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a b s t r a c t

This article addresses the invertibility problem for switched nonlinear systems affine in controls. The
problem is concerned with reconstructing the input and switching signal uniquely from given output and
initial state. We extend the concept of switch-singular pairs, introduced recently, to nonlinear systems
and develop a formula for checking if the given state and output form a switch-singular pair. A necessary
and sufficient condition for the invertibility of switched nonlinear systems is given, which requires
the invertibility of individual subsystems and the nonexistence of switch-singular pairs. When all the
subsystems are invertible, we present an algorithm for finding switching signals and inputs that generate
a given output in a finite interval when there is a finite number of such switching signals and inputs.
Detailed examples are included to illustrate these newly developed concepts.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Switched systems refer to dynamical systems with discrete
switching events. Their evolution is described by a collection of dy-
namical subsystems, together with a switching signal, that spec-
ifies an active subsystem at each time instant. Examples include
switching power converters, networks with switching topologies,
and aircraft with different thrust modes. Also, switching control
techniques, especially in the adaptive context, have been shown to
achieve stability and improved transient response (see Liberzon,
2003, Chapter 6). Because of their utility in modeling and control
design, switched systems have been a focus of ongoing research
and several results related to stability, controllability, observabil-
ity, and input-to-state stability of such systems have been pub-
lished; see Liberzon (2003) for references. More recently, Vu and
Liberzon (2008) introduced theproblemof invertibility of switched
linear systems. In this paper,we extend theirmethodology to study
the problem of invertibility of continuous-time switched nonlin-
ear systems, which is concerned with finding the conditions on
the subsystems to guarantee unique recovery of the switching sig-
nal and the input from the initial state and the output. The prob-
lem statement is analogous to the classical invertibility problem for
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nonswitched systems. In fact, for every control systemwith an out-
put, we have an input–output map and the question of left (resp.
right) invertibility is, roughly speaking, that of the injectivity (sur-
jectivity) of this map.

System invertibility problems are of great importance from
a theoretical and practical viewpoint and have been studied
extensively for fifty years, after being pioneered by Brockett and
Mesarovic (1965). For nonswitched linear systems, the algebraic
criterion for invertibility and the construction of inverse systems
were given by Silverman (1969), and also by Sain and Massey
(1969). The systematic study of invertibility for nonswitched
nonlinear systems began with Hirschorn, who first studied the
single-input single-output (SISO) case (see Hirschorn, 1979b), and
then generalized Silverman’s structure algorithm to multiple-
input multiple-output (MIMO) nonlinear systems (see Hirschorn,
1979a). Singh (1981) thenmodified the algorithm to cover a larger
class of systems. Isidori and Moog (1988) used this algorithm to
calculate zero-output constrained dynamics and reduced inverse
system dynamics. The algorithm is also closely related to the
dynamic extension algorithm used to solve the dynamic state
feedback input–output decoupling problem (see Nijmeijer & van
der Schaft, 1990, Sections 8.2 and 11.3). Geometric methods have
been studied by Nijmeijer (1982). A higher-level interpretation
given by a linear-algebraic framework, which also establishes
links between these algorithms and the geometric approach, is
presented by Di Benedetto, Grizzle, and Moog (1989). We also
recommend a useful survey on various invertibility techniques by
Respondek (1990).

The problem of invertibility for switched linear systemswas in-
troduced very recently by Vu and Liberzon (2008) where the au-
thors used Silverman’s structure algorithm to formulate conditions
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for the invertibility of switched systems with continuous dynam-
ics. The problem of invertibility for discrete-time switched linear
systems has been discussed by Millerioux and Daafouz (2007) and
Sundaram and Hadjicostis (2006) but there, the authors assume
that the switching sequence is known and find the corresponding
input. In this paper, wemake no such assumption and adopt an ap-
proach similar to Vu and Liberzon (2008), to study the invertibility
problem for continuous-time switched nonlinear systems, affine in
controls, using Singh’s nonlinear structure algorithm.1 The concept
of singular pairs, conceived by Vu and Liberzon (2008), is extended
to nonlinear systems; although, in this paper, such pairs are termed
as ‘‘switch-singular pairs’’ to avoid conflict with the singularities of
individual nonlinear subsystems. Even though the formof themain
result (invertibility of subsystems plus no switch-singular pairs)
and the concepts presented in this article are essentially similar to
those given by Vu and Liberzon (2008), the main contribution of
this paper lies in the technical details of developing and checking
the conditions for invertibility of nonlinear systems. In particular,
the use of the nonlinear structure algorithm, possibility of finite
escape times, and the existence of singularities in state space and
output set requiremore careful analysis and technical rigor as com-
pared to the linear case.

As is the case in the classical setting of nonswitched systems,
we start with an output and an initial state, but here there is a set
of dynamic models and we wish to recover the switching signal in
addition to the input. In the context of hybrid systems, recovering
the switching signal is equivalent to the mode identification for
hybrid systems or the observability of the discrete state variable
(location), which has been studied by Babaali and Pappas (2005),
Vidal, Chiuso, and Soatto (2002) and Vidal, Chiuso, Soatto, and
Sastry (2003). Hence, the inversion of switched systems can also
be thought of doing the mode detection and input recovery
simultaneously. Consequently, the basic idea for solving the
invertibility problem is to first do the mode identification by
utilizing the relationship among the outputs and the states of the
subsystems, and then use the nonlinear structure algorithm for the
corresponding subsystem to recover the input.

For the case when subsystems are linear, Silverman’s structure
algorithm seems to be the most convenient tool to formulate
invertibility conditions which leads to a simple and elegant rank
test for checking the existence of switch-singular pairs, but in
nonlinear systems it is hard to achieve such a level of generality. For
this reason, we start with the SISO case to highlight the technical
difficulties in moving from linear to nonlinear systems. Discussing
the SISO case first also helps in understanding the concepts behind
the formula derived for verification of switch-singular pairs.

The paper is organized as follows. Section 2 contains the
definitions of invertibility and the formal problem statement.
The main result on left invertibility is presented in Section 3.
We then give a characterization of switch-singular pairs and the
construction of inverse systems in Section 4. An algorithm for
output generation is given in Section 5 along with an example.
We conclude the article with some remarks on further research
directions.

2. Preliminaries

In this section, we develop the required notations and provide
some background on invertibility of nonswitched nonlinear
systems. Based on that, we develop the definition for the
invertibility of switched nonlinear systems followed by the formal
problem statement to which we seek solution in the paper.

1 A related problem is discussed by Chaib, Boutat, Banali, and Kratz (2007) but
it doesn’t follow the same theoretical approach we do, and instead uses a heuristic
approach with the purpose of studying a specific application.
2.1. Nonswitched nonlinear systems

The dynamics of a square nonlinear system, affine in controls,
are given by

Γ :=

ẋ = f (x)+ G(x)u = f (x)+
m−
i=1

gi(x)ui,

y = h(x)
(1)

where x ∈ M, an n-dimensional real connected smooth manifold,
for example Rn; f , gi are smooth vector fields on M, and h :
M → Rm is a smooth function. Admissible input signals are
locally essentially bounded, Lebesgue measurable functions u :
[t0,∞)→ Rm. If the two inputs differ on a set of measure zero, i.e.
u1(t) = u2(t) almost everywhere (a.e.), then they are considered
to be equal. We use the notation u[t0,T ) to denote the input u over
the time interval [t0, T ); and Γx0(u) denotes the state trajectory
generated by (1) after applying the input uwith initial condition x0.

We start off by reviewing classical definitions of invertibility
for such systems. For that, consider the input–output map Hx0 :

U → Y for some input function space U and the corresponding
output function space Y. Hx0 maps an input u(·) to the output y(·)
generated by the system driven by u(·)with an initial condition x0.
Since the state trajectories of nonlinear systems may exhibit finite
escape times, an input u[t0,∞) may not have a well defined image
in the output space, over the interval [t0,∞), under this map. For
this reason, we only consider inputs over a finite interval [t0, T ),
which is the maximal interval of the existence of a solution, such
that Hx0(u[t0,T )) = y[t0,T ) always exists and is well-defined.

Invertibility2 of the dynamical system (1) basically refers to the
injectivity of the map Hx0 . Before giving a formal definition, let us
look at an example first.

Example 1. Consider a nonswitched nonlinear system with two
inputs and two outputs,ẋ1
ẋ2
ẋ3


=

x1u1
x3u1
u2


,


y1
y2


=


x1
x2


, M = R3.

We then have

ẏ1 = x1u1, (2a)

ÿ2 =
x3ÿ1 − ẏ1ẏ2 + ẏ1u2

x1
. (2b)

It follows that u1 can be recovered uniquely from ẏ1 if x1 ≠ 0, and
u2 can be recovered uniquely from ÿ2 if ẏ1 ≠ 0 and x1 ≠ 0. The
point x1 = 0 and ẏ1 = 0 are the singularities in the state space and
the output space, respectively. Let Mα

:= {x ∈ R3
| x1 ≠ 0};

Y s
= {z ∈ R2

| z1 = 0}, and Ys
:= {y : [t0, T ) → R2

|

ẏ(t) ∈ Y s for almost all t ∈ [t0, t0 + δ) ⊆ [t0, T ), where δ >
0 is arbitrary}. In words, Ys includes those outputs which remain
in a singular set for some time. The complement of Ys is given
by Yα

:= {y : [t0, T ) → R2
| ẏ(t) ∉ Y s

1 for almost all t ∈
[t0, t0 + ε) and some ε > 0}. If the system is driven by a class
of inputs u such that the resulting motion Γx0(u) ∈ Mα a.e. and
Hx0(u) ∈ Yα , then there is a one-to-one relation between the
output and input signals provided their domains are restricted
to [t0, t0 + ε). In summary, the input can be recovered uniquely
using the knowledge of output, its derivatives and possibly some
states as long as the output and state trajectories do not hit some
singularities. �

We now proceed to the formal definition of invertibility for
nonswitched systems.

2 Throughout the paper, invertibility refers to the left invertibility.
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Definition 1. Fix an output setY and consider an arbitrary interval
[t0, T ). The system (1) is invertible at a point x0 := x(t0) ∈ M overY
if for every y[t0,T ) ∈ Y, the equality Hx0(u1[t0,T )) = Hx0(u2[t0,T )) =
y[t0,T ) implies that ∃ ε > 0 such that u1[t0,t0+ε) = u2[t0,t0+ε). The
system is strongly invertible at a point x0 if it is invertible for each
x ∈ N(x0), where N is some open neighborhood of x0. The system
is strongly invertible if there exists an open and dense submanifold
Mα such that ∀x0 ∈ Mα , the system is strongly invertible at x0. �

As illustrated in Example 1, a system is invertible at x0 for the
class of inputs u(·) such that along the trajectory of the system
(1), the resulting motion x(·), y(·) does not hit any singularities.
It is entirely possible that the state trajectory or the output hits
singularity at a time instant t0+εwith 0 < ε < T−t0, thusmaking
it impossible to recover u uniquely beyond t0+ε; this explainswhy
we require distinct inputs over arbitrarily small time domains in
Definition 1.

In the most general construction of inverse systems as the one
given by Singh (1981), there exists a set of singular outputs Ys such
that the system is not invertible for y ∈ Ys; and its complement
Yα
:= Y \ Ys is the set of all outputs on which the system

is strongly invertible. Also, in general, the inverses of nonlinear
dynamical systems are not defined on the entire state space. If the
vector fields f (x), g(x) and the output function h(x) are analytic,
then the singular points are reduced to a closed and nowhere
dense set comprising zeros of certain analytic functions. Under
these assumptions, if the system is invertible then there exists an
open and dense subset of M on which the dynamics of a nonlinear
system are invertible; that subset is called the inverse submanifold
and is denoted by Mα . All these notions will be developed formally
in Section 4.

Using Definition 1, invertibility at x0 is equivalent to saying
that u1[t0,t0+ε) ≠ u2[t0,t0+ε) for all ε ∈ (0, T − t0) implies that
Hx0(u1[t0,T )) ≠ Hx0(u2[t0,T )). This notionwas captured byHirschorn
(1979a). Our definition is essentially the same as one considered by
Hirschorn in the sense that both notions address the injectivity of
an input–output map. The difference lies in the fact that Hirschorn
considered a class of analytic nonlinear systems with analytic
inputs and Ys

= ∅, an empty set. In that case, if the system is
invertible and the state trajectory starts from a nonsingular set,
it is possible to recover inputs on a small interval but because
of analyticity, we continue to recover inputs uniquely even after
hitting singularity; for if two analytic inputs are different on a
subinterval then they are different everywhere, otherwise their
difference (an analytic function) would have an infinite number of
zeros on a finite interval. In this paper though, we consider non-
analytic systems driven by inputs that are not necessarily analytic,
so the input recovery can only be guaranteed over small time
intervals only.

We will now generalize this notion of local invertibility to the
switched systems.

2.2. Switched nonlinear systems

In the paperwewill consider switchednonlinear systems, affine
in controls, that have the following structure:

Γσ :

ẋ = fσ (x)+ Gσ (x)u = fσ (x)+
m−
i=1

(gi)σ (x)ui,

y = hσ (x)
(3)

where σ : [t0, T ) → P is the switching signal that indicates
the active subsystem at every time, P is some finite index set,
and fp,Gp, hp, where p ∈ P , define the dynamics of individual
subsystems. The state spaceM is a connected real smoothmanifold
of dimension n, for example Rn; fp, (gi)p are real smooth vector
fields on M, and hp : M → Rm is a smooth function. A switching
signal is a piecewise constant and everywhere right-continuous
function that has a finite number of discontinuities at τi, which
we call switching times, on every bounded time interval. Denote
by σ p

[t0,T )
the constant switching signal over the interval [t0, T )

such that σ p(t) := p ∈ P , ∀t ∈ [t0, T ). We assume that all
the subsystems are equidimensional, they live in the same state
space M, and that there is no state jump at switching times. For
any initial state x0, switching signal σ(·), and any admissible input
u(·), a solution of (3) always exists (in Carathéodory sense) and is
unique, provided the flow of every subsystem is well-defined for
the time interval during which it is active, i.e., the state trajectories
do not blow up in finite time. In fact, this assumption results in
absolutely continuous state trajectories (see Sontag, 1998). Denote
by [t0, T ) the maximal interval of existence of solution, so that the
outputs are well-defined on [t0, T ). Since the switching signals are
right-continuous, the outputs are also right-continuous (note that,
in general, hi(x) ≠ hj(x), for i ≠ j) and whenever we take the
derivative of an output, we assume it is the right derivative. For
p ∈ P , denote by Γp,x0(u) the trajectory of the corresponding
subsystem with the initial state x0 and the input u, and the
corresponding output by Γ O

p,x0(u).
We will use F pc to denote the space of piecewise right-

continuous functions3 and F n to denote the subset of F pc whose
elements are n times differentiable between two consecutive
discontinuities. Likewise, F AC denotes the subset of F pc whose
elements are absolutely continuous between two consecutive
discontinuities. Finally, we use ⊕ for the concatenation of two
signals.

In case of switched systems (3), the map Hx0 has an augmented
domain; that is, now we have a (switching signal× input)-output
map Hx0 : S × U → Y, where S is a switching signal set, U is
the input space, and Y is the output space. Let us first extend the
definition of invertibility to switched systems.

Definition 2. Fix an output setY and consider an arbitrary interval
[t0, T ). A switched system is invertible at a point x0 over Y if
for every y[t0,T ) ∈ Y, the equality Hx0(σ1[t0,T ), u1[t0,T )) = Hx0
(σ2[t0,T ), u2[t0,T )) = y[t0,T ) implies that ∃ ε > 0 such that
σ1[t0,t0+ε) = σ2[t0,t0+ε) and u1[t0,t0+ε) = u2[t0,t0+ε). A switched
system is strongly invertible at a point x0 if it is invertible at each x ∈
N(x0), whereN is some open neighborhood of x0. A switched system
is strongly invertible if there exists an open and dense submanifold
Mα of M such that ∀x0 ∈ Mα , the system is strongly invertible
at x0. �

For linear switched systems, as discussed by Vu and Liberzon
(2008), all the notions in Definition 2 coincide and a system
is termed invertible if the input and switching signal could be
recovered uniquely for all x0.

The invertibility property formulated in Definition 2 may fail
to hold in two ways: (a) either because there exist two different
inputs u1 and u2 that yield the same output or (b) because
there exist two different switching signals σ1(·) and σ2(·) that
yield the same output. The first case refers to the notion of
classical invertibility as already explained in Definition 1 and
Section 2.1. To address the second possibility, we need the concept
of switch-singular pairs which refers to the ability of more than
one subsystem to produce a segment of the desired output starting
from the same initial condition. The formal definition is given
below:

3 By piecewise right-continuous functions, wemean that there is a finite number
of jump discontinuities in any finite interval; the function is continuous in between
any two consecutive discontinuities; and the function is continuous from the right
at discontinuities. To avoid excessive rigidness, we will use the term ‘‘piecewise
continuous’’ throughout thepaper, and it is understood that ‘‘piecewise continuous’’
means ‘‘piecewise right-continuous’’.
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Definition 3. Consider x0 ∈ M and y ∈ Yp ∩ Yq on some time
interval [t0, T ), where p, q ∈ P , p ≠ q. The pair (x0, y) is a
switch-singular pair of the two subsystems Γp,Γq if there exist
u1, u2 and ε > 0 such that Γ O

p,x0(u1[t0,t0+ε)) = Γ O
q,x0(u2[t0,t0+ε)) =

y[t0,t0+ε). �

If all subsystems are linear, x0 = 0 and y ≡ 0 always form a
switch-singular pair regardless of the dynamics of the subsystems.
This is because u ≡ 0 and any switching signal will produce y ≡ 0,
that is, H0(σ , 0) = 0∀σ , and thereforeH0 is not injective if the zero
function belongs to Y. In nonlinear systems, this is not the case in
general and all switch-singular pairs are solely determined by the
subsystem dynamics. As stated earlier and will be formally proved
below, the switched system is not invertible if Y contains outputs
that form switch-singular pairs with x0. Thus, if there exist any
switch-singular pairs, we have to restrict the output set Y, instead
of letting Y be the set of all possible concatenations of nonsingular
output trajectories.

Next, we use the concept of switch-singular pairs to study
the invertibility problem of switched systems. Since Definition 2
contains different variants of invertibility, we start off with the
weakest of them all, i.e., invertibility of a switched system at a
point. In particular, we are interested in solving the following
fundamental problem: Find a suitable set Y and a condition on
the subsystems such that the system is invertible at x0 over Y. An
abstract characterization of the setY and constraints on subsystem
dynamics which guarantee invertibility are given in Section 3
under Theorem 1; Corollaries 1 and 2 then characterize the set Y
more explicitly (depending on the required variant of invertibility).
Later in Section 4, we give mathematical formulae (Lemmas 1
through 5) for checking the abstract conditions given in Section 3.

3. Characterization of invertibility

In this section, we describe the output setY used in Definition 2
and give conditions on the subsystem dynamics so that the
switched system is invertible for some sets S,U, andY. Restricting
the outputs to lie in Y implies a set of restrictions on the set of
allowable inputs, but an explicit characterization of such inputs
is not always obtainable. That is why we do not explicitly specify
what the input sets U and S are, but instead specify the set Y
and then U will be the corresponding set which, together with S,
generates Y.

For all p ∈ P , let Yp be the set of smooth outputs4 that
can be generated by Γp, and let Yall be the set of all the possible
concatenations of all elements ofYp, ∀p ∈ P . Due to the existence
of certain singular outputs (for which the system is not invertible),
we seek invertibility at a fixed point x0 over a subset Yα

⊆ Yall.

Theorem 1. Consider the switched system (3) and an output set
Yα
⊆ Yall. The switched system is invertible at x0 ∈ M over Yα if

and only if each subsystem Γp is invertible at x0 over Yα
∩Yp and for

all y ∈ Yα , the pairs (x0, y) are not switch-singular pairs of Γp,Γq
for all p ≠ q, p, q ∈ P .

Proof (Necessity). We show that if any of the subsystems is not
invertible at x0 or if there exist switch-singular pairs (x0, y), then
the switched system is not invertible.

Suppose that a subsystem Γp, p ∈ P , is not invertible at x0
over Yα

∩ Yp, then there exists y[t0,T ) ∈ Yα
∩ Yp such that

Γ O
p,x0(u1[t0,T )) = Γ O

p,x0(u2[t0,T )) = y[t0,T ) for some u1, u2 and ∀ε ∈

4 This assumption can be relaxed depending upon the system under considera-
tion, see Remarks 4 and 5 in Section 4 for details.
(0, T − t0), u1 ≠ u2 on [t0, t0 + ε). This implies that
Hx0(σ

p
[t0,T )

, u1[t0,T )) = Hx0(σ
p
[t0,T )

, u2[t0,T )) = y[t0,T ) and thus,
Definition 2 implies that the switched system is not invertible at
x0 over Yα .

For necessity of the second condition, suppose that ∃ y ∈
Yα
∩ Yp ∩ Yq, so that (x0, y) is a switch-singular pair of Γp, Γq,

p ≠ q. This means that both subsystems, even though invertible
at x0, can produce this output over the interval [t0, t0 + ε) ⊂
[t0, T ),∀ε > 0. Consequently, ∃u1[t0,T ), u2[t0,T ) (possibly same)
such that Γ O

p,x0(u1[t0,T )) = Γ O
q,x0(u2[t0,T )) = y[t0,T ). Hence, we have

Hx0(σ
p
[t0,T )

, u1[t0,T )) = Hx0(σ
q
[t0,T )

, u2[t0,T )) = y[t0,T ); that is, the
preimage of y is not unique as σ p

≠ σ q on [t0 + t0 + ε),∀ε ∈
(0, T − t0). This implies that the switched system is not invertible
at x0 for given Yα .

Sufficiency: Suppose that for the given x0 ∈ M, there exist some
inputs u1, u2 and switching signals σ1, σ2 such that Hx0(σ1, u1) =
Hx0(σ2, u2) = y ∈ Yα over [t0, T ). Since (x0, y) is not a switch-
singular pair, there exists ε1 such that σ1(t) = σ2(t) = p,∀t ∈
[t0, t0 + ε1)

5 and y[t0,t0+ε1) ∈ Yp. Since Γp is invertible at x0,
∃ε2 < ε1 such that u1[t0,t0+ε2) = u2[t0,t0+ε2) andΓ

O
p,x0(u1[t0,t0+ε2)) =

Γ O
p,x0(u2[t0,t0+ε2)) = y[t0,t0+ε2). Letting ε = min{ε1, ε2}, it then

follows from Definition 2 that the switched system is invertible at
x0 over Yα . �

In the proof of the sufficiency part, the switched system is
strongly invertible at x0 for the signals whose domain is restricted
to the interval [t0, t0 + ε), where t0 + ε is the time instant at
which the state trajectory or the output enters the singular set. If
the output y loses continuity over the interval [t0, t0 + ε) because
of switching, then (σ[t0,t0+ε), u[t0,t0+ε)) = (σ[t0,τ1), u[t0,τ1))⊕ · · · ⊕
(σ[τk,t0+ε), u[τk,t0+ε)), where k is the total number of switches in the
interval [t0, t0+ε) and τi, i = 1, . . . , k, are the switching instants.

Let us now consider a refinement of Theorem 1 by characteriz-
ing the set Yα . For all p ∈ P , let Ys

p be the set of singular outputs
of Γp for which Γp is not invertible (see Example 1 and Section 4.2,
or Singh (1981)), and let Yα

p = Yp \ Ys
p be the set of outputs on

which Γp is invertible at x0. Define Ys
:= ∪p∈P Ys

p as the collection
of all singular outputs and let Yall be the set of outputs generated
by all the possible concatenations of all elements of Yp, ∀p ∈ P ;
Finally, define Y

α
:= Yall

\ Ys as a set of outputs over which we
seek invertibility. We now have the following modified version of
Theorem 1.

Corollary 1. The switched system is invertible at x0 over the set Y
α

if and only if the pairs (x0, y) are not switch-singular pairs of Γp and
Γq, for all y ∈ Y

α , for all p ≠ q, p, q ∈ P .

Proof. By the application of Theorem 1, the desired result is
obtained by showing that Γp, ∀p ∈ P , is invertible at x0 over the
set Y

α
∩ Yp. By construction, Yp = Yα

p ∪ Ys
p and Y

α
∩ Ys

p = ∅;
using these two equalities, it is easy to see that Y

α
∩ Yp ⊆ Yα

p . As
each subsystem Γp is invertible at x0 over Yα

p , it follows that each
subsystem Γp is, in particular, invertible at x0 over the output set
Y
α
∩ Yp. �

Corollary 2. Consider the switched system (3) and an output set
Yα
⊆ Y. The switched system is strongly invertible at x0 ∈ M

over Yα if and only if each subsystem Γp is strongly invertible at x0

5 This argument can also be proved in another way: it will be shown later that
the points in state space that form switch-singular pairs are actually a zero set of
smooth nonlinear equations. Thus, if x0 does not form a switch-singular pair with y
then there exists a neighborhood N(x0) such that ∀x ∈ N(x0), (x, y) is not a switch-
singular pair. As there are no switch-singular pairs in N(x0), ∃ε1 > 0 such that
σ1[t0,t0+ε1) = σ2[t0,t0+ε1) .
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over Yα
∩ Yp and there exists a neighborhood N(x0) such that for all

x ∈ N(x0), y ∈ Yα , the pairs (x, y) are not switch-singular pairs of
Γp,Γq for all p ≠ q, p, q ∈ P .

Proof (Necessity). If the switched system is strongly invertible at
x0, then ∃N(x0) such that the switched system is invertible at
every x ∈ N(x0) over Yα . Let N(x0) := N(x0). By Theorem 1,
each subsystem is invertible at every x ∈ N(x0), hence strongly
invertible at x0, and there does not exist any switch-singular pairs
(x, y), for all x ∈ N(x0), y ∈ Yα .

Sufficiency: If each subsystem is strongly invertible at x0, i.e.,
∃Np(x0) such that Γp is invertible at every x ∈ Np(x0), then Nα :=

p∈P Np is an open set onwhich all subsystems are invertible. Ifwe
defineN := Nα∩N , then the switched system is invertible at every
x ∈ N(x0) over Yα and hence by Theorem 1, strongly invertible at
x0. �

For the strong invertibility of the switched system on an open
and dense subset, assume that the vector fields fp, (gi)p and the
output function hp are analytic. Under these assumptions, if a
subsystem Γp is strongly invertible, then Mα

p denotes the inverse
submanifold of Γp.

Corollary 3. The switched system (3) is strongly invertible, with
inverse submanifold Mα

⊆ M, over an output set Yα
⊆ Y if and

only if each subsystem is strongly invertible over Yα
∩ Yp and the

subsystem dynamics are such that the pairs (x0, y) are not switch-
singular pairs of Γp,Γq for all p ≠ q, p, q ∈ P , for every x0 ∈ Mα ,
and every y ∈ Yα .

Proof (Necessity). If the switched system is strongly invertible,
then it is strongly invertible at every x0 ∈ Mα over Yα .
By Corollary 2, each subsystem is strongly invertible at every
x0 ∈ Mα , and hence strongly invertible with inverse submanifold
Mα . Furthermore, there does not exist any switch-singular pairs
(x0, y),∀x0 ∈ Mα, y ∈ Yα .

Sufficiency: Under the given hypothesis, there exists an inverse
submanifold Mα

p such that Γp is strongly invertible at every x0 ∈
Mα

p over Yα
∩ Yp, for all p ∈ P . Define Mα

:=


p∈P Mα
p ,

then Mα is an open and dense subset of M because it is a finite
intersection of open and dense subsets. Under relative topology,
Mα is a submanifold. Since each subsystemΓp is strongly invertible
at every x0 ∈ Mα over Yα

∩ Yp and there exist no switch-singular
pairs, application of Corollary 2 implies that the switched system
is strongly invertible at every x0 ∈ Mα over Yα . �

In essence, Theorem 1, and the related corollaries state that
the invertibility of subsystems in a certain sense implies the
invertibility of the switched system in a similar sense provided
there are no switch-singular pairs between the states and the
outputs considered. Before concluding this section, a couple of
remarks are in order.

Remark 1. For the switched system (3), if all the subsystems are
globally invertible in addition to the hypothesis of Corollary 3, that
is, Mα

= M and Ys
= ∅, then it is possible to recover the inputs

and switching signals uniquely over the time interval [t0, T ). Also
note that T may be arbitrarily large if the state trajectories do not
exhibit finite escape time. �

Remark 2. If a subsystem has more inputs than outputs, then it
cannot be (left) invertible. On the other hand, if it hasmore outputs
than inputs, then some outputs are redundant (as far as the task
of recovering the input is concerned). Thus, the case of input and
output dimensions being equal is, perhaps, the most interesting
case. �
4. Checking invertibility

In this section, we address the computational aspect of the
concepts introduced in previous sections and develop algebraic
criteria for checking the invertibility of switched systems. The
first condition in Theorem 1 asks for invertibility of subsystems
and is verified by the structure algorithm. To put everything
into perspective, we provide appropriate background related to
the invertibility of nonswitched systems and use it to develop
the concept of functional reproducibility. To check if (x0, y) is a
switch-singular pair, we develop a formula using the functional
reproducibility criteria of nonswitched systems. After verifying the
invertibility of subsystems and nonexistence of switch-singular
pairs, we will be able to construct a switched inverse system that
recovers the original input and switching signal uniquely.

4.1. Single-input single-output (SISO) systems

We start off with the case when all the subsystems are
SISO because it gives more insight into computations and helps
understand the concepts which we will later generalize to
multivariable systems. To this end, consider a SISO nonlinear
system affine in controls (1) with m = 1 and assume it has a
relative degree r at x0 (see Isidori, 1995), i.e., ∃ a neighborhood
N(x0) such that LgLkf h(x) = 0, ∀x ∈ N(x0), k = 0, . . . , r − 1 and

LgLr−1f h(x0) ≠ 0, where Lkf h(x) =
∂(Lk−1f h(x))

∂x f (x) and L0f h(x) = h(x).
To check if the subsystem is invertible or not, following

Hirschorn (1979b), we first derive an explicit expression for the
input u in terms of the output y by computing the derivatives of y
as follows:

y(t) = h(x(t)) (4a)
ẏ(t) = Lf h(x(t)) (4b)
...

y(r)(t) = Lrf h(x(t))+ LgLr−1f h(x(t))u(t). (4c)

From the last equation, we can derive an expression for u(t):

u(t) = −
Lrf h(x(t))

LgLr−1f h(x(t))
+

1

LgLr−1f h(x(t))
y(r)(t). (5)

Hence, u can be determined explicitly in terms of the measured
output y, and state x. On substituting the expression for u from (5)
in Eq. (1), one gets the dynamics for the inverse system:

ż = f (z)+ g(z)


−

Lrf h(z)

LgLr−1f h(z)
+

1

LgLr−1f h(z)
y(r)

,

u = −
Lrf h(z)

LgLr−1f h(z)
+

1

LgLr−1f h(z)
y(r). (6)

The dynamics of this inverse subsystem evolve on the set Mα
:=

{z ∈ M | LgLr−1f h(z) ≠ 0}. Mα is open and dense if f , g, h
are analytic. Since the inverse system dynamics are driven by
y(r)(·) which satisfies Eq. (4c), it is not hard to see that the state
trajectories of the inverse system satisfy the differential equation
of the original system (1) where the input has just been replaced
by a function of y. So if the inverse system is initialized with the
same initial condition as that of the plant, then both of the systems
follow exactly the same trajectory. This discussion motivates the
following result:

Lemma 1. A SISO system is strongly invertible at x0 if the system has
a finite relative degree r at x0.
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Remark 3. The condition given in Lemma 1 for strong invertibility
at a point x0 is only sufficient, and not necessary. As an example,
consider ẋ = 1+ xu, y = x, x ∈ R, x0 = 0; no relative degree at x0,
but the system is strongly invertible at x0 because the trajectory
immediately leaves the singularity. In general, this occurs when
the first function of the sequence Lgh(x), LgLf h(x), . . . , LgLkf h(x)
which is not identically zero (in a neighborhood of x0) has a zero
exactly at the point x = x0. A result somewhat similar to Lemma 1
appears in Hirschorn (1979b, Theorem2.1), where the author gives
a necessary and sufficient condition for strong invertibility of a
SISO system but considers only analytic systems with a slightly
different notion of relative degree. �

Remark 4. For SISO systems, the input u appears in the r-th
derivative of the output (4). Thus the differentiability/smoothness
of uwill not affect the existence of first r − 1 derivatives of y. If u :
[t0, T )→ R is a locally essentially bounded, Lebesgue measurable
function, then y(r)(·) exists almost everywhere and y(r−1)(·) is
absolutely continuous (see Sontag, 1998). So for SISO nonlinear
nonswitched systems,U is defined as the space of functions which
are locally essentially bounded and Lebesgue measurable; and Yα

is the set of corresponding outputs. �

Wenow turn to the concept of functional reproducibility, which
in broad termsmeans the ability to follow a given reference signal.
This concept will help us study the existence of switch-singular
pairs.We look at the conditions under which a system can produce
the desired output yd over some interval [t0, T ) starting from a
particular initial state x0. To be precise, given the system (1) with
m = 1 and initial state x0, we want to find out if there exists a
control u such that Γ O

x0(u) = yd. The following result was given by
Hirschorn (1979b):

Lemma 2. If the system (1), with m = 1 and x(t0) = x0, has a
relative degree r < ∞ at x0, then there exists a control input u such
that Γ O

x0(u) = yd if and only if

y(k)d (t0) = Lkf h(x0) ∀k = 0, 1, . . . , r − 1. (7)

This result is easy to comprehend by looking at the expressions
for the output derivatives (4). As control u(t) does not directly
affect y(k)(t), for k = 1, . . . , r−1, their values at t0 are determined
by the initial state. Substituting

u(t) = −
Lrf h(x(t))

LgLr−1f h(x(t))
+

1

LgLr−1f h(x(t))
y(r)d (t) (8)

in (4c) gives y(r)(t) = y(r)d (t). Using (7), repeated integration yields
y(t) = yd(t).

We can now easily check for the switch-singular pairs among
Γp,Γq with relative degrees rp, rq respectively, where p, q ∈ P .

Lemma 3. For SISO switched systems, (x0, y) is a switch-singular pair
of two subsystems Γp and Γq if and only if y ∈ Yp ∩ Yq and y

...

y(rκ−1)

 (t0) =
 hκ(x0)

...

Lrκ−1fκ hκ(x0)

 , κ = p, q. (9)

The example below illustrates the use of these concepts.
Example 2. Consider a SISO switched system with two modes

Γp :=

ẋ =

x1 + x2
x2
x1x2


+

 0
1
x2


u, M = R3

y = x1

Γq :=

ẋ =

 x2
x2x3
−x2


+

 0
1
x2


u, M = R3

y = 2x1.

If Γp is active, then ẏ = x1 + x2; if Γq is active, then ẏ = 2x2. Both
subsystems have relative degree 2 on R3 which can be verified by
taking second derivative of the output. If there exists x ∈ R3 which
forms a switch-singular pair with y ∈ Yp ∩ Yq, then the following
equality must be satisfied

x1
x1 + x2


=


2x1
2x2


which gives x1 = x2 = 0. This state constraint yields y = ẏ = 0. If
we let Y

α
:=


y : [t0, T ) → R | ẏ[t0,T ) ∈ F AC and


y(t)
ẏ(t)


≠ 0 for

almost all t ∈ [t0, T )

, then there exists no switch-singular pair

between x0 ∈ R3 and y ∈ Y
α . Theorem 1 and Lemma 1 infer that

the switched system generated by {Γp,Γq} is strongly invertible
with inverse submanifold R3 over Y

α . Alternatively, if x0 ≠ 0
then (x0, y) is not a switch-singular pair for any y and the switched
system is strongly invertiblewith inverse submanifoldR3

\{0} over
Yall. �

For general switched nonlinear systems, it is hard to check for
the existence of switch-singular pairs. To see this, consider the
system (3) withm = 1. For simplicity, assume that P = {p, q} and
the subsystems Γp,Γq have equal relative degrees, i.e., rp = rq =:
r . Lemma 3 states that Γp,Γq have a switch-singular pair (x0, y) if
and only if

ŷ = Hp(x0) = Hq(x0) (10)

where ŷ = (y, ẏ, . . . , y(r−1))T and Hκ = (hp, Lfphp, . . . , Lr−1fp hp)
T ,

κ = {p, q}. To see if there exist any switch-singular pairs between
two subsystems, one is interested in solving Hp(x0) = Hq(x0)
for x0; that is, x0 that forms switch-singular pair actually lies in
the solution space of r-nonlinear equations where each equation
itself involves functions of an n-dimensional variable x0. As it is
hard to talk about the solutions of nonlinear equations in general,
investigation into more constructive conditions for checking of
switch-singular pairs is a topic of ongoing research. Nonetheless, in
the case of SISO switched bilinear systems, the nonlinear equations
in (9) become linear and the task of checking the existence of
switch-singular pairs between two subsystems is comparatively
easier, as illustrated below.

Example 3. Consider a switched systemwith SISO bilinear subsys-
tems, having the dynamics of the form

ẋ = Aσ(t)x+ Bσ(t)xu,

y = Cσ(t)x (11)

where σ(t) = p ∈ P , x ∈ Rn, Ap, Bp ∈ Rn×n, Cp ∈ R1×n. Also,
u(t), y(t) ∈ R.

If some mode p ∈ P is active over a time interval, then at any
time t in that interval, the expression for the derivatives of output
is

y(t) = Cpx(t),
ẏ(t) = CpApx(t),
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...

y(rp−1)(t) = CpA
rp−1
p x(t),

y(rp)(t) = CpA
rp
p x(t)+ CpA

rp−1
p Bpxu(t) (12)

where rp denotes the relative degree of subsystem p. If we
introduce the notations

ŷp(t) :=


y(t)
ẏ(t)
...

y(rp−1)(t)

 and Zp :=


Cp

CpAp
...

CpA
rp−1
p

 ,
then based on the functional reproducibility criteria, an output
y[t0,t0+ε) can be produced by a subsystem p if and only if ŷp(t0) =
Zpx(t0). Consequently, if two subsystems p, q can produce a given
segment of output on an interval [t0, t0 + ε), then we will have
ŷp(t0)
ŷq(t0)


=


Zp
Zq


x(t0). (13)

This is equivalent to saying that[
Ip
Iq

]
ŷ(t0) =


Zp
Zq


x(t0) (14)

where ŷ :=

y, ẏ, . . . , y(r−1)

T
, r := max{rp, rq}, and for κ =

{p, q}, Iκ is an rκ × r matrix whose ijth element is 1 if i = j and
0 otherwise. Thus, the existence of switch-singular pairs in case
of SISO bilinear switched systems implies that the intersection of
range spaces of


Ip
Iq


and


Zp
Zq


is not empty. Since


Ip
Iq


and


Zp
Zq


are

both linear operators acting on linear subspaces, the zero vector
is always in their range space. Thus, an identically zero output
always forms a switch singular pair with the kernel of


Zp
Zq


; that

is,

ker


Zp
Zq


, 0


forms a switch-singular pair for such systems.

That is the trivial case; for the nontrivial case we check if

Ip
Iq


and

Zp
Zq


have a nontrivial common range space. So, if there exists a

nonzero output that forms a switch-singular pair with some state
at time t , then ŷ(t) ∈ range


Ip
Iq


∩ range


Zp
Zq


, or equivalently

rank

Ip Zp
Iq Zq


< rank


Ip
Iq


+ rank


Zp
Zq


.

In other words, if all the subsystems in (11) are invertible and
r := maxp∈P rp < ∞, then for all x(t0) := x0 ∈ Rn and
y ∈ Yα

:= {y | y(r−1) ∈ F AC and ŷ[t0,t0+ε) ≢ 0, for some ε > 0},
the pairs (x0, y) are not switch-singular pairs of Γp,Γq, if and only
if the following rank condition holds:

rank
[
Ip Zp
Iq Zq

]
= rank

[
Ip
Iq

]
+ rank

[
Zp
Zq

]
(15)

for all p ≠ q, p, q ∈ P such that Yp ∩ Yq ≠ {0}.
This condition is similar to the one given in Vu and Liberzon

(2008, Lemma 3) for checking the existence of switch-singular
pairs in switched linear systems. The common framework in
both cases is the appearance of linear equations when taking the
derivatives of the outputs, whichmakes it easier to derive the rank
conditions. �

We now have a toolset to check the invertibility conditions
given in Theorem 1. If these conditions are satisfied and the
switched system is strongly invertible, a switched inverse system
can be constructed to recover the input and switching signal
σ from given output and initial state. For the switched inverse
system, define the index inversion function Σ−1 : Mα
× Yα

→ P
as:

Σ
−1
(x0, y) = p : y ∈ Yp and y(k)(t0) = Lkfphp(x0) (16)

where k = 0, 1, . . . , rp−1, t0 is the initial time of y, and x0 = x(t0).
The functionΣ−1 is well-defined since p is unique by the fact that
there are no switch-singular pairs. The existence of p is guaranteed
because it is assumed that y ∈ Yα is an output. The dynamics of the
inverse switched system Γ −1σ are:

σ(t) = Σ−1(z(t), y[t,t+ε)),

ż = fσ (z)+ gσ (z)


y(rσ ) − Lrσfσ hσ (z)

Lgσ L
rσ−1
fσ hσ (z)


,

u(t) =
y(rσ )(t)− Lrσfσ hσ (z(t))

Lgσ L
rσ−1
fσ hσ (z(t))

with the initial condition z(t0) = x0. The notation (·)σ denotes
the object in the parenthesis calculated for the subsystem with
index σ(t). The initial condition σ(t0) determines the initial active
subsystem at the initial time t0, from which time onwards, the
active subsystem indexes and the input as well as the state are
determined uniquely and simultaneously.

4.2. Multiple-input multiple-output (MIMO) systems

For multiple-input multiple-output (MIMO) nonlinear systems
affine in controls (1), one uses the structure algorithm to compute
the inverse. When a system is invertible, the structure algorithm,
or Singh’s inversion algorithm, allows us to express the input as a
function of the output, its derivatives and possibly some states.

The structure algorithm: This version of the algorithm closely
follows the construction given by Di Benedetto et al. (1989), which
is a slightly modified version of the algorithm by Singh (1981).

Step 1: Calculate

ẏ = Lf h(x)+ LGh(x)u =
∂h
∂x
[f (x)+ G(x)u]

and write it as ẏ =: a1(x)+ b1(x)u. Define s1 := rank b1(x), which
is the rank of b1(x) in some neighborhood of x0, denoted as N1(x0).
Permute, if necessary, the components of the output so that the
first s1 rows of b1(x) are linearly dependent. Decompose y as

ẏ =

˙̃y1
˙̂y1


=


ã1(x)+ b̃1(x)u
â1(x)+ b̂1(x)u


where ˙̃y1 consists of the first s1 rows of ẏ. Since the lastm−s1 rows
of b1(x) are linearly dependent upon the first s1 rows, there exists
a matrix F1(x) such that

˙̃y1 = ã1(x)+ b̃1(x)u,

˙̂y1 = ĥ1(x, ˙̃y1) = â1(x)+ F1(x)( ˙̃y1 − ã1(x)) (17)

where the last equation is affine in ˙̃y1. Finally, setB1(x) := b̃1(x).
Step k + 1: Suppose that in steps 1 through k, ˙̃y1, . . . , ỹ

(k)
k , ŷ

(k)
k

have been defined so that
˙̃y1 = ã1(x)+ b̃1(x)u,
...

ỹ(k)k = ãk(x, {ỹ
(j)
i |1 ≤ i ≤ k− 1, i ≤ j ≤ k})

+ b̃k(x, {ỹ
(j)
i |1 ≤ i ≤ k− 1, i ≤ j ≤ k− 1})u,

ŷ(k)k = ĥk(x, {ỹ(j)i |1 ≤ i ≤ k, i ≤ j ≤ k})
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where all the expressions on the right-hand side are rational
functions of ỹ(j)i . Suppose also that the matrixBk := [b̃T1, . . . , b̃

T
k ]

T

(vertical stacking of the linearly independent rowsobtained at each
step) has full rank equal to sk in Nk(x0). Then calculate

ŷ(k+1)k =
∂ ĥk

∂x
[f (x)+ G(x)u] +

k−
i=1

k−
j=i

∂ ĥk

∂ ỹ(j)i
ỹ(j+1)i

and write it as

ŷ(k+1)k = ak+1(x, {ỹ
(j)
i |1 ≤ i ≤ k, i ≤ j ≤ k+ 1})

+ bk+1(x, {ỹ
(j)
i |1 ≤ i ≤ k, i ≤ j ≤ k})u. (18)

Define Bk+1 := [BT
k , b

T
k+1]

T , and sk+1 := rank Bk+1. Permute, if
necessary, the components of ŷ(k+1)k so that the first sk+1 rows of
Bk+1 are linearly independent. Decompose ŷ(k+1)k as

ŷ(k+1)k =


ỹ(k+1)k+1

ŷ(k+1)k+1


where ỹ(k+1)k+1 consists of the first (sk+1 − sk) rows. Since the last
rows of Bk+1(x, {ỹ

(j)
i |1 ≤ i ≤ k, i ≤ j ≤ k}) are linearly dependent

on the first sk+1 rows, we can write

˙̃y1 = ã1(x)+ b̃1(x)u,
...

ỹ(k+1)k+1 = ãk+1(x, {ỹ
(j)
i |1 ≤ i ≤ k, i ≤ j ≤ k+ 1})

+ b̃k+1(x, {ỹ
(j)
i |1 ≤ i ≤ k, i ≤ j ≤ k})u,

ŷ(k+1)k+1 = ĥk+1(x, {ỹ(j)i |1 ≤ i ≤ k+ 1, i ≤ j ≤ k+ 1})

where once again everything is rational in ỹ(j)i . Finally, setBk+1 :=

[BT
k , b̃

T
k+1]

T , which has full rank equal to sk+1 locally.
End of Step k+ 1.
By construction, s1 ≤ s2 ≤ · · · ≤ m. If for some integer α

we have sα = m, then the algorithm terminates and the system
is strongly invertible at x0. We call α the relative order6 of the
system. The closed form expression for u is derived from the α-
th step of the structure algorithm, which gives an invertible matrixBα := [b̃T1, . . . , b̃Tα]T having full rank equal to m in a neighborhood
Nα(x0) =: N(x0), namely,

u =B−1α


˙̃y1
...

ỹ(α)α

−
ã1
...
ãα


 =:B−1α [Ỹα − Ãα]. (19)

Note that the entries of the matrix Bα are rational functions
of the derivatives of the output and there may exist an output
for which the rank of Bα drops. We denote by Y s the values of
the output and its derivatives, evaluated at a time instant t , for
which the rank ofBα(x, y(t)) is less than m, while x ∈ N(x0). We
can now formally define the sets Ys and Yα for a subsystem as
follows: Ys

:= {y : [t0, T ) → R2
| y(t) ∈ Y s for almost all t ∈

[t0, t0 + δ) ⊆ [t0, T ), where δ > 0 is arbitrary}, and Yα
:=

{y : [t0, T ) → R2
| y(t) ∉ Y s for almost all t ∈ [t0, t0 +

ε) and some ε > 0}. In other words, Ys includes those outputs for
which the matrixBα is not invertible and Yα is its complement.
Hence, we work with u such that Γ O

x0(u) ∉ Ys. Comparing to the

6 The term was coined by Hirschorn (1979a) and is weaker than the notion of
vector relative degree. Parallel to the terminology used in linear system theory,
Nijmeijer and Schumacher (1985) show that α is the highest order of zeros at infinity.
SISO case, we hadBα = LgLr−1f h(x)which is a function of the state
only and thus there exists no singular output for SISO systems.
Another useful class of systems for which Ys

= ∅ was discussed
byHirschorn (1979a). Aswas the case in SISO systems, substitution
of the expression for u from (19) in (1) gives the dynamics of the
inverse system. These dynamics are defined on the set Mα

:= {x ∈
M | rankBα(x, y(t)) = m, y(t) ∉ Y s

}, which is open and dense if
f (x), g(x), h(x) are analytic functions.

Example 4. As an illustration of the structure algorithm, let us
revisit the system defined in Example 1. Step 1 of the algorithm

yields ẏ =

˙̃y1
˙̂y1


=


ẏ1
ẏ2


=


x1 0
x3 0


u. Using F1(x) = x3/x1, we get

˙̂y1 = ẏ2 = (x3/x1)ẏ1. In Step 2, after differentiating ˙̂y1 = ẏ2, we
get the following set of equations:

˙̃y1 = ẏ1 = x1u1

¨̃y2 = ÿ2 =
x3ÿ1 − ẏ1ẏ2 + ẏ1u2

x1
⇒B2 =


x1 0
0 ẏ1/x1


.

So,B2 has rank 2, the number of inputs. Hence, α = 2; Mα
= {x ∈

R3
| x1 ≠ 0}; Y s

= {z ∈ R2
| z1 = 0}, and Ys

= {y : [t0, T ) →
R2
| ẏ(t) ∈ Y s for almost all t ∈ [t0, t0 + δ) ⊆ [t0, T ), where δ >

0 is arbitrary}. �

Remark 5. Unlike in the SISO case, we need some differentiability
assumptions on the input signals to characterize the input space for
MIMO systems. In the structure algorithm, Step 1 gives ˙̃y1 that has
already u on the right-hand side and the α-th step of the algorithm
involves {ỹ(j)i |1 ≤ i ≤ α − 1, i ≤ j ≤ α}. Thus ỹ(α−1)i must be
absolutely continuous so that ỹ(α)i exists almost everywhere. For
the input space, it means that u(α−1) must be Lebesguemeasurable
and locally essentially bounded. These constraints characterize the
input space U for MIMO case and Y is the corresponding set of
outputs. From the structure algorithm, we deduce that the system
is invertible on Yα

= Y \ Ys. �

Based on the structure algorithm, we now study the conditions
for functional reproducibility of multivariable nonlinear systems.
Using the notation derived in the structure algorithm, denote by Z
the vector

Z

x, ˙̃y1, . . . , ỹ

(α−1)
α−1


:=


h(x)

ĥ1(x, ˙̃y1)
...

ĥα−1

x, ˙̃y1, . . . , ỹ

(α−1)
α−1




and let

ŷ :=


y
ŷ1
...

ŷ(α−1)α−1

 , ŷd :=


yd
ŷd1
...

ŷ(α−1)dα−1

 . (20)

So Z is basically a concatenation of the expressions appearing at
each step of Singh’s structure algorithm which get differentiated
and ŷ is the concatenation of the corresponding expressions on the
left-hand side so that

Z

x, ˙̃y1, . . . , ỹ

(α−1)
α−1


− ŷ = 0.

The following result is along the same line as Lemma 2 and has
appeared in Singh (1982, Theorem 1). The proof is given in the
Appendix and is developed differently than Singh (1982).
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Lemma 4. If the system given by (1), with x(t0) = x0, has a relative
order α <∞, then there exists a control input u such that Γ O

x0(u) =
yd(·) if and only if

ŷd(t0) = Z

x0, ˙̃yd1(t0), . . . , ỹ

(k)
dk
(t0)


∀k = 0, 1, . . . , α − 1. (21)

Another version of this result in terms of jet spaces is given by
Respondek (1990). Similarly to the SISO case, the idea is that
the portion of the output which is not directly affected by u is
determined initially by the value of state variables; and the input
u, for which Γ O

x0(u) = yd(·), is given by (19) with y replaced by yd
in that formula.

Example 5. Consider the system given in Example 1. The vector ŷ
is the portion of the output that gets differentiated and therefore,

ŷ =

y1
y2
ẏ2


⇒ ŷd =

yd1
yd2
ẏd2


.

The vector Z(x, yd1 , y2, ẏd1) is given by

Z(x, yd1 , y2, ẏd1) =

 x1
x2

ẏd1(x3/x1)


.

Using Lemma 4 and calculations in Example 4, if we have ŷd(t0) =
Z

x0, yd1(t0), y2(t0), ẏd1(t0)


then the control which produces yd

as an output, on a small interval, is given by

u1 =
ẏd1
x1

u2 =
x1ÿd2 − x3ÿd1 + ẏd1 ẏd2

ẏd1
.

If yd(·) ∈ Yα for all times and the corresponding state trajectory
x(·) ∈ Mα , then the system can produce yd(·) as an output over an
arbitrary time interval. �

Lemma 4 gives the following condition for the verification of
switch-singular pairs.

Lemma 5. For MIMO switched systems, (x0, y) is a switch-singular
pair of two subsystems Γp,Γq if and only if y ∈ Yp ∩ Yq and

y
˙̂y1
...

ŷακ−1(ακ−1)

 =


hκ(x0)
ĥ1
κ(x0, ˙̃y1)
...

ĥακ−1κ (x0, ˙̃y1, . . . , ỹ
(ακ−1)
ακ−1 )

 (22)

for κ = p, q, and ακ denotes the relative order of subsystem Γκ .

Theprocedure for constructing the inverse from this point onwards
is exactly the same as discussed earlier for the SISO case with u
given by (19) instead of (5).

Remark 6. The results in this section can also be extended to
include the case when there are state jumps at switching times.
Denote by ψp,q : M → M the reset map when switching
from subsystem p to subsystem q, p, q ∈ P . Thus far, we
have considered the case of identity reset maps only, where
ψp,q(x) = x∀p, q ∈ P , ∀x ∈ M. For nonidentity reset maps,
Definition 3 is modified to ‘‘(x0, y) is a switch-singular pair of
the two subsystems Γp,Γq if there exist u1, u2 and ε > 0
such that Γ O

p,x0(u1[t0,t0+ε)) = Γ O
q,ψp,q(x0)

(u2[t0,t0+ε)) = y[t0,t0+ε) or
Γ O
p,ψq,p(x0)

(u1[t0,t0+ε)) = Γ O
q,x0(u2[t0,t0+ε)) = y[t0,t0+ε)’’. Essentially,

this means that the output is indistinguishable between the two
subsystems, taking into account the effect of state jumps. In case
of SISO systems, instead of Eq. (9), we check for switch-singular
pairs using y

...

y(rκ−1)

 (t0) =
 hκ(ψp,κ(x0))

...

Lrκ−1fκ hκ(ψp,κ(x0))

 , (23)

or y
...

y(rκ−1)

 (t0) =
 hκ(ψq,κ(x0))

...

Lrκ−1fκ hκ(ψq,κ(x0))

 (24)

where κ = p, q ∈ P and ψp,p(x0) = ψq,q(x0) = x0, ∀p, q ∈
P . Eq. (22) would also be modified similarly when dealing with
MIMOsystems. The statement of Theorem1, in either case, remains
unchanged.

Another generalization is to include switching mechanisms,
such as switching surfaces. Denote by Sp,q the switching surface for
subsystem p, where the switched system jumps to subsystem q.
Then we only need to check for the switch-singularity of x0 ∈ Sp,q
and x0 ∈ Sq,p instead of x0 ∈ M for the two subsystems Γp,Γq. �

5. Output generation

In the previous section, we considered the question of left
invertibility where the objective was to recover (σ , u) uniquely
for all y in some output set Yα . In this section, we address a
different problem which concerns with finding (σ , u) (that may
not be unique) such that Hx0(σ , u) = yd for a given function yd
and a state x0. For the invertibility problem, we found conditions
on the subsystems and the output set Y so that the map Hx0 is
injective. Here, we are given one particular (x0, yd) and wish to
find its preimage under the map Hx0 . For the switched system (3),
denote by H−1x0 (yd) the preimage of a function yd,

H−1x0 (yd) := {(σ , u) : Hx0(σ , u) = yd}. (25)

If yd is not in the image set of Hx0 then by convention H−1x0 = ∅.
When H−1x0 (yd) is a singleton, the system is invertible at x0. We
want to find conditions and an algorithm to generateH−1x0 (yd)when
H−1x0 (yd) is a finite set.

We require the individual subsystems to be invertible at x0
because if this is not the case, then the set H−1x0 (yd)may be infinite.
When a square nonswitched nonlinear system is not invertible,
the matrixB−1α in (19) is not defined and the expression for u is
modified to:

u(t) =BĎα[Ỹα − Ãα] + K(x, Ỹα−1)v (26)

where K is a matrix whose columns form a basis for the null space
ofBα andBĎα := BT

α(
BαBT

α)
−1 is a right pseudo-inverse ofBα . If an

output is generated by some input u obtained from (26) with some
initial state, then due to arbitrary choice of v, there always exist
infinitelymanydifferent inputs that generate the sameoutputwith
the same initial state. Hence to avoid infinite loop reasoning, we
will assume that the individual subsystems Γp are invertible at x0
for all p ∈ P . However,we donot assume that the switched system
is invertible as the subsystemsmay have switch-singular pairs.We
will only consider the functions yd(·) over finite time intervals so
that there is only a finite number of switches under consideration.

We now present a switching inversion algorithm for switched
systems similar to the one given by Vu and Liberzon (2008). The
algorithm takes the parameters x0 ∈ M, yd ∈ F pc (defined over
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a finite interval) and returns the set H−1x0 (yd). It uses the index-
matching map7 Σ−1 : M × F pc

→ 2P defined as Σ−1(x0, yd) :=
{p such that yd ∈ Yα

p and yd satisfies (21)}, obtained via the
structure algorithm of Γp. The index-matching map returns the
indexes of the subsystems that are capable of generating yd starting
from x0. If the returned set is empty, no subsystem is able to
generate that yd starting from x0. Note that the index-matching
map Σ−1 is defined for every pair (x0, yd) and always returns a
set, whereas the index inversion function Σ−1 in (16) is defined
only for (x0, yd) which are not switch-singular pairs and returns
an element of P .

In the algorithm, Γ −1,Op,x0 (yd) denotes the output of the inverse
subsystem Γ −1p ; the symbol ‘‘←’’ reads ‘‘assigned as’’, and ‘‘:=’’
reads ‘‘defined as’’. The concatenation of an element η and a set S is
η⊕ S := {η⊕ ζ , ζ ∈ S}. By convention, η⊕∅ = ∅,∀η. Finally, the
concatenation of two sets S and T is S⊕T := {η⊕ζ , η ∈ S, ζ ∈ T }.
begin H−1x0 (yd[t0,T ))

Let P := {p ∈ P : yd[t0,t0+ε) ∈ Yα
p and x0 ∈ Mα

p , ε > 0}
Let t∗ := min{t ∈ [t0, T ) : yd[t,t+ε) /∈ Yα

p for some
p ∈ P , ε > 0} otherwise t∗ = T .
Let P ∗ := Σ−1(x0, yd[t0,t0+ε)).
if P ∗ ≠ ∅ then

Let A := ∅
foreach p ∈ P ∗ do

Let x := Γ −1p,x0(yd[t0,t∗))
if x ∈ Mα

p and yd[t0,t∗) ∈ Yα
p then

Let u := Γ −1,Op,x0 (yd[t0,t∗))
T := {t ∈ (t0, t∗) : (x(t), yd(t)) is a
switch-singular pair of Γp, Γq for some q ≠ p}.
if T is a finite set then

foreach τ ∈ T do
let ξ := Γp(u)(τ )
A← A ∪
{(σ[t0,τ ), u[t0,τ ))⊕ H−1ξ (yd[τ ,T ))}

else if T = ∅ and t∗ < T then
let ξ := Γp(u)(t∗)
A← A ∪ {(σ[t0,t∗), u)⊕ H−1ξ (yd[t∗,T ))}

else if T = ∅ and t∗ = T then
A← A ∪ {(σ[t0,T ), u)}

else
A := ∅

else
A := ∅

else
A := ∅

return H−1x0 (yd) := A

end

The return set A is always finite and, if nonempty, it contains
the pairs of switching signals and inputs that generate the given
yd starting from x0. If the return is an empty set, it means that
there is no switching signal and input that generate yd, or there
is an infinite number of possible switching times. Also by our
concatenation notation, if at any instant of time, the return of the
procedure is an empty set, then that branch of the search will be
empty because η ⊕ ∅ = ∅.

Based on the semigroup property for the trajectories of
dynamical systems, the algorithm determines the switching
signal and the input on a subinterval [t0, t) of [t0, T ) and then
concatenates these signals with the corresponding preimage on

7 The set 2P denotes the set of all subsets of the set P .
the rest of the interval [t, T ). If t is the first switching time after
t0, then we can find H−1x0 (yd[t0,t)) by singling out which subsystems
are capable of generating yd[t0,t) using the index-matching map.
The obvious candidate for first switching time, denoted by t∗ in
the algorithm, is the time at which the output loses smoothness.
Note that in the SISO case, t∗ is the time at which one of the first
r − 1 derivatives of the output lose continuity (see Section 4.1).
But, it is entirely possible that we have a switching at some time
instant τ and the output is still smooth (see Example 6). In this
case, (x(τ ), y[τ ,τ+ε)) forms a switch-singular which, in SISO case,
can be checked by using (9), or for the systems with reset maps,
using (23) or (24). The algorithm keeps track of all the switch-
singular pairs encountered along the trajectory of the motion and
uses a switch at a later time to recover a ‘‘hidden switch’’ earlier
(e.g. a switch at which the output is smooth). This makes the
switching inversion algorithm a recursive procedure calling itself
with different parameters within the main algorithm (e.g. the
function H−1x0 (yd) uses the returns of H−1ξ (yd[t∗,T ))).

The following example should help understand this algorithm.

Example 6. Consider a SISO switched system with two modes

Γ1:

ẋ =

x1x2
x2


+


0
1


u, M = R2

y = x2

Γ2:

ẋ =

0
x1


+


ex2
ex2


u, M = R2

y = x1.

Wewish to reconstruct the switching signal σ(·) and the input u(·)
which will generate the following output:

yd(t) =

cos t if t ∈ [0, t∗)
2 cos t if t ∈ [t∗, T )

where t∗ = π and T = 4.5,with the given initial state x0 = (0, 1)T .
In this example, (x0, y[t0,t0+ε)) form a switch-singular pair if, for

some c ∈ R, x0 =

c
c


and y(t0) = c.

We now use the above switching inversion algorithm to find
(σ , u) such that Γ O

x0,σ (u) = yd. We have P = {1, 2} and P ∗ :=

Σ−1(x0, yd[0,t∗)) = {1} by using the index-matching map with
given x0 and yd(0) = 1. The inverse of Γ1 on [0, t∗) is

Γ −11 :

ż =

z1z2
0


+


0
1


ẏd, Mα

1 = R2

u(t) = −z2 + ẏd

with z(0) = x0, which then gives

z(t) =


0
cos t


=: x(t)

u(t) = − cos t − sin t
t ∈ [0, t∗). (27)

We want to find T := {t ≤ t∗ : (x(t), yd[t,t∗)) is a switch-singular
pair of Γ1,Γ2}, which is equivalent to solving

cos t = x1(t) = 0, t ∈ (0, t∗).

This equation has a solution t = π/2 =: t1 < t∗, and hence
T = {t1}, a finite set. We have ξ = x(t1) = (0, 0)T and we
repeat the procedure for the initial state ξ and the output yd[t1,T )
withP ∗ := Σ−1(ξ , yd[t1,t∗)) = {1, 2}.We analyze these two cases:

Case 1. p = 1. This implies t1 is not a switching time, i.e., σ(t) = 1
for t ∈ [t0, t∗) and u(t), x(t) are given by (27) for 0 ≤ t < t∗,
which gives ξ = x(t∗) = (0,−1)T . At t∗,Γ2 must be active, but
then y(t∗) = x1(t∗) = 0 ≠ −2 = yd(t∗), thus the index-matching
map returns an empty set,Σ−1(ξ , yd[t∗,T )) = ∅.
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Case 2. p = 2, which means that t1 is a switching instant. So we
work with the inverse system of Γ2,

Γ −12 :

ż =

0
z1


+


1
1


ẏd, Mα

1 = R2

u(t) = e−z2 ẏd

with initial state z(t1) = ξ , which gives

z(t) =


cos t
cos t + sin t − 1


=: x(t)

u(t) = −e(1−cos t−sin t) sin t
t ≥ t1.

We find T = {t1 < t ≤ t∗ : (x(t), yd[t,t∗)) is a switch-singular pair
of Γ1,Γ2}, which is equivalent to solving for

cos t = cos t + sin t − 1,
π

2
= t1 < t ≤ t∗ = π.

It is easy to see that this equation has no solution and thus there
exist no switch-singular pairs in the interval (t1, t∗). So, we let
ξ = x(t∗) = (−1,−2)T and repeat the procedure with ξ and
yd[t∗,T ), which gives the unique solution σ[t∗,T ) = 1 and u[t∗,T ) =
−2(cos t + sin t).

Thus, the switching inversion algorithm returns (σ , u), where

(σ , u) =

(1,− cos t − sin t), if 0 ≤ t < t1
(2,−e(1−cos t−sin t) sin t), if t1 ≤ t < t∗

(1,−2(cos t + sin t)), if t∗ ≤ t ≤ T .

In this example, two switches are required to generate the
given output. One of the switching instants is t∗ as the output
loses smoothness at that instant. The other switching instant
is t1 where the output does not lose smoothness. Without the
concept of switch-singular pairs, one may try all the four possible
combinations with t∗ as the only switching instant and arrive
at the false conclusion that there is no switching signal and
input that generate yd(t); but instead the use of the switching
inversion algorithm allows us to construct the input and switching
signal. �

6. Conclusions

In this paper, we addressed the invertibility problem of
switched nonlinear systems. The concepts introduced by Vu and
Liberzon (2008) for linear systems were extended to nonlinear
systems. We gave a necessary and sufficient condition for a
switched system to be invertible, according towhich the individual
subsystems should be invertible and there should be no switch-
singular pairs. We developed formulae for checking if (x0, y)
is a switch-singular pair of two subsystems and then gave an
algorithm that finds switching signals and inputs, possibly non-
unique, which generate a given output with a given initial state.

For future work, one interesting problem is to develop
conditions for checking the existence of switch-singular pairs
which are more constructive as it is in general not feasible
to verify (22) for every output and state. Another research
direction is to approach the problem geometrically and investigate
characterizations equivalent to nonexistence of switch-singular
pairs to obtain geometric criteria for left invertibility of switched
systems.

Acknowledgement

We would like to thank Linh Vu for the insightful discussions
related to the problem of invertibility.
Appendix

Proof of Lemma 4 (Necessity). Supposing ∃ε > 0 and input u
defined over the interval [t0, t0 + ε), such that Γ O

x0(u(t)) = yd(t),
∀t ∈ [t0, t0 + ε), then

yd(t0) = y(t0) = h(x0)

ŷd1(t0) = ŷ1(t0) = ĥ1(x, ˙̃y1) = ĥ1(x, ˙̃yd1)

...

ŷ(α−1)dα−1 (t0) = ŷ(α−1)α−1 (t0)

= ĥα−1

x0, ˙̃y1, . . . , ỹ

(α−1)
1 , . . . , ỹ(α−1)α−1


= ĥα−1


x0, ˙̃yd1 , . . . , ỹ

(α−1)
d1

, . . . , ỹ(α−1)dα−1


and hence Eq. (21) is satisfied.

Sufficiency: If we inject yd(t) into the inverse system, then the
control input produced by this inverse system is given by (19) with
ỹ replaced by ỹd, and substituting it in theα-th step of the structure
algorithm

˙̃y1 = ã1(x)+ b̃1(x)u,
...

ỹ(α)α = ãα(x, {ỹ
(j)
i | 1 ≤ i ≤ α − 1, i ≤ j ≤ α})

+ b̃α(x, {ỹ
(j)
i | 1 ≤ i ≤ α − 1, i ≤ j ≤ α − 1})u,

we get

˙̃y1(t) = ˙̃yd1(t), ∀t ∈ [t0, t0 + ε). (28)

Here t0 + ε characterizes the time instant at which the trajectory
of the inverse system hits the singular point in the state space. As
the system is strongly invertible at x0, it is guaranteed that ε > 0.

Using hypothesis (21), we have h(x0) = yd(t0), and integrating
(28) on both sides over the interval [t0, t0 + ε) to get

ỹ1(t) = ỹd1(t), ∀t ∈ [t0, t0 + ε). (29)

Using the initial conditions characterized by (21), the desired result
can now be derived by induction. Suppose Eqs. (28) and (29) are
true for index k, that is

ỹ(k)k (t) = ỹ(k)dk
(t) ∀t ∈ [t0, t0 + ε),

ỹk(t) = ỹdk(t) ∀t ∈ [t0, t0 + ε).

Since ỹ(k+1)k+1 = ãk+1(x, {ỹ
(j)
i | 1 ≤ i ≤ k, i ≤ j ≤ k + 1}) +

b̃k+1(x, {ỹ
(j)
i | 1 ≤ i ≤ k, i ≤ j ≤ k})u, substituting u from (19) as

generated by the inverse system, with ỹ replaced by ỹd, gives

ỹ(k+1)k+1 (t) = ỹ(k+1)dk+1
(t) ∀ t ∈ [t0, t0 + ε).

Again using hypothesis (21) and integrating both sides, we get

ỹk+1(t) = ỹdk+1(t) ∀ t ∈ [t0, t0 + ε).

As y(t) = (ỹ1(t), . . . , ỹα(t)), we get Γ O
x0(u(t)) = yd(t),∀t ∈

[t0, t0 + ε). �
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