Another possible de"nition is

F(p) :"�
n
�
#��

�
m

�
#��

�

:���
�
�
����

)�, ���
�
�
����

)��, p3P (2)

where �
�
"n

�
/m

�
is the normalized coprime factorization of �

�
(see, e.g., Reference [9]). This is

more general than (1) in that it allows for uncertainty about the pole locations of the nominal
process model transfer functions. In the sequel, allowable unmodelled dynamics are assumed to
be speci"ed in either one of the aforementioned ways; we will refer to the positive parameter � as
the unmodelled dynamics bound.
Modelling uncertainty of the kind described above may be associated with unpredictable

changes in operating environment, component failure, or various external in#uences. Typically,
no single controller is capable of solving the regulation problem for the entire family of admissible
process models. Therefore, one needs to develop a controller whose dynamics can change on the
basis of available real-time data. Within the framework of supervisory control discussed here, this
task is carried out by a &high-level' controller, called a supervisor, whose purpose is to orchestrate
the switching among a parameterized family of candidate controllers

��
�
: q3Q� (3)

where Q is an index set. We require this controller family to be su$ciently rich so that every
admissible process model can be stabilized by placing in the feedback loop the controller �

�
for

some index q3Q.
In this paper, we will focus exclusively on the case when Q"P (although in some situations it

may be useful to choose Q di!erent from P; see Reference [10]). For each p3P, we take for
�

�
a controller that stabilizes all the process models in F(p); such controllers should exist if

unmodelled dynamics are su$ciently small. However,P is typically a continuum, and while it is
possible to switch among a continuum of controllers [1, 2], it is often easier to work with a "nite
controller family. There are various reasons for considering this alternative, having to do with
tractability of implementation and analysis. For example, parameters may enter in complicated
ways, making estimation over a continuum intractable; the step of actually constructing a con-
tinuum of high-performance controllers for a continuum of process models is challenging and
certainly constraining, especially if the controllers are to be designed using linear quadratic or
H

�
techniques. For linear MIMO or nonlinear systems these issues become even more severe.
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Figure 1. Supervisory control architecture.

Therefore, one may want to choose a di!erent parameter space which is "nite, and absorb the
remaining parameter values into unmodelled dynamics. In carrying out such a program, one is
faced with the problem of constructing a ,nite family of controllers having the property that every
admissible process model is stabilized by at least one of these controllers. This problem has
a solution if unmodelled dynamics are su$ciently small and if the topologies on the parameter
space and on the space of transfer functions de"ning unmodelled dynamics are &compatible', in
the sense that �

�
is contained inF(pN ) whenever p and pN are su$ciently close inP (see Reference [3,

Theorem 5.1]). The last assumption is always satis"ed when unmodelled dynamics are de"ned via
coprime factorizations or the Vinnicombe metric as outlined earlier, provided that �

�
depends

continuously on p. The earlier work of Pait [11, 12] is also relevant in this regard.
The reader is thus referred to Reference [3] for issues regarding the construction of controller

families like (3), especially "nite ones. In the sequel, we will assume that a family of controllers is
given, and discuss various ways of carrying out logic-based switching among these controllers to
solve the output regulation problem for the unknown process �.

3. ESTIMATOR-BASED SUPERVISOR

The supervisor consists of three subsystems (see Figure 1):

Multi-estimator �* a dynamical system whose inputs are the output y and the input u of the
process � and whose outputs are the signals y

�
, p3P. Each y

�
would converge to y asymp-

totically if the transfer function of � were equal to the nominal process model transfer function
�
�
and there were no noise or disturbances.
Monitoring signal generator � * a dynamical system whose inputs are the estimation errors

e
�
:"y

�
!y, p3P (4)
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�The continuity assumption is made here for simplicity, and can be relaxed in most of what follows. It is of course vacuous
if P is a "nite set.

and whose outputs �
�
, p3P are suitably de"ned integral norms of the estimation errors, called

monitoring signals.
Switching logic �* a switched system whose inputs are the monitoring signals �

�
, p3P and

whose output is a switching signal �, taking values inP, which is used to de"ne the control law u.
We now brie#y recall from Reference [1] the key state-space equations for the di!erent

subsystems appearing in Figure 1. As p ranges over P, let

xR �"A
�
x�#b

�
y

u"k
�
x�#r

�
y

be realizations of the transfer functions of the candidate controllers from (3), all sharing the same
state x�. We then de"ne the multi-controller � to be the system

xR �"A�x�#b�y

u"k�x�#r�y

Such a multi-controller can be obtained using standard results from realization theory.
We assume that the multi-estimator is also realized in a state-shared fashion, as given by

xR �"A�x�#b�y#d�u

y
�
"c

�
x� , p3P

with A� a stable matrix. This type of structure is quite common in adaptive control. Note that
even if P is an in"nite set, the above dynamical system is "nite dimensional. In this case it
formally has an in"nite number of outputs; however, these outputs will only be needed in the
minimization procedure used by the switching logic. Thus, if the associated minimization
problem is tractable, then so is the implementation of the overall supervisory control algorithm.
Denoting by x the composite state (x
� , x
�)
 of the multi-estimator and the multi-controller, and

using (4), we arrive at a system of the form

xR "A�x#d�e�
y"(c

�*
0)x!e

�*
(5)

u"f�x#g�e�*

Here A
�
, p3P are stable matrices all of whose eigenvalues have real parts smaller than !�

�
for

some �
�
'0, and p* is an (unknown) element ofP such that the transfer function of � belongs to

F(p*), i.e. a &true' parameter value. In addition, the functions pCA
�
, pC c

�
, pC d

�
, pC f

�
, and

pC g
�
are assumed to be continuous� onP. See Sections IV and V of Reference [1] for details on

this construction.
We will demand that the following condition hold: there exist a positive number �, positive

constants �
�
, �

�
that only depend on the unmodelled dynamics bound � and go to zero as � goes

to zero, positive constants B
�
, B

�
that only depend on the noise and disturbance bounds and go

to zero as these bounds go to zero, and positive constants C
�
, C

�
that only depend on the

system's parameters and on initial conditions, such that along all solutions of the closed-loop
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system we have

�
�

�

e���e�
�*
(�) d�)B

�
e���#C

�
#�

��
�

�

e���u�(�) d� (6)

and

	e
�*
(t)	)B

�
#C

�
e	��#�

�
e	�����

�
e���u�(�) d� (7)

The above inequalities represent the basic requirements being placed on the multi-controller and
the multi-estimator, upon which the subsequent analysis depends. Intuitively, they mean that
y
�*

is a &good' approximation of y, and provide an explicit characterization of the error
e
�*

"y
�*

!y in the presence of noise, disturbances, and unmodelled dynamics. In the case when
unmodelled dynamics are de"ned via formula (1), it was shown in References [1, 2] how one can
construct a supervisory control system satisfying these requirements for each �3(0, min��

�
, �

�
�);

the desired inequalities were immediate consequences of Equation (28) in Reference [1]. A system
with such properties can also be designed in a similar way for the case when unmodelled
dynamics are de"ned via the formula (2) in terms of coprime factors (cf. Reference [13]).
The constant � from (6) and (7) will play the role of a &weighting' design parameter in the

de"nition of the monitoring signals; we assume, with no loss of generality, that �(�
�
. Fix an

arbitrary constant ��*0 (its role will become clear in Section 5.2). We generate the monitoring
signals �

�
, p3P by the equations

=Q "!2�=#�
x�

y ��
x�

y �


, =(0)*0

(8)
�
�
:"(c

�
!1)= (c

�
!1)
#�� , p3P

where =(t) is a symmetric non-negative-de"nite k�k matrix, k :"dim(x�)#1. Since
c
�
x�!y"e

�
∀p3P, this yields

�
�
(t)"e	�����

�
(0)#�

�

�

e	��
�	��e�
�
(�) d�#�� , p3P (9)

where �J
�
(0) :"(c

�
!1)=(0) (c

�
!1)
. The underlying decision-making strategy employed by the

supervisor basically consists in selecting for �, from time to time, the candidate controller index
q whose corresponding monitoring signal �

�
is the smallest. The origin of this idea is the concept

of certainty equivalence from parameter adaptive control. A precise description of a switching
logic that implements this approach is given next.

4. SCALE-INDEPENDENT HYSTERESIS SWITCHING LOGIC

So far we have closely followed the set-up of References [1, 2]. However, the switching logic that
we will consider here is di!erent from the one employed there. Namely, we will work with the
scale-independent hysteresis switching logic [14, 15], whose functioning is as follows (see Figure 2).
Assumed given are continuous monitoring signals �

�
, p3P (to de"ne the switching logic, we do

not need to require that they be de"ned by the above formulas, although this is the case to which
we will specialize later). Let us pick a number h'0 called the hysteresis constant. First, we set
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Figure 2. Scale-independent hysteresis switching logic.

�(0)"arg min
���

��
�
(0)�. Suppose that at a certain time t

	
the value of � has just switched to some

q3P. We then keep � "xed until a time t
	
�

't
	
such that (1#h)min

��P
��

�
(t
	
�

)�)�
�
(t
	
�

), at
which point we set �(t

	
�
)"arg min

��P
��

�
(t
	
�

)�. When the indicated arg min is not unique,
a particular value for � among those that achieve the minimum can be chosen arbitrarily. We
refer the reader to Reference [1] for a discussion of tractability issues regarding the minimization
procedure (especially when P is a continuum).
Repeating the above steps, we generate a piecewise constant signal � which is continuous from

the right everywhere. The overall supervisory control system is a hybrid system, � being its
discrete state. If all �

�
, p3P are bounded below by some positive number, then in"nitely fast

switching (chattering) is avoided. In fact, there must be an interval [0, ¹
���

) of maximal length on
which � exists, and there can only be a "nite number of switches on each proper subinterval of
[0, ¹

���
); see References [14, 15] for details. In all the cases treated below, it will be clear that

¹
���

"R. Hybrid systems having the above property are known as non-Zeno.
One can easily see from the de"nition of the above switching logic that replacing the signals �

�
,

p3P by their scaled versions

uN
�
(t) :"� (t)�

�
(t) p3P

where � is some positive function of time, would have no e!ect on �; this is where the term
&scale-independent' comes from. In the sequel, we assume that it is possible to choose � in such
a way that the scaled signals ��

�
, p3P are strictly positive and monotone increasing (we will see

later that the monitoring signals de"ned in the previous section satisfy this assumption). For
analysis purposes we will always use the signals �N

�
, p3P that have this property, while the actual

monitoring signals being implemented and used for the switching logic are the original ones �
�
,

p3P.
The analysis of Section 5 is restricted to the case when P is a "nite set. In most situations of

interest, the parameter space P is a continuum. However, it is often possible to work with
a di!erent parameter space which is "nite, using the results of Reference [3] (see Section 2). The
implications of this approach, as well as some alternatives, will be discussed later. One reason for
requiring P to be "nite is to be able to use the result from Reference [16] stated next. Given
arbitrary numbers t't

�
*0, we will denote byN� (t, t�) the number of discontinuities of � on the

MULTIPLE MODEL ADAPTIVE CONTROL. PART 2: SWITCHING 485

Copyright � 2001 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2001; 11:479}496



interval (t
�
, t) or, more precisely, on the interval (t

�
, min�t, ¹

���
�) if the "niteness of ¹

���
cannot

be ruled out a priori.

Lemma 1 (Hespanha et al. [16])
Let P"�1, 2,2, m� with m a positive integer. For arbitrary t't

�
*0 we have

N� (t, t� ))1#m#

m

log(1#h)
log�

��
�*
(t)

min
��P

��
�
(t
�
)� (10)

and

�� 
�� ���
�
���

(�N �
�� �(t�
�
)!�� �
�� �(t� )))m((1#h)�


�*
(t)!min

��P
��
�
(t
�
)) (11)

where t
�
(t

�
(2(t

�� 
�� ���
are the discontinuities of � and t

�� 
�� �� �
�
:"t

This lemma expresses a general property of the switching logic, which does not depend on the
structure of the system or on a particular de"nition of the monitoring signals. Let us now restrict
our attention to the case when the monitoring signals are obtained from Equations (8). Setting
�(t) :"e���, we see from formula (9) that the scaled signals �N

�
, p3P are indeed monotone

increasing, because they satisfy

��
�
(t)"��

�
(0)#�

�

�

e���e�
�
(�) d�#��e���, p3P (12)

Moreover, it is easy to ensure that �
�
(0)'0 ∀p3P, either by setting ��'0 or by requiring=(0)

to be positive de"nite. Therefore, we can apply Lemma 1 and conclude that inequalities (10) and
(11) are valid. Since in this case the signals ��

�
, p3P are di!erentiable, the left-hand side of

inequality (11) equals the integral ��
��
��� �
��(�) d�, which is to be interpreted as the sum of integrals

over intervals on which � is constant. From (12) we have the following formula:

���
�
(t)"e���e�

�
(t)#2���e���, p3P (13)

5. ANALYSIS: FINITE P

Take P"�1, 2,2,m� as in the previous section. We now proceed to the analysis of the
supervisory control system de"ned by (5), (8), and the switching logic described above. We will
sometimes appeal to the state of the uncertain process �, which we denote by x� .

5.1. No noise, disturbances, or unmodelled dynamics

We begin by considering the simple situation where there are no unmodelled dynamics (�"0), i.e.
the process � exactly matches one of the m nominal process models, and where the noise and
disturbance signals are zero (n"d,0). In this case, the constants B

�
, B

�
, �

�
, �

�
in (6) and (7) are

all zero. Let us take �� in the de"nition of the monitoring signals to be zero as well (=(0) must
then be taken positive de"nite; see Section 4). Inequality (6) gives ��

�
e���e�

�*
(�) d�)C

�
, which

together with (12) implies that ��
�*

is bounded. It follows from (10) that N�(t, t�) is "nite for
arbitrary t't

�
*0. This means that the switching stops in "nite time at some index q*3P, i.e.

there exists a time ¹* such that �(t)"q* for t*¹*. Since ��
�*
is bounded, we conclude from the

de"nition of the switching logic that ��
�*
is also bounded. In view of (12), we have in particular

e
�*

3¸�. Now it is not hard to see from (5) that, since A
�*
is a stable matrix and e

�*
P0 by virtue of
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(7), we have yP0. Therefore, the output regulation problem is solved. In light of (5), (8), and
detectability of �, all the other signals remain bounded for all t*0 (in fact, here we have x�P0,
but this would no longer be true in the case of set-point control where yPrO0). We summarize
this as follows.

Proposition 2
Suppose that the noise and disturbance signals are zero and there are no unmodelled dynamics,

and set ��"0. Then all the signals in the supervisory control system remain bounded for every set
of initial conditions such that=(0)'0. Moreover, the switching stops in "nite time, and we have
y(t)P0 as tPR.

Remark
Since the evolution of x� and x for t*¹* is described by a linear time-invariant system, the

rate of convergence in the above statement is actually exponential.

5.2. Noise and disturbances, no unmodelled dynamics

We now assume that bounded noise n and disturbance d are present, but there are no unmodelled
dynamics. In this case the switching typically will not stop in "nite time. In analysing the
supervisory control system under persistent switching, the following concept proves useful.
Following Reference [17], we say that a switching signal � has an average dwell time �


�
'0 if

there exists a non-negative number N
�
such that the number of discontinuities of � on an

arbitrary interval (t
�
, t) satis"es

N�(t, t�))N
�
#

t!t
�

�

�

It was shown in Reference [17] that if �B
�
: p3P� is a compact set of stable n�n matrices, then

the switched linear system zR "B�z, z3�� is uniformly exponentially stable for all switching
signals � with a su$ciently large average dwell time. Moreover, by choosing a large enough �


�
,

the stability margin of this switched system can be made arbitrarily close to the smallest stability
margin of the individual subsystems. This result will be crucial in the analysis given below.
Under the present assumptions, inequalities (6) and (7) hold with some unknown but "nite

constantsB
�
, B

�
. The parameters �

�
and �

�
are still zero, andC

�
and C

�
are positive constants as

before. We take �� to be a positive number. From (6) and (12) we have

��
�*
(t))�J

�*
(0)#B

�
e���#C

�
#��e��� (14)

Formula (10) then yields

N� (t, t�))1#m#

m

log(1#h)
log �

��
�*
(0)#B

�
e���#C

�
#��e���

��e���
� �)N

�
#

t!t
�

�

�

where

�

�

"

log(1#h)

2�m
and N

�
"1#m#

m

log(1#h)
log�

��
�*
(0)#B

�
#C

�
#��

�� �
The number �


�
is the average dwell time of �. It follows from the main result of Reference [17]

that if �

�

is large enough, then the switched linear system xR "A�x is uniformly exponentially
stable, with stability margin �. This implies that the switched system given by the "rst equation in
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(5) has a "nite e��-weighted L
�
-to-L

�
induced norm, which means that for some positive

constants g, g
�
and for all t*0 we have

e���	x(t)	�)g�
�

�

e���e��
��(�) d�#g
�
	x(0)	� (15)

We can guarantee that �

�

is large enough by increasing the hysteresis constant h and/or
decreasing the weighting constant � if necessary. The desired lower bound for �


�
can be

calculated explicitly from the proof of the main result in Reference [17]. In the sequel, we assume
that h and � have been chosen in such a way that (15) holds.
Using (11), (13), and (14), we obtain

�
�

�

e���e��
��(�) d�)m((1#h)(��
�*
(0)#B

�
e���#C

�
#��e���)!��e����)

Together with (15) this implies that

	x(t)	�)(gm(1#h)(��
�*
(0)#C

�
)#g

�
	x(0)	�)e	���#gm(1#h) (B

�
#�� )

Two conclusions can be drawn from the last formula. First, x is bounded, and as in the previous
subsection we can easily deduce from (5), (7), (8), and detectability of � that all system signals
remain bounded. Note that the choice of the design parameters �, h and �� did not depend on the
noise or disturbance bounds, in other words, explicit knowledge of these bounds is not necessary
(we aremerely requiring that such bounds exist). Second, if n and d equal or converge to zero, then
x will approach a neighbourhood of the origin whose size is proportional to g�� . A close
examination of the last quantity (carried out in the appendix for the more general situation of
non-zero unmodelled dynamics) reveals that it decreases to 0 as �� goes to 0, which means that we
can make this neighbourhood as small as desired by choosing �� su$ciently small. Moreover,
e
�*
will converge to zero because of (7), hence ywill also become arbitrarily small in view of (5). We

arrive at the following result.

Proposition 3
Suppose that the noise and disturbance signals are bounded and there are no unmodelled

dynamics. Then for an arbitrary ��'0 all the signals in the supervisory control system remain
bounded for every set of initial conditions. Moreover, for every number �

�
'0 there is a value of

�� leading to the property that if the noise and disturbance signals converge to zero, then for each
solution there is a time ¹M such that 	y(t)	)�

�
for all t*¹M .

Remark
We cannot simply let ��"0, as this would invalidate the above analysis even if =(0)'0.

However, by decreasing �� on-line (e.g. in a piecewise constant fashion), it is possible to recover
asymptotic convergence of y to zero under the (not very realistic) assumption that the noise and
disturbance signals converge to zero.

5.3. Noise, disturbances, and unmodelled dynamics

If unmodelled dynamics are present, i.e. if the parameter � is positive, then �
�
and �

�
in (6) and (7)

are also positive. In this case, the analysis becomes more complicated, because we can no longer
deduce from (6) that the switched system must possess an average dwell time. However, it is
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possible to prove that the above control algorithm, without any modi"cation, is robust with
respect to unmodelled dynamics in the following, &semi-global', sense.

Theorem 4
For arbitrary bounds on the noise and disturbance signals, the supervisory control system has

the following properties:

1. For every positive value of �� and every number E'0 there exists a number �M '0 such that
if the unmodelled dynamics bound � is smaller than �M , then all signals remain bounded for
every set of initial conditions such that 	x� (0)	, 	x(0)	)E.

2. For arbitrary positive numbers E and �
�
there exist a value of �� and a number �M '0 such

that if the noise and disturbance signals converge to zero and the unmodelled dynamics
bound � is smaller than �M , then for each solution with 	x�(0)	, 	x(0)	)E there is a time ¹M such
that 	y(t)	)�

�
for all t*¹M .

Theorem 4 is proved in the appendix in a constructive manner, via a small-gain argument. The
di$culty in obtaining a global result can be seen from the proof; it stems from the fact that the
gains g and g

�
in (15) depend on the initial conditions (throughN

�
). This is the price that one pays

for allowing the switching to be slow only on the average.
There is an alternative approach which enables one to obtain the same result; it involves

modifying the algorithm by introducing normalized estimation errors, allowing for a somewhat
simpler analysis. Namely, one can de"ne the monitoring signals by using, instead of (8), the
equations

=Q "!2�=#�
x�

y ��
x�

y �


, =(0)*0

�Q "!2��#u�, �(0)*0

�
�
:"

1

1#�
(c

�
!1)=(c

�
!1)
#�� , p3P

This amounts to replacing the estimation errors e
�
, p3P by their normalized versions

eN
�
:"e

�
/(1#�), p3P. Formula (7) can be used to deduce that e�

�*
is bounded, which immediately

leads to the existence of an average dwell time as in the previous subsection. To "nish the analysis,
one still needs to apply a small-gain argument.
In References [1, 2] a di!erent switching logic was used, which ensures the existence of a dwell

time (rather than just an average dwell time) and enables one to prove global stability in the
presence of su$ciently small unmodelled dynamics. However, such an approach has its own
disadvantages. First, the stability and robustness proofs become more complicated. Perhaps even
more importantly, dwell time switching is not suitable for control of nonlinear systems because of
the possibility of "nite escape times, whereas the scale-independent hysteresis switching logic has
already been successfully applied to various classes of nonlinear systems [4}6].

6. LOCAL PRIORITY HYSTERESIS SWITCHING LOGIC

The analysis given in the previous section relied on the assumption that the controller family is
"nite. As discussed in Reference [3], even if the range of parametric uncertainty is originally
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described by a continuum, in many cases of interest one can construct a "nite family of stabilizing
controllers that possess the desired robustness with respect to unmodelled dynamics. However,
we cannot guarantee (at least with currently available analysis tools) that the switching algorithm
proposed here preserves the robustness margins associated with the individual controllers. The
reason for this can be explained as follows. To establish robustness with respect to unmodelled
dynamics, one invariably uses a small-gain argument. However, in inequality (11), which in the
present case basically characterizes the e��-weighted inducedL

�
-gain from e

�*
to e� , the number

m of controllers appears on the right-hand side. This implies that if the range of parametric
uncertainty is large, which causesm to be large, then the amount of unmodelled dynamics that the
switching controller can tolerate becomes small, and might not be su$cient to cover the entire
family of admissible process models. It is not hard to see that this problem cannot be overcome by
simply increasing the number of controllers being switched.
The above remarks suggest that when the unknown parameters take values in an in"nite set,

one may sometimes be forced to switch among an in"nite family of controllers (as opposed to
reducing the problem to that of switching among a "nite number of controllers by means of
a reparameterization). This is actually the case even in the absence of noise, disturbances, and
unmodelled dynamics. If P is in"nite, Lemma 1 is no longer valid, and the analysis given earlier
breaks down (in fact, there exist examples in which the switching does not stop even though ��

�*
is

bounded). In what follows, we propose a new way of dealing with this problem, by means of
modifying the switching logic. This enables us to demonstrate how the behaviour of a hysteresis-
based supervisory control system can be analysed without relying on P being a "nite set. There
are actually several ways to achieve this goal, of which the one presented below is probably the
simplest (see Reference [18] for an alternative approach).
We now proceed to the description of the local priority hysteresis switching logic. The new

switching logic is scale-independent (see Section 4). Its inputs are continuous monitoring signals
�
�
, p3P. One also needs to specify a positive hysteresis constant h and another positive constant

�. A proper choice of � in the supervisory control context is discussed in the next section. For each
q3P, we de"ne the set

D� (q) :"�p3P : 	q!p	)��

where 	 ) 	 stands for the norm in the ambient space of P.
First, we set �(0)"arg min

��P
��

�
(0)�. Suppose that at a certain time t

	
the value of � has just

switched to some q3P. We then keep � "xed until a time t
	
�

't
	
such that the following

inequality is satis"ed:

(1#h) min
��P

��
�
(t
	
�

)�) min
���� 
��

��
�
(t
	
�

)�

at which point we set � (t
	
�

)"arg min
��P

��
�
(t
	
�

)�. As with the regular scale-independent
hysteresis switching, if the argmin is not unique, a particular candidate for the value of � is chosen
arbitrarily. The understanding here is that minimization overD�(q) is computationally tractable if
� is small.
Repeating the above steps, we generate a piecewise constant signal � which is continuous from

the right everywhere. By the same argument as in References [14, 15], one can show that
chattering is avoided if all �

�
, p3P are bounded below by some positive number. In fact, there
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exists a maximal interval [0, ¹
���

) on which � is de"ned, and there can only be a "nite number of
switches on each proper subinterval of [0, ¹

���
). As before, in all the cases treated below we will

have ¹
���

"R.
We begin to explore the properties of this new switching logic by proving the following result.

We assume again that for some positive function of time � the scaled signals �N
�
(t) :"�(t)�

�
(t),

p3P are strictly positive and monotone increasing. We also assume that �
�
(t) depends continu-

ously on p for every "xed t3[0, ¹
���

).

Lemma 5
Suppose that ��

�*
is bounded on [0, ¹

���
) for some p*3P. Then the switching stops in "nite

time, i.e. there exists a time ¹*3[0, ¹
���

) such that �(t)"�(¹*) for all t3[¹*, ¹
���

). Moreover,
��
��
is bounded on [0, ¹

���
) for some qN 3D� (�(¹*)).

Proof. Let K"min
��P

�lim
������

��
�
(t)�. The hypotheses of the lemma imply that K is well

de"ned and "nite. Take an arbitrary "xed �3(0, h). We claim that there exists a time ¹	(¹
���

such that ��
�
(¹	)*K/(1#�) for all p3P. Indeed, otherwise there would be a sequence �p

�
� in

P and a sequence of times �t
�
� increasing to ¹

���
, with the property that ��

��
(t
�
)(K/(1#�).

Since P is compact, �p
�
� would contain an accumulation point p� for which we would have

��
��
(t))K/(1#�) for all t(¹

���
, contrary to the de"nition of K (here we are using the fact that

�

�
, p3P are monotone increasing).
The sequence of values of � contains a subsequence �q

�
� which converges to some q3P. Pick

a time ¹**¹	 such that 	�(¹*)!q	(�. Then q is an interior point of D� (�(¹*)) relative to P.
Using the de"nition of the switching logic, it is straightforward to verify that if at least one more
switch occurs at some tN *¹*, then we must have �


�
(tN )*K (1#h)/(1#�)'K for all

p3D�(�(¹*)). But this would imply that the values of � never re-enter D�(� (¹*)) after the time tN ,
and we arrive at a contradiction. Therefore, � (t)"� (¹*) for all t3[¹*, ¹

���
).

Let us prove that �

��
(t)(K(1#h) for some qN 3D� (�(¹*)) and for all t(¹

���
. Suppose the

contrary: that for every p3D�(� (¹*)) there is a time ¹
�
(¹

���
such that �


�
(¹

�
)*K (1#h).

Since D�(�(¹*)) is compact, the same argument as before shows that this would imply the
existence of a time ¹M (¹

���
such that �


�
(¹M )*K (1#h) for all p3D�(� (¹*)). But this would

force � to switch away from, and never re-enter, the set D�(�(¹*)), which contradicts the assertion
proved earlier. �

7. ANALYSIS: INFINITE P

Consider again system (5). Here we assume the index set P to be in"nite (typically a continuum),
although all that follows is also valid when P is "nite. Suppose that the monitoring signals are
de"ned via Equations (8), and that the switching signal � is generated by the local priority
hysteresis switching logic described in the previous section. We take the design parameter � for
the switching logic to be small enough so that for every pair of indices p

�
, p

�
3P satisfying

	p
�
!p

�
	)� the matrix

A
�� ���

:"A
��

#d
��
(c

��
!c

��
0) (16)

is stable. It is not hard to check that in view of stability of A
�
for each p3P, compactness of P,

and continuity of c
�
with respect to p, such a constant �'0 is guaranteed to exist.
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We restrict our discussion to the case when the noise and disturbance signals are zero
(n"d,0) and there are no unmodelled dynamics (�"0). Then Equations (6) and (7) hold with
B
�
, B

�
, �

�
, �

�
equal to zero. Let us take �� in the de"nition of the monitoring signals to be zero as

well (the matrix=(0) must then be positive de"nite; see Section 4). From (6), (12), and continuity
of c

�
with respect to p, we see that the scaled monitoring signals given by ��

�
(t)"e����

�
(t), p3P

satisfy the hypotheses of Lemma 5. Therefore, the switching stops in "nite time at some index
q*3P, i.e. there exists a time ¹* such that �(t)"q* for t*¹*. Moreover, by the same lemma,
��
��
is bounded for some q� 3P satisfying 	q*!qN 	)�. In view of (12), we see that e

��
3¸�.

The "rst equation in (5) and formula (16) imply that the evolution of x for t5¹* is given by

xR "A
�*
x#d

�*
e
�*

"A
�*� ��

x#d
�*
e
��

The matrix A
�*� ��

is stable, hence x converges to 0. Furthermore, since e
�*

P0 by virtue of (7), the
output y"(c

�*
0)x!e

�*
of the process � also converges to 0. In light of (5), (8), and detectability

of �, all the other system signals remain bounded for all t*0 (i.e. ¹
���

"R). We have thus
proved the following counterpart of Proposition 2.

Proposition 6
Suppose that the noise and disturbance signals are zero and there are no unmodelled dynamics,

and set ��"0. Then all the signals in the supervisory control system remain bounded for every set
of initial conditions such that=(0)'0. Moreover, the switching stops in "nite time, and we have
y(t)P0 as tPR.

Remark
As in Proposition 2, since the system describing the evolution of x� and x for t*¹* is linear

time invariant, the rate at which y converges to zero must be exponential.

In the recent paper [18], we describe another switching logic for dealing with in"nite parameter
sets, which allows a successful treatment of noise, disturbances, and unmodelled dynamics.

8. CONCLUDING REMARKS

Our goal has been to discuss recent progress in design and analysis of hysteresis-based supervis-
ory control algorithms for uncertain linear systems. Although the results that we have obtained
can also be achieved by using the methods described in References [1, 2], the proofs given here are
considerably simpler. Another important advantage of the present approach is that it is more
suitable for control of nonlinear systems (as explained at the end of Section 5). In fact, we have
already applied these methods to certain classes of nonlinear systems in the absence of noise,
disturbances, and unmodelled dynamics (see References [4}6]). In addressing the issue
of robustness in the nonlinear case, the work on nonlinear extensions of the Vinnicombe metric
[19, 20] and on stable factorizations of nonlinear systems [21, Chapter 5] may prove to be
relevant. The Vinnicombe metric may also be useful for designing &safe' multiple model adaptive
control algorithms, capable of guaranteeing that one never switches to a controller whose
feedback connection with the process is unstable (cf. Reference [22]). This issue is addressed in
Reference [23]. The new switching logic described in Section 6 is of interest in its own right, and
its properties and implications are to be investigated further.
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APPENDIX A: PROOF OF THEOREM 4

From (5) and (6) one obtains

�
�

�

e���e�
�*
(�) d�)B

�
e���#D

�
	xN (0)	�#�

�
F�

�

�

e���	x (�)	� d�#�
�
G�

�

�

e���e�
�*
(�) d�

where xN denotes the composite state (x
�, x
)
 of the process, the multi-estimator, and the
multi-controller, D

�
is a positive constant, F :"2 max

��P
	 f
�
	�, and G :"2 max

��P
	g

�
	�. Suppose

that �
�
is small enough so that

�
�
G(1 (A1)

Then we can write

�
�

�

e���e�
�*
(�) d�)BM

�
e���#DM

�
	xN (0)	�#�

�
FM �

�

�

e���	x(�)	�d� (A2)

where BM
�
:"B

�
/(1!�

�
G), DM

�
:"D

�
/(1!�

�
G), and FM :"F/(1!�

�
G).

Let= (0)"0 for simplicity. Formula (12) gives

�

�*
(t))��e���#BM

�
e���#DM

�
	xN (0)	�#�

�
FM �

�

�

e���	x(�)	� d� (A3)

For an arbitrary pair of positive numbers C, C
�
with C*1, we can de"ne the time ¹"¹ (C, C

�
)

:"sup�t*0 : 	x(t)	�)C	xN (0)	�#C
�
���)R. For all t)¹ we have

�
�

�

e���	x(�)	� d�)

C	xN (0)	�#C
�
��

2�
e��� (A4)

hence

�

�*
(t))���e��� (A5)

where

� :"1#

BM
�

��
#

DM
�
	xN (0)	�
��

#�
�
FM
C	xN (0)	�#C

�
��

2���
Inequality (10) now implies that for ¹*t't

�
*0 we have

N� (t, t�))1#m#

m

log(1#h)
log �#

2�m
log (1#h)

(t!t
�
)

Thus on the interval [0, ¹] we have the average dwell time �

�

"log(1#h)/2�m. We know from
the results of Reference [17] that if h is large enough and � is small enough, then the switched
system given by the "rst equation in (5) has a "nite e��-weightedL

�
-to-L

�
induced norm on this

interval, as expressed by inequality (15). Moreover, the gains g and g
�
satisfy the bounds

g)D
�
��	� and g

�
)D

�
��	� for some r3 (0, 1) and some positive constants D

�
, D

�
that are

independent of C and C
�
.
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From (11) and (A5) it also follows that

�
�

�

e���e��
��(�) d�)m (1#h)���e���

Combined with (15), this implies that for all t)¹ we have

	x(t)	�)gm (1#h)���#g
�
	x(0)	�e	���)m (1#h)D

�
����#D

�
	xN (0)	��

"D
�
D�

�
��#

D
�
��
�
FM �C�

�
��

4��
#

D
�
D

�
�
�
FM C

�
��

�
#

D
�
DM �

�
#DM

�
D

�
��

	xN (0)	�

#

D
�
��
�
FM �C�

4����
	xN (0)	�#(2D

�
DM

�
#D

�
)D

�
	xN (0)	�#

D
�
D

�
�
�
FM C

�
	xN (0)	�

#

(2D
�
DM

�
#D

�
)�

�
FM C

2���
	xN (0)	�#

(2D
�
DM

�
#D

�
)�

�
FM C

�
2�

	xN (0)	�#
D

�
��
�
FM �CC

�
2��

	xN (0)	�

where D
�
:"m(1#h)D

�
and D

�
:"1#BM

�
/��.

Suppose that 	xN (0)	)E, where E is given. We can chooseC
�
large enough so that the inequality

D
�
D�

�
(

C
�
3

holds, then choose C large enough so that the inequalities

D
�
DM �

�
#DM

�
D

�
��

E�(

C

7
and (2D

�
DM

�
#D

�
)D

�
(

C

7

hold, and "nally choose �
�
small enough so that the inequalities

D
�
��
�
FM �C

4����
E�(

1

7
,

D
�
D

�
�
�
FM

�
(

1

7
,

(2D
�
DM

�
#D

�
)�

�
FM

2���
E�(

1

7
,

(A6)
(2D

�
DM

�
#D

�
)�

�
FM C

�
2�

(

C

7
,

D
�
��
�
FM �C

�
2��

(

1

7

hold. Using the above calculations, it is straightforward to check that this implies
	x(t)	�(C	xN (0)	�#C

�
�� for all t)¹(C, C

�
) , thus for these values of C and C

�
we actually have

¹"R. It now follows from (5), (7), (8), (A2), (A4), and detectability of � that the solutions remain
bounded, which proves the "rst statement of the theorem.
Let us use (11) and (A3) again, combined with the fact that the switched system has a "nite

e��-weighted L
�
-to-L

�
induced norm:

�
�

�

e���	x(�)	�d�)gN �
�

�

e���e��
��(�) d�#gN
�
	x (0)	�
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where the gains gN and gN
�
are of the same type as g and g

�
above. We obtain

�
�

�

e���e��
��(�) d�)m(1#h)�(��#BM
�
)e���#DM

�
	xN (0)	�#�

�
FM �

�

�

e���	x(�)	� d��
)m(1#h)�(��#BM

�
)e���#(DM

�
#�

�
FM gN

�
)	xN (0)	�#�

�
FM gN �

�

�

e���e��
��(�) d��
Choose �

�
to satisfy inequalities (A1) and (A6), and then decrease it if necessary so as to have

m(1#h)�
�
FM gN (1. This implies

�
�

�

e���e��
��(�) d�)D
�
#D

�
(��#BM

�
)e���

for suitable constants D
�
and D

�
. It follows from (15) that

	x(t)	�)(gD
�
#g

�
	x(0)	�)e	���#gD

�
(��#BM

�
)

If n and d converge to zero, then BM
�
converges to zero. We also have

g��)D
����#BM

�
#DM

�
	xN (0)	�#�

�
FM
C	xN (0)	�#C

�
��

2� �
�	�

���

Since 0(r(1, for every given bound E on 	xN (0)	 and every �'0 the quantity on the right-hand
side can be made smaller than � by choosing �� su$ciently small, selectingC

�
, C, �

�
in accordance

with the above inequalities, and decreasing �
�
further if needed. Moreover, since B

�
in (7)

converges to zero, it is not di$cult to verify that 	e
�*
(t)	 is bounded by a quantity that converges to

�
��FM

C	xN (0)	�#C
�
��

2�

as tPR. This can be made arbitrarily small by taking �
�

su$ciently small. Thus
lim

���
	y(t)	"lim

���
	(c

�*
0) x!e

�*
	 will not exceed a prescribed �

�
'0 if the design parameter

�� and the unmodelled dynamics bound � are small enough, which proves the second statement of
the theorem. �
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