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An Asymptotic Ratio Characterization of Input-to-State Stability
Daniel Liberzon and Hyungbo Shim

Abstract—For continuous-time nonlinear systems with inputs,
we introduce the notion of an asymptotic ratio input-to-state sta-
bility (ISS) Lyapunov function. The derivative of such a function
along solutions is upper-bounded by the difference of two terms
whose ratio is asymptotically smaller than 1 for large states.
This asymptotic ratio condition is sometimes more convenient to
check than standard ISS Lyapunov function conditions. We show
that the existence of an asymptotic ratio ISS Lyapunov function
is equivalent to ISS. A related notion of ISS with nonuniform
convergence rate is also explored.

Index Terms—Input-to-state stability, Lyapunov function, non-
linear system.

I. INTRODUCTION

The notion of input-to-state stability (ISS) characterizes the re-
sponse of a nonlinear system to inputs in a way that generalizes
standard notions of induced gains for linear systems while also taking
into account the effect of initial conditions. Introduced by Sontag in
[1], the ISS concept has since enjoyed widespread use in the nonlinear
control literature. The most common way to verify ISS is by finding an
ISS Lyapunov function, which is an extension of the classical Lyapunov
function test for asymptotic stability to systems with external inputs.
Such Lyapunov characterizations of ISS were presented in [2] and will
be reviewed later in this note. See also [3]–[5] for some related results.

Motivated by our recent work on design of nonlinear observers
robust to measurement disturbances in an ISS sense [6], in this note
we propose the new notion of an asymptotic ratio ISS Lyapunov
function. The derivative of such a function along solutions of the
system has to be upper-bounded by the difference of two terms whose
ratio is asymptotically smaller than 1 as the state becomes large, for
each input. The form of this condition is different from the standard
ISS Lyapunov function conditions mentioned above, and we will
argue that it is sometimes easier to check. We show that, despite
this difference, asymptotic ratio ISS Lyapunov functions provide an
equivalent characterization of ISS (although they do not give direct
information about the ISS gain). We will also explore a related notion
of ISS with nonuniform convergence rate.

The rest of the note is organized as follows. Section II recalls
the necessary notation and terminology and introduces the notion of
an asymptotic ratio ISS Lyapunov function. Section III contains the
main result—the equivalence between ISS and the existence of an
asymptotic ratio ISS Lyapunov function—and its proof, followed by a
discussion of ISS with nonuniform convergence rate and its relation to
ISS and asymptotic ratio ISS Lyapunov functions. Section IV contains
two illustrative examples, one of which describes a situation where
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our new condition is more convenient to apply than the known ones.
Section V concludes the note.

II. PRELIMINARIES

We consider general nonlinear systems of the form

ẋ = f(x, d) (1)

where x(·) is the state taking values in R
n, d(·) is a measurable and

locally essentially bounded input taking values in R
m, and the function

f : Rn × R
m → R

n is locally Lipschitz. We denote by ‖d‖[0,t] and
‖d‖ the essential supremum norm of d on the interval [0, t] and [0,∞),
respectively (with the understanding that the latter can be infinite).

A function α: R≥0 → R≥0 is positive definite if α(0) = 0 and
α(r) > 0 for all r > 0. A positive definite function α is of class K if it
is continuous and strictly increasing. A restriction of a class K function
to a subinterval [0, a] is also said to be a class K function. If a class
K function α is defined on the whole R≥0 and satisfies α(r) → ∞ as
r → ∞, then it is of class K∞. A function β : R≥0 × R≥0 → R≥0 is
of class KL if β(·, t) is of class K for each fixed t ≥ 0 and β(r, t)
is decreasing to zero as t → ∞ for each fixed r ≥ 0. We use the
shorthand notation α ∈ K, β ∈ KL, etc. to indicate these properties.
Composition of functions will be denoted by the ◦ symbol.

We write ∨ for the maximum operator

a ∨ b := max{a, b}.

Following [1], we call the system (1) input-to-state stable (ISS) if
there exist functions β ∈ KL and γ ∈ K∞ such that for every initial
condition x(0) and every input d the corresponding solution of (1)
satisfies

|x(t)| ≤ β (|x(0)| , t) ∨ γ
(
‖d‖[0,t]

)
∀t ≥ 0. (2)

The function γ is sometimes called the ISS gain function or simply the
ISS gain.

As shown in [2], [7], the system (1) is ISS if and only if there exists
a C1 function V : Rn → R satisfying the bounds

α1 (|x|) ≤ V (x) ≤ α2 (|x|) ∀x (3)

for some functions α1, α2 ∈ K∞, whose derivative

V̇ = V̇ (x, d) :=
∂V

∂x
f(x, d)

along solutions of (1) satisfies the inequality

V̇ ≤ −α3(|x|) + χ(|d|) ∀x, d (4)

for someα3, χ∈K∞; an equivalent property results if (4) is replaced by

|x| ≥ ρ (|d|) ⇒ V̇ ≤ −α4 (|x|) (5)

for some ρ, α4 ∈ K∞, or by

|x| ≥ ρ (|d|) ⇒ V̇ ≤ −α (V (x)) (6)
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with ρ still of class K∞ but α merely continuous positive definite. (It is
easy to see that (3) and (5) imply (6) with α :=α4 ◦ α−1

2 ∈K∞.) Such
functions V are called ISS Lyapunov functions. From an ISS Lyapunov
function V satisfying (3) and (6), one obtains the ISS bound (2) with

β(r, t)=α−1
1 ◦ η−1

α (ηα ◦ α2(r)+t) , γ(s) = α−1
1 ◦ α2 ◦ ρ(s)

(7)
where ηα is defined by1

ηα(r) := −
r∫

1

dv

α(v)
. (8)

Here, instead of (4), (5) or (6) we want to consider a condition in a
different form, introduced in the following definition.

Definition 1: A C1 function V : Rn → R is an asymptotic ratio
ISS Lyapunov function for the system (1) if it satisfies (3) for some
α1, α2 ∈ K∞ and its derivative along solutions satisfies

V̇ ≤ −α3 (|x|) + g (|x|, |d|) (9)

where α3 ∈ K and g : R≥0 × R≥0 → R≥0 is a continuous nonneg-
ative function with the following properties: for each r, the function
g(r, ·) is nondecreasing with g(r, 0) = 0, and:

lim sup
r→∞

g(r, s)

α3(r)
< 1 ∀s ≥ 0. (10)

The term “asymptotic ratio” is motivated by the form of the condi-
tion (10).

Remark 1: In the special case when g decomposes as g(r, s) =
g1(r)g2(s) with g2 unbounded, (10) is equivalent to

lim sup
r→∞

g1(r)

α3(r)
= 0.

This type of condition was used in [9] in the context of ISS controller
design and in [10] in the context of ISS observer design.

Remark 2: If V satisfies (4) with α3, χ of class K and bounded (not
class K∞), then (9) holds with g(r, s) := χ(s) and (10) reduces to
limr→∞ α3(r) > lims→∞ χ(s).

III. MAIN RESULT

Our main result (Theorem 1 below) says that the existence of an
asymptotic ratio ISS Lyapunov function is equivalent to ISS. The
primary utility of this result lies in the fact that the asymptotic ratio
condition may sometimes be more convenient to check than either
one of the standard ISS Lyapunov function conditions (4)–(6); an
example of such a situation will be given in the next section. (Unlike
the standard ISS Lyapunov functions, however, asymptotic ratio ISS
Lyapunov functions do not provide direct information about the ISS
gain; in other words, they are useful for quickly showing ISS but not
for estimating the ISS gain.) Following the proof of Theorem 1, we
discuss another implication of the asymptotic ratio condition.

Theorem 1 (Asymptotic Ratio Characterization of ISS): The system
(1) is ISS if and only if it admits an asymptotic ratio ISS Lyapunov
function in the sense of Definition 1.

Proof: The “only if” part is easy: (1) being ISS, we know that
there exists an ISS Lyapunov function satisfying (3) and (4) with
α1, α2, α3, χ ∈ K∞, and then all the properties required in Definition
1 hold with g(r, s) := χ(s).

1Decreasing α near zero if necessary, we can assume with no loss of
generality that limr→0+ ηα(r) = ∞, hence we use the conventions ηα(0) =
∞ and η−1

α (∞) = 0 (cf. the proof of Lemma 4.4 in [7]).

The “if” part: Let V be an asymptotic ratio ISS Lyapunov function.
For s ≥ 0, let

θ(s) := lim sup
r→∞

g(r, s)

α3(r)
. (11)

We know from Definition 1 that θ(0) = 0, the function θ(·) is nonde-
creasing (but may not be continuous2) because g(r, ·) is nondecreasing
for each r, and 0 ≤ θ(s) < 1 for all s in view of (10). Define

θ̄k :=
1

2
+

1

2
θ(k), k ∈ N.

Then {θ̄k} is a nondecreasing sequence such that

θ(s) < θ̄k < 1, k − 1 < s ≤ k, k ∈ N (12)

because, for s ∈ (k − 1, k], we have θ(s) < (1/2) + (1/2)θ(s) ≤
(1/2) + (1/2)θ(k) = θ̄k < 1 using (10), (11), and the monotonicity
of θ. Let a sequence of positive numbers {mk} be such that

|x| ≥ mk ⇒ g (|x|, k)
α3 (|x|)

≤ θ̄k, k ∈ N

whose existence follows from (11) and (12). By the fact that g(|x|, ·)
is nondecreasing, we have

|x| ≥ mk ⇒ g (|x|, |d|)
α3 (|x|)

≤ θ̄k, k − 1 < |d| ≤ k, k ∈ N. (13)

By (9), this in turn implies that

|x| ≥ mk ⇒ V̇ ≤ −(1− θ̄k)α3 (|x|) ,

k − 1 < |d| ≤ k, k ∈ N. (14)

On the other hand, by continuity of g and α3 and the fact that g(·, 0) ≡
0, there exists a class K function 
 : [0,m1] → R such that

g (|x|, |d|) ≤ θ̄1α3 (|x|) for all |d| ≤ 
 (|x|) , 0 ≤ |x| ≤ m1

and we suppose that 
(m1) ≤ 1 without loss of generality. (To
construct such an 
, first define 
̄(r) := min{1, inf{s : g(r, s) =
θ̄1α3(r)}}, which is positive definite and lower semi-continuous.3 As
such, 
̄ is bounded away from 0 except at the origin, and so we can
lower-bound it by a function 
 ∈ K.) This implies that

|x| ≥ 
−1 (|d|) ⇒ V̇ ≤ −(1− θ̄1)α3 (|x|) ,

0 ≤ |d| ≤ 
(m1) ≤ 1, 0 ≤ |x| ≤ m1. (15)

Now, pick a function ρ ∈ K∞ such that

ρ(s) ≥

{

−1(s), 0 ≤ s ≤ 
(m1)
m1, 
(m1) < s ≤ 1
mk, k − 1 < s ≤ k, k ≥ 2

(16)

2An example of this is when g(r, s) = (1/2)sat(rs)r2 and α3(r) = r2,
where sat(r) := sign(r)min{|r|, 1}, because

θ(s) =

{
0, s = 0
1
2
, s > 0.

This case arises when we analyze the system ẋ = −x+ (1/2) sat(|x||d|)x
with V (x) = (1/2)x2.

3Lower semi-continuity means that �̄(r) ≤ lim infv→r �̄(v) for all r. This
property easily follows from the definition of �̄ and from continuity of g and
α3. Indeed, �̄(r) cannot exceed the limit of the values �̄(ri) for any sequence
{ri} → r because the limit of any (sub)sequence of points si at which the
infimum in the definition of �̄(ri) is achieved is included in the set over which
the infimum in the definition of �̄(r) is being taken.
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and pick a continuous nonincreasing function φ such that

0 < φ(s) ≤ 1− θ̄k, k − 1 < s ≤ k, k ∈ N (17)

and φ(0) = lims→0+ φ(s). Then, from (14)–(17), we have

|x| ≥ ρ (|d|) ⇒ V̇ ≤ −φ (|d|)α3 (|x|) (18)

for all |d|. Since φ is nonincreasing, this implies

|x| ≥ ρ (|d|) ⇒ V̇ ≤ −φ
(
ρ−1 (|x|)

)
α3 (|x|) . (19)

In view of the bounds (3) and the fact that α3 ∈ K (and using again
the fact that φ is nonincreasing), we obtain

|x| ≥ ρ (|d|) ⇒ V̇ ≤ −α (V (x))

where

α(r) := φ ◦ ρ−1 ◦ α−1
1 (r) · α3 ◦ α−1

2 (r)

is continuous positive definite. We have shown that V satisfies the ISS
Lyapunov function condition (6), and hence the ISS bound (2) holds
with β and γ as defined in (7) and (8). �

Remark 3: It is easy to check that, with minor modifications, the
above proof still works and establishes the same result if the definition
of an asymptotic ratio ISS Lyapunov function is changed by replacing
(9) and (10) with

V̇ ≤ −ᾱ3 (|x|, |d|) + ḡ (|x|, |d|) (20)

and

lim sup
r→∞

ḡ(r, s)

ᾱ3(r, s)
< 1 ∀s ≥ 0 (21)

respectively, where ᾱ3 ∈ KL and ḡ has the same properties as g in
Definition 1. It can also be shown that (20), (21) in fact imply (9), (10)
with α3(r) := ᾱ3(r, 0) and g(r, s) := ᾱ3(r, 0)− ᾱ3(r, s) + ḡ(r, s).
Example 1 in Section IV will provide an illustration of this construc-
tion. Passing from (9), (10) to (20), (21) appears to be more difficult:
one can obtain (20) by defining ᾱ3(r, s) := α3(r)μ(s) where μ is
some function that takes values in (0, 1) and decreases to 0 as s → ∞,
but then (21) does not hold unless the limsup in (10) equals 0 for all s.

A. ISS With Nonuniform Convergence Rate

The existence of an asymptotic ratio ISS Lyapunov function also
implies that the solutions of (1) satisfy the following bound:

|x(t)| ≤ β̄
(
|x(0)|, φ

(
‖d‖[0,t]

)
t
)
∨ γ

(
‖d‖[0,t]

)
∀t ≥ 0 (22)

where β̄ ∈ KL, γ ∈ K∞, and φ is a continuous, positive, and nonin-
creasing function (which was constructed in the proof of Theorem 1).
This property resembles ISS, but the convergence rate (characterized
by the dependence of β̄ on t) is affected by the size of the input. To
establish (22), we return to (18) in the above proof and then proceed
differently as follows (loosely along the lines of [11, Section 4.1]). For
every essentially bounded d, since ρ ∈ K∞ and φ is nonincreasing, we
have from (18) that

|x| ≥ ρ(‖d‖) ⇒
V̇ ≤ −φ (‖d‖)α3 (|x|) ≤ −φ (‖d‖)α3

(
α−1
2 (V (x))

)
or, equivalently

|x| ≥ ρ (‖d‖) ⇒ dV

d (φ (‖d‖) t) ≤ −ᾱ (V (x))

where

ᾱ(r) := α3 ◦ α−1
2 (r).

From this, by the same standard arguments that we used to finish the
proof of Theorem 1 (see also [11, Lemma A.4]), we obtain

|x(t)| ≤ β̄ (|x(0)|, φ (‖d‖) t) ∨ γ (‖d‖) ∀t ≥ 0

where β̄ ∈ KL and γ ∈ K∞ are defined in (7)-(8) as before but with ᾱ
in place of α, so that β̄ is different from β while γ is the same. Finally,
by causality we can replace ‖d‖ with ‖d‖[0,t] and arrive at (22).

The property (22) is seemingly weaker than ISS (unless φ ≡ 1), but
in fact the two are equivalent. One way to prove that (22) implies ISS
is to note that (22) implies

lim sup
t→∞

|x(t)| ≤ γ (‖d‖)

and

|x(t)| ≤ β̄ (|x(0)|, 0) ∨ γ (‖d‖) .

These two bounds guarantee that the system (1) has the “asymptotic
gain” (AG) property and the “global stability” (GS) property as defined
in [8], from which ISS follows by [8, Theorem 1]. Another, more
direct proof that (22) implies ISS is as follows (cf. again [11,
Section 4.1]). Observe that β̄(r, φ(s)t) is increasing in r, nondecreasing
in s, and decreasing in t. Considering the two cases |x(0)| ≥ ‖d‖[0,t]
and |x(0)| ≤ ‖d‖[0,t], we can write

β̄
(
|x(0)| , φ

(
‖d‖[0,t]

)
t
)

≤ β̄ (|x(0)| , φ (|x(0)|) t) ∨ β̄
(
‖d‖[0,t], φ

(
‖d‖[0,t]

)
t
)

≤ β̄ (|x(0)| , φ (|x(0)|) t) ∨ β̄
(
‖d‖[0,t], 0

)
= β̂ (|x(0)| , t) ∨ β̄

(
‖d‖[0,t], 0

)
where β̂(r, t) := β̄(r, φ(r)t) ∈ KL. Plugging this bound into (22), we
recover the ISS property with the ISS gain function γ̂(s) := β̄(s, 0) ∨
γ(s). Obviously, this function γ̂ is never smaller than γ, which is the
ISS gain function constructed in the course of the proof of Theorem 1.
The function β̂, on the other hand, looks quite different from the
function β that we reached at the end of the proof of Theorem 1, and
it is not clear how to compare the two. Finally, we point out that the
alternative proof of ISS given in this subsection remains valid if ρ is of
class K but not K∞ (i.e., ρ is bounded), while our proof of Theorem 1
required the function ρ to be of class K∞ because its inverse was used
in (19). Of course a class K function ρ can always be increased to
obtain a class K∞ function, but this increases the function γ in (7)
which determines the ISS gain. So, in order not to introduce extra
conservatism into the ISS gain estimate this step needs to be done
carefully; for example, if starting with ρ ∈ K we consider the function
ρ̄(s) := max{ρ(s), εs} for arbitrarily small ε > 0 and use it in place
of ρ in the proof of Theorem 1, then the resulting ISS gain is not
affected. As for the ISS gain function γ̂ constructed in this subsection,
it is always of class K∞ (even when γ is bounded) because β̄(s, 0) ≥ s
for all s ≥ 0.

IV. EXAMPLES

Our first example illustrates that the asymptotic ratio condition may
be easier to check than the more standard ISS Lyapunov function
conditions.

Example 1: Consider the scalar system

ẋ = − 1

1 + d2
x+ bd, b ∈ R. (23)
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We claim that V (x) := (1/2)x2 is an asymptotic ratio ISS Lyapunov
function. Indeed, its derivative along (23) is given by

V̇ = − x2

1 + d2
+ bxd = −x2 + x2 d2

1 + d2
+ bxd

and so, with α3(r) := r2 and g(r, s) := r2s2/(1 + s2) + |b|rs, all
properties in Definition 1 are fulfilled because

g(r, s)

α3(r)
=

s2

1 + s2
+

|b|s
r

−→
r→∞

s2

1 + s2
< 1 ∀s.

Thus (23) is ISS by Theorem 1. (Note that the observations of Remark
3 also apply here.) We challenge the reader to check that this V
satisfies one of the ISS Lyapunov function conditions (4)–(6). While
our proof of Theorem 1 guarantees that this must be the case, verifying
this fact directly requires more effort.

It is instructive to look separately at the special case of (23) when
b = 0, so that

ẋ = − 1

1 + d2
x. (24)

Although we know from the above argument that this system is ISS,
the proof of Theorem 1 does not provide explicit expressions for the
ISS gain and decay rate (because they depend on the function ρ which
is obtained in a nonconstructive way). On the other hand, it is easy to
see from (24) that

|x(t)| ≤ e
− 1

1+‖d‖2
[0,t]

t

|x(0)| .

This shows that the bound (22) holds with β̄(r, t) = e−tr, φ(s)=
1/(1+s2), and γ≡0; hence, in particular, x(t)→0 for all essen-
tially bounded inputs (although the convergence becomes slower for lar-
ger inputs). We could use the calculation given at the end of Section III-A
to derive the functions β̂ and γ̂ which give the decay rate and the
ISS gain, respectively, but γ̂ would be nonzero and so the ISS bound
obtained in this way would not let us recover the claim that x(t) → 0
for all essentially bounded d. However, let us return to the asymptotic
ratio ISS Lyapunov function V (x) = (1/2)x2 and its derivative

V̇ = − 1

1 + d2
x2

which gives us (18) with φ(s) = 1/(1 + s2), α3(r) = r2, and ρ ≡ 0.
This means that (18), and consequently (19), hold with every ρ ∈ K∞.
For example, we can let ρ(s) := εs where ε > 0 is arbitrary, and arrive
at (19), namely

|x| ≥ ε|d| ⇒ V̇ ≤ − 1

1 + x2

ε2

x2.

Now we can conclude from (7), as at the end of the proof of Theorem 1,
that the ISS gain is γ(s) = εs (taking α1(r) = α2(r) = (1/2)r2) and,
since ε can be arbitrarily small, this confirms that x(t) → 0 for all
essentially bounded d (albeit with a nonuniform convergence rate).

The next example demonstrates that the monotonicity assumption
imposed on the function g(r, ·) in Definition 1 is essential.

Example 2: Consider the scalar system (cf. the earlier example in
footnote 2)

ẋ = −x+
1

2
sat (|x||d|)

(
e−(|x||d|−1)2 + 1

)
x.

This system is not ISS because for a constant nonzero input d it has
equilibria at x = ±1/|d| which go off to ∞ as |d| → 0. With V (x) :=
(1/2)x2, α3(r) := r2, and

g(r, s) :=
1

2
sat(rs)

(
e−(rs−1)2 + 1

)
r2

the conditions (9) and (10) are satisfied, g is continuous and nonnega-
tive, and g(·, 0) ≡ 0. However, g(r, ·) is not a nondecreasing function,
which is why Theorem 1 does not apply (the construction of the
sequence {mk} satisfying the condition (13) in the proof of Theorem 1
breaks down).

V. CONCLUSION

We introduced the notion of an asymptotic ratio ISS Lyapunov
function, and showed that the existence of such a function is equiv-
alent to ISS. Besides the simple examples provided in this note, a
similar condition (in a somewhat more complicated form) has found
application in our recent work on design of robust observers [6].
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