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Quantized Control via Locational Optimization
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Abstract—This paper studies state quantization schemes for
feedback stabilization of control systems with limited information.
The focus is on designing the least destabilizing quantizer subject
to a given information constraint. We explore several ways of mea-
suring the destabilizing effect of a quantizer on the closed-loop
system, including (but not limited to) the worst-case quantization
error. In each case, we show how quantizer design can be naturally
reduced to a version of the so-called multicenter problem from
locational optimization. Algorithms for obtaining solutions to
such problems, all in terms of suitable Voronoi quantizers, are
discussed. In particular, an iterative solver is developed for a novel
weighted multicenter problem which most accurately represents
the least destabilizing quantizer design. A simulation study is also
presented.

Index Terms—Feedback stabilization, locational optimization,
quantized control.

1. INTRODUCTION

N THIS paper we study control systems whose state vari-

ables are quantized. We think of a quantizer as a device
that converts a real-valued signal into a piecewise constant one
taking a finite set of values. The recent papers [3], [9], [14] dis-
cuss various situations where this type of quantization arises and
provide references to the literature. Mathematically, a quantizer
can be described by a piecewise constant function g: D C R® —
Q, where Q is a finite subset of R™ with a fixed number of ele-
ments N. Here, n is the state dimension of a given system and
D is a closed region of interest in the state—space. We denote the
elements of Q by ¢1, ..., gx and refer to them as quantization
points. The sets W, :=cl{z € D : q(z) = ¢;},1 € {1,...,N}
associated with fixed values of the quantizer form a partition'
of the region D and are called quantization regions (cl denotes
closure). We will sometimes identify a quantizer ¢ with the cor-
responding pair (Q, W), where W := {W1,..., Wx}. Quan-
tized values of the state represent a limited information flow
from the system to a feedback controller: The state is not com-
pletely known to the controller, but it is only known which one
of a fixed number of quantization regions contains the current
state at each instant of time. (Assuming that the quantization
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1A collection {W1, ..., W} of subsets of D is a partition of D if the in-
tersection between the relative interior of any two W; is empty and the union
of all W; equals D.

points are known to the controller, one can think of the informa-
tion flow as a string of integers from 1 to N, transmitted at the
times when the state trajectory crosses the boundaries between
the quantization regions.)

In the literature it is usually assumed that quantization re-
gions are fixed in advance and have specific shapes, most often
rectilinear. Here we are interested in the situation where the
number N of quantizer values is a given constraint in the con-
trol problem, but the control designer has flexibility in choosing
a specific configuration of quantization regions (whose shapes
can in principle be arbitrary) and quantization points. While
there has been some research on systems with quantization re-
gions of arbitrary shapes [16], [19] and on the relationship be-
tween the choice of quantization regions and the behavior of
the closed-loop system [9], [14], the general problem of deter-
mining the “best” quantizer for a particular control task such as
feedback stabilization remains largely open.

A feedback law which globally asymptotically stabilizes a
given system in the absence of quantization will in general
fail to provide global asymptotic stability of the closed-loop
system that arises in the presence of state quantization. Two
phenomena accounting for changes in the system’s behavior
caused by quantization will play the role in what follows. The
first one is saturation: If the quantized signal is outside the
range of the quantizer, then the quantization error is large, and
the control law designed for the ideal case of no quantization
may lead to instability. The second one is deterioration of
performance near the equilibrium: As the difference between
the current and the desired values of the state becomes small,
higher precision is required, and so in the presence of quanti-
zation errors asymptotic convergence is typically lost. These
phenomena manifest themselves in the existence of two nested
invariant regions R; and R, such that all trajectories of the
quantized system starting in the bigger region R, approach the
smaller one R, while no further convergence guarantees can
be given. Chattering on the boundaries between quantization
regions is possible, and solutions are to be interpreted in the
sense of Filippov if necessary [11]; however, this issue will
not play a significant role in the subsequent stability analysis,
because we will work with a single C! Lyapunov function on
R1 \ R2. (One way to prevent chattering, and thus ensure a
finite data rate, would be to introduce a dwell time; cf. [14].)

In Section II, we explain how the destabilizing effect of a
given quantizer can be measured. We introduce the concept of
a destabilization measure which, in conjunction with an arbi-
trary stabilizing feedback law and a corresponding Lyapunov
function, can be used to determine an ultimate bound on so-
lutions. One example of such a destabilization measure is the
worst-case quantization error max ep |q(z) — |. However, it
turns out that there exist other destabilization measures which
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are actually more suitable in the present context. Although the
parameters of the control system are used in the stability anal-
ysis, the destabilization measure itself is a function of the quan-
tization regions and quantization points only. The quantizer de-
sign problem then naturally reduces to an optimization problem
which consists in minimizing such a measure over all quantizers
satisfying the information constraint. We describe this proce-
dure for three different types of quantizers arising from uniform,
radial and spherical, and radially weighted quantization.

After casting quantizer design as an optimization problem,
we proceed to explain how techniques from optimal facility lo-
cation (or locational optimization) yield new insights into this
problem as well as efficient algorithms for solving it. Facility
location problems concern the location of a fixed number of fa-
cilities that provide service demanded by users; the objective is
to minimize the average or maximal distance from sets of de-
mand points to facilities. We focus here on settings continuous
in the location of both the facilities and the demand points (i.e.,
both facilities and demand points take values in a continuum
of points, such as a polytope or an ellipsoid). Facility location
problems are surveyed in [7]. Computational geometric aspects
in continuous facility location are discussed in [23] and [24], and
indirectly in textbooks on computational geometry [6]. Relevant
background on computational geometric methods in locational
optimization is provided in Section III.

For example, a classical problem of interest in locational
optimization is the so-called multimedian problem. It con-
sists in choosing a collection of N points ¢1,q2,...,qn in
a bounded region D C R™ so as to minimize the quantity

E(min;eqr, . Nyl — z|?), where the expected value is
computed with respect to some probability density function
on D and | - | denotes the Euclidean norm. Solutions of this

problem are given by centroidal Voronoi tessellations; see [8]
and [28]. Within the context of quantization and information
theory, the multimedian problem is known as the fixed-rate
minimum-distorsion quantizer design [7], [13]. One of the early
references on this problem is the classic work by Lloyd [18],
who obtains optimality conditions and introduces a famous
insightful algorithm. The multimedian problem is related to the
problem of state moment stabilization of linear systems with
limited data rate [21].

Since we are working in the deterministic setting, we will
find that the problem relevant for our purposes is the multicenter
problem, discussed in [27] and [28]. This is a somewhat less fre-
quently encountered variant of the multimedian problem, which
is obtained by replacing the expected value by the worst-case
value; it can also be stated as the problem of covering a given
region with overlapping balls of minimal radius. The connec-
tion between the quantized control problem and the multicenter
problem, although very natural, apparently has not been pur-
sued before. In Section III, we present a general formulation of
the multicenter problem with weighting factors. We then discuss
solutions of specific versions of this problem corresponding to
the three types of quantization considered in Section II, all in
terms of suitable Voronoi quantizers. We show how existing al-
gorithms can handle the first two approaches, and then develop
a new algorithm for the last one which gives less conservative

results. We note that while weighted multimedian problems are
commonly encountered, our formulation appears to be novel in
that it introduces weighting factors in the context of the contin-
uous multicenter problem.

In Section IV, we provide a comparative simulation study of
the three quantizer designs considered here and a standard rect-
angular quantizer for a two-dimensional linear system. These
simulation results—as well as existing studies of the related
multimedian problem, such as [12]—indicate that by solving
the quantized feedback stabilization problem with the help of
locational optimization techniques, one may obtain quite inter-
esting quantization patterns. For the multicenter problem in the
plane, for example, a typical Voronoi region is a hexagon. Con-
sequently, hexagonal quantization regions for planar systems
have some advantages over more traditional rectangular ones.

II. QUANTIZATION AND STABILITY

We assume that the stabilization problem in the absence of
quantization has been solved, in the sense that a state feedback
control law is known such that the origin is a globally asymptot-
ically stable equilibrium point of the ideal closed-loop system.
In the presence of quantization, we adopt the “certainty equiv-
alence” control paradigm; namely, we let the same control law
act on the quantized state ¢(x), where ¢ is a quantizer on R™ (or
on a smaller region of interest). The problem under considera-
tion is to characterize the destabilizing effect of the quantizer
q, with the goal of obtaining an ultimate bound on solutions of
the closed-loop system starting in a given bounded region. We
first discuss this problem for general nonlinear systems and then
develop more specific results for linear systems, moving from
simpler but conservative to more complicated but sharper for-
mulations.

A. Nonlinear Systems

We start with the general situation where the process to be
controlled is modeled by the system

@ = f(z,u), z €R™, ueR™. )

All vector fields and control laws are understood to be suffi-
ciently regular (e.g., C!) so that existence and uniqueness of so-
lutions are ensured. Suppose that some nominal static feedback
law w = k(z) is given (with minor changes, dynamic feedback
laws can also be used). In the presence of state quantization, we
consider the feedback law u = k(¢(z)) and the corresponding
closed-loop system

&= [ k(q(@))) = f(x k(z +e)) @

where e := q(x) — x represents the quantization error.
Besides stabilizing the nominal system (1), the feedback law
k clearly must possess some robustness property with respect to
the measurement error e. To this end, we impose the following
assumption: there exists a C! function V : R” — R such that



for some class K, functions a1, oo, az, p and for all z, e € R™
we have? a1 (Jz|) < V(z) < as(|z|) and

g_sz@ +e)) < —as (Ja]).

[ > p(le]) =
(Here and later, | - | denotes the standard Euclidean norm.) This
amounts to the property that the control law u = k(x) input-to-
state stabilizes the closed-loop system with respect to the mea-
surement error e [25], [26]. This assumption is rather restric-
tive and can be relaxed at the expense of obtaining weaker re-
sults (for linear systems, however, it is an automatic conse-
quence of closed-loop asymptotic stability for e = 0). There is
also considerable research on designing control laws satisfying
this assumption. These issues are further discussed elsewhere
[15]-[17].
Pick a positive number M and consider the ball {B;; :=
{r € R™ : |z| < M}. Consider the worst-case quantization
error

3)

A := max |e|
x€EB )N

(this quantity is sometimes also referred to as the sensitivity of
the quantizer). The following result is fairly straightforward to
obtain (see [16, Lemma 2] and [17, Lemma 5.2]).

Lemma 1: Assume that

a1 (M) > ag o p(A). “4)

Then, the sets
Ri={zxeR":V(z) <ay (M)} 5)
and

Ry = {z € B": V(1) < az o p(A)}

are invariant regions for the system (2). Moreover, all solutions
of (2) that start in the set R, enter the smaller set R in finite
time. An upper bound on this time is

a1 (M) —aso p(A).

T =
as o p(A)

(6)

This lemma implies, in particular, that all solutions starting
in R, at time ¢t = ¢ satisfy the ultimate bound
lz(t)] < a7t o a0 p(A) Vi>to+ T (7
with T" given by the formula (6). We regard the quantity A de-
fined by (3) as a destabilization measure of the quantizer q. For
given feedback law k£ and Lyapunov function V', an ultimate
bound on solutions can be described by a class K., function of
this measure as shown by (7). It is not hard to see that if the

2Recall that a function « : [0, 00) — [0, 00) is said to be of class K if it is
continuous, strictly increasing, and a(()) = 0.If o« € K isunbounded, then it is
said to be of class K .. . The existence of functions 1 and o with the indicated
property simply means that V" is positive definite and radially unbounded; it will
be convenient to have these functions explicitly in the following analysis.
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number N of quantization regions is sufficiently large, then A
can be made small enough for the inequality (4) to hold. Mini-
mizing A—and consequently the size of the attracting invariant
region Ro—over all possible choices of the quantizer g corre-
sponds to the following optimization problem:

min max max |g; — x| 8)
QW  i€{l,...N} zeW;
where Q = {q1,...,qn} is a set of quantization points and

W = {Wy,..., Wy} is a partition of B, into quantization re-
gions. (We could work with partitions of R4 rather than B, but
this requires the knowledge of V' and also may be less computa-
tionally feasible for nonquadratic V'.) The optimization problem
(8) is known as the multicenter problem in computational geom-
etry; we defer its detailed discussion until Section ITI-A.

B. Worst-Case Quantization Error for Linear Systems
We now specialize to the case when the process is described
by the linear system

T = Az + Bu,

z€R” ueR™ )

The linear system structure can be utilized to define a desta-
bilization measure in several different ways. Suppose that the
system (9) is stabilizable, so that for some matrix K the eigen-
values of A + BK have negative real parts. Then there exists a
unique positive—definite symmetric matrix P such that
(A+BK)'P+ P(A+ BK) = —1I. (10)
We let Apin(P) and Apax (P) denote the smallest and the largest
eigenvalue of P, respectively. We assume that B # 0 and K #
0; this is no loss of generality because the case of interest is
when A is not a stable matrix.
The quantized state feedback control law v = K¢(x) yields
the closed-loop system

i = Az + BKq(z). (11)
Take a positive number M and consider the ellipsoids
Ry :={z €R" : 2" Pz < Apin(P)M?} (12)

and

Ry = {z € R" : 27 Pz < Apax(P)4(1 + €)*| PBK||* A%}
(13)
where ¢ > 0 is arbitrary and A is the worst-case quantization
error defined by (3). Then we have the following linear counter-
part of Lemma 1. Although this result is known (see [16, Lemma
1] and [17, Lemma 5.1]), we sketch a proof because it will be
needed in the sequel; this proof also differs slightly from the one
given in the references.
Lemma 2: Assume that
Amin(PYM? > Amax (P)4(1 4+ ¢)?||PBK|?A%. (14)
Then, the ellipsoids 7R1 and R» defined by (12) and (13) are
invariant regions for the system (11). Moreover, all solutions of
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(11) that start in the ellipsoid R enter the smaller ellipsoid R o
in finite time. An upper bound on this time is

Amin(PYM? — Mpax(P)4(1 + €)?||PBK ||2 A2

T =
A|PBK|PA(1 + ¢)e

5)

Proof: Rewrite (11) as
i =(A+ BK)z + BKe

where e := ¢(x) — x is the quantization error as before. In view
of (10), the derivative of the function

V(z) := 2T Pz
along solutions of this system satisfies
V=—2Te+22TPBKe < —|z|? + 2|z||PBKe|.  (16)

We can rewrite this as

| L
1+e

- (%@ el - \/WIPBKeI)

€
< —
- 1l+e

— |z +2(1 PBKe|?
2(1+5)|x| +2(1+¢)] el

1

2_7
= 5a e

(|x|2 — 201+ 5)|PBKe|)2) :

Therefore, we have

5]

|z| > 2(1 4+ ¢)|PBKe| =V < —
1+¢

]

7)

Using the inequality |PBKe| < ||[PBK]|||e|, where || - || stands
for the matrix norm induced by the Euclidean norm, we obtain

o] > 201+ €)[PBK el = V < = (18)
€

It is now straightforward to conclude the result. O

As a consequence of this lemma, an ultimate bound on solu-

tions starting in R, at time ¢t = g is

()] <

<\ 2(1 + ¢)||PBK||A

/\max(P)
_— Yt >t T
P > to +

)

with T' given by the formula (15). Decreasing ¢ to 0, we see that
solutions (asymptotically) approach the ellipsoid

{z € R" : 2" Pz < Anax(P)4||PBK||?A%} .

Thus, we still consider A as a destabilization measure. As in the
nonlinear setting, this leads to the optimization problem (8). If
N is large enough, then A can be made small enough so that the
inequality (14) holds (for a given feedback gain K).

Remark 1: We note that another approach is to work with
(17) directly, avoiding the use of the induced norm ||[PBK]|.
Define

APBK = Imax |PBK€|
TER1

The result of Lemma 2 still holds if || PBK ||? A? is replaced by
AZ% .- everywhere in the statement of that lemma. This yields
a less conservative ultimate bound and motivates the following
optimization problem:

min
QW

max
ie{l,...N}

max

max  |PBK(q: - )|

19)

where Q is a set of quantization points as before and W is a
partition of By, (or R1) into N regions. This problem is in gen-
eral lower dimensional compared to (8) because the subspace
ker(PBK) can be ignored. (Note that PBK is a singular ma-
trix whenever m < n.) Therefore, for the same N the optimal
value for this problem will be significantly lower than that for
(8). However, Appf is not really a destabilization measure in
the sense used in this paper, because it depends on the feedback
gain matrix K. While it gives better results for a fixed feed-
back law, quantizer design based on this destabilization mea-
sure needs to be redone if the feedback law is changed, and is
not suitable for switching between several feedback laws. For
these reasons we henceforth focus on destabilization measures
that are independent of a particular feedback law used. O

Remark 2: Itis clear that in Lemma 2, the system’s behavior
is important only for € Ry \ R». In other words, redefining
the quantizer arbitrarily outside R; \ Ro does not affect the
result. This means that we can design the quantizer more ef-
ficiently and preserve or decrease the ultimate bound on solu-
tions. For example, if the quantizer that solves the optimization
problem (19) involves several quantization points inside Ra, we
can move some of them to R; \ R to achieve better coverage
there. We can also restate the problem (19) in terms of partitions
of Ry \ Ry or of a spherical annulus containing this set. O

Remark 3: Lemma 2 suggests that among stabilizing state
feedback gains K, the ones that provide smaller ultimate bounds
for the solutions of the quantized system (for a fixed quan-
tizer) are those with smaller values of the induced matrix norm
|PBK||, where P is given by (10). In this regard, it is inter-
esting to observe the following: If the open-loop system & = Ax
is not asymptotically stable, then for every stabilizing feedback
gain K and the corresponding positive definite symmetric ma-
trix P satisfying (10) we have

IPBK]| > (20)

N | =

and the inequality is strict if £ = Az is unstable. To see this,
use (16) and the definition of e to write

V< —|z)? (1—2||PBK||M>. (21)

||

This formula will be used again several times in the sequel. Now,
note that if g is chosen to take the value O in a neighborhood of
the origin, then the right-hand side of (21) equals —|z|?(1 —
2||PBK]|) there, and so 1 — 2||PBK || cannot be positive since



A is not stable. It is also straightforward to show (20) directly:
Just multiply (10) on the left by v7 and on the right by v, where
v is a normalized eigenvector of A7 P4+ P A with a nonnegative
eigenvalue. O

C. Radial and Spherical Quantization for Linear Systems

In the previous developments, the required bounds on the
quantization error do not depend on the size of the state. This
leads to uniform quantization, in the sense that quantization
points are distributed uniformly over the region of interest.
However, it is well known that more efficient quantization
schemes are those which provide lower precision far away from
the origin and higher precision close to the origin. Quantizers
with a logarithmic scale are particularly useful; see [9]. Loosely
speaking, with logarithmic quantization one has the same
number of quantization points in the vicinity of every sphere
centered at the origin in the state space, whereas with uniform
quantization this number grows with the radius. This observa-
tion suggests introducing a “direct product” of one quantizer
on a unit sphere and another along the radial direction, which
is what we do next.

Let us write

where

We represent the quantizer accordingly as

q" (|=]) " (vers(x)) (22)

q(x)
where ¢" takes N; positive real values, ¢° takes N, values on
or inside the unit sphere, and N; and /N, are some positive in-
tegers such that N; N, < N. This means that we introduce two
separate quantizers, one for || and the other for vers(z). The
set of quantization points for the resulting overall quantizer ¢ is
formed by the N1 N» pairwise products of the values of ¢" and

S

q°.
Let us introduce the worst-case quantization error on the unit
sphere corresponding to ¢°

A= max l¢°(z) — z|. (23)

||=
As before, pick a positive number M. We will take ¢" to be a
logarithmic quantizer, defined as follows: Given a pair of num-
bers a, b satisfying

0<a<l<db (24)

)M, forz € ((%)M (%)HM> :

ie{l,...,Ni} (25)
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and define ¢" at the endpoints of these intervals to make it con-
tinuous from the right or from the left. Consider the ellipsoid

an 2N
Ry = {x € R" : 2T Pz < Aax(P) (Z) MQ} . (26)
Lemma 3: Assume that
2N,
Amin(P)M? > Amax(P) (%) M? 27)
and
1—¢
A< ——° 28
< 3[PBK]| (28)
for some € > 0. Let
1—¢ 1—¢
m1— -~ LA, bi=l4-— " A,
a 2PBK] T PBK|| (29)

Then, (24) holds. With ¢" given by (25) and ¢ given by (22),
the ellipsoids R and R, defined by (12) and (26) are invariant
regions for the system (11). Moreover, all solutions of (11) that
start in the ellipsoid R; enter the smaller ellipsoid R in finite
time. An upper bound on this time is

)\min(P)MQ - /\max(P) (%
()" M2e

)2N1 M2

(30)

Proof: The fact that the numbers a and b defined by (29)
satisfy the inequalities (24) follows directly from (20) and (28).
It is a simple matter to check from (25) that we have

OB

a\M
(—) M<z<M= <max{b—1,1-a}.

b

For the values of a and b given by (29), this becomes

a\M q"(2) 1—¢
) M<iz<M= |2 <— - _ A,
(b) =4= 2 ‘ = 2| PBK]|
€29)
Now, from the triangle inequality and the fact that

|¢®(vers(z))| < 1 for all z by construction, we obtain

la(z) — =] < |¢" (|z]) ¢° (vers(z)) — |z|g° (vers(z))|
+ ||z|¢® (vers(z)) — |z|vers(z)|
< lq" (Jz]) = ||| + || [¢° (vers(z)) — vers(z)]

< 1] < 7 (lz) —1’+AS>

|
where the last inequality follows from (23). Substituting this
into (21), we conclude that the derivative of V' along solutions
of the closed-loop system satisfies

q" (=)

||

V< —|z)? {1 —2||PBK|| <‘ - 1’ + Asﬂ . (32
Combining this with the formula (31), we conclude that 1%4 <
—el|z|? forall z € Ry \ Ra, from which it is straightforward to
conclude the result. O

For fixed N1 and N, the quantity A, defined by (23) pro-
vides a destabilization measure (for ¢°). When K is given and
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Ay satisfies the inequality (28) for some ¢ > 0, we can con-
struct ¢" via (25) and compute an ultimate bound on solutions
using Lemma 3. Minimizing A, corresponds to the following
optimization problem:

min max max |qf — x| (33)
Q5 Ws  ig{l,..,N,} zeW;
where Q° = {¢f,...,q%, } is a set of points on or inside the

unit sphere and W* = {W7,... W} } is a partition of the
unit sphere. This problem can be solved by the same algorithm
as the problem (8), as will be described in Section III-A. The
quantity (33) will not exceed the right-hand side of (28) if N5 is
sufficiently large. For a given N, the values of N; and N5 satis-
fying N1 N» < N which yield the smallest ultimate bound are
not easy to compute analytically and in general seem to depend
on the stabilizing feedback gain K; however, there is a finite
number of choices for these integers and we can find the optimal
values by trying all of them. We remark that in the context of the
multimedian problem, the idea of spherical coordinates quanti-
zation has been exploited before, and in particular the trade-off
between the numbers of values for the radial and the spherical
directions has been studied; see [29] and the references therein.

Remark 4: 1t is straightforward to derive similar results
using the norm defined by the Lyapunov function, i.e.,

lz|| :== VT Pz, instead of the Euclidean norm. This gives
rise to an optimization problem on an ellipsoid rather than on a

sphere. O

D. Radially Weighted Quantization for Linear Systems

The need for logarithmic quantization patterns is evidenced
by the fact that it is the ratio |e|/|z|, and not the absolute value
of the quantization error |e| itself, that needs to be small. This
is clear from the formulas (18) and (21). The approach of Sec-
tion II-C leads to an “aligned” logarithmic quantization pattern,
in the sense that quantization points on spheres of different radii
are aligned along the same radial directions. However, it is not
hard to see that nonaligned quantization patterns may achieve
better coverage. This suggests proceeding from (21) in a more
direct fashion.

To this end, pick two numbers M > m > 0 and consider the
ellipsoids R given by (12) and

Ro = {z eR™: TPz < /\max(P)mz} . (34)
Define
Ay i max 9@ =l (35)
z€ER1\Ra2 |£L|

The following result easily follows by virtue of (21), and the
proof is omitted.
Lemma 4: Assume that

Amin(P)M? > Apax(P)m? (36)
and
1—¢
Apy < —— 37
= 2||PBK]|| 37

for some € > 0. Then the ellipsoids R and R defined by (12)
and (34) are invariant regions for the system (11). Moreover, all
solutions of (11) that start in the ellipsoid R, enter the smaller
ellipsoid R in finite time. An upper bound on this time is

Amin(P)M? — A pax (P)m?
5 .

m=e

T =

(38)

The quantity A,.,, defined by (35) provides another destabi-
lization measure for ¢, in relation to a pair of numbers M >
m > 0. Given a stabilizing feedback gain K, we can check the
inequalities (36) and (37) and, if they are satisfied, obtain an ul-
timate bound on solutions from Lemma 4. (It is also clear from
(21) that A,.,, provides a lower bound on the rate of decay of
solutions in R4 \ R5.) This leads us to the following optimiza-
tion problem:

min max max 39
QW  i€{l,..N} zeW; ||
where Q = {¢q1,...,qn} is a set of quantization points and
W = {Wy,...,Wy} is a partition of the annulus {z € R" :

m < |z| < M} into quantization regions. The inequality (37)
will hold for a given K if N is sufficiently large.

The optimization problem (39) is different in structure from
the ones we encountered earlier, and apparently has not been
studied in the locational optimization literature. We henceforth
call it the radially weighted multicenter problem. It turns out
that while this problem is more challenging than the others, it
is still computationally tractable. We will develop an algorithm
for solving it in Section III-B.

Remark 5: 1In this paper, we are assuming that quantizer de-
sign can only be performed once and cannot be changed online.
In situations where one can recompute the locations of quanti-
zation regions and quantization points online, it is possible to
achieve global asymptotic stability of the quantized closed-loop
system by using the dynamic quantization strategy developed
in [3], [16]. In fact, a simple rescaling of the quantizer every T'
units of time would suffice. For this to work, we need to ensure
that R is a strict subset of R; in each of the previous schemes.
This means that the optimization problems formulated earlier
remain relevant, except that by passing from static to dynamic
quantization we basically pass from an optimal to a suboptimal
quantizer design objective. An interesting direction for future
research is to incorporate a cost for recomputing the quantiza-
tion parameters into the quantizer design problem. O

III. CONTINUOUS MULTICENTER PROBLEMS IN
FACILITY LOCATION

In this section, we present a class of optimization problems
related to the field of facility location; see the discussion in
Section I and the survey [7]. The facility location problem we
consider will have as special cases the optimization problems
studied in Section II, and in particular the problems (8) from
Sections II-A and II-B, (33) from Section II-C, and (39) from
Section II-D.

Let us review some preliminary concepts. Given a compact
region D C R™ and a set of N points Q = {q¢1,...,qn} in R?,



the Voronoi partition V = {Vi,...,Vy} of D generated by Q

is defined according to

Vi={z €Dz —q| <|z—gq|, Yji#i}. (40)
When it is useful to emphasize the dependency on Q, we will
write V(Q) or V;(Q). When D is a polytope in R™, each Voronoi
region V; is a polytope, otherwise V; is the intersection between
apolytope and D. The faces of the polytope which defines V; are
given by hyperplanes of points in R" that are equidistant from
g; and g;, 7 # 4; among the latter, only “neighboring” points
play a role. Note that this (standard) construction remains valid
when D is a lower dimensional subset of R™, such as a sphere.
We refer to [6], [23] for comprehensive treatments of Voronoi
partitions.

Let © = {q1,...,qn} be a collection of points in R™ and let
W = {W,..., Wy} be a partition of D. In what follows, we
will concern ourselves with the function:

H(QW) = ¢(@)f (Jo = ail)

max
i€{1,...,.N}

max

zeW; (4 ! )

where ¢ : D — [0,00) is continuous nonnegative and f :
[0,00) — [0, 00) is continuous, nondecreasing and unbounded.
We also assume that ¢ does not identically vanish on D. We
investigate the optimization problem

min

»

H(Q,W) (42)
and refer to it as the weighted multicenter problem. In general,
‘H is a nonlinear nonconvex function of the locations Q and of
the partition WW. Accordingly, its global minima can be obtained
only numerically via nonlinear programming algorithms. How-
ever, this and related facility location problems [8], [27], [28]
have some peculiar structure that helps us characterize optimal
solutions and design useful iterative algorithms. Let us start by
considering the weighted 1-center problem over D, i.e., take
N =1.
Lemma 5: The function H; : R™ — [0, o) defined by

Hi(a) == H({g},{P}) = max  $(«)f (|2 - ql)

z€D
is continuous, radially unbounded, and quasi-convex.? If f is
convex and ¢ is constant, then H; is convex.

Proof: The function H; is continuous because it is the
maximum of a compact family of continuous functions. Fur-
ther, H; is radially unbounded because for every * € D such
that ¢(z*) > 0 we have H1(q) > ¢(z*)f(|z* — ¢|) and f
is unbounded. To show the other statements, we invoke certain
properties of convex and quasiconvex functions; see [2, Sec. 3.2
and 3.4]. At a fixed z, the function ¢ — f(|z — q|) is quasi-
convex because it is the composition of a convex function with a
nondecreasing function. Furthermore, if f is nondecreasing and
convex, then ¢ — f(|z — ¢|) is convex because, at a fixed z, it
is the composition of a convex function with a convex nonde-
creasing function. If f is convex, then ¢ — max,ep f(|z — ¢|)
is convex because it is the pointwise supremum over a set of

3Recall that a quasiconvex function is a function defined on a convex domain
and with convex sublevel sets.
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convex functions. For general ¢ and f, the function H; is qua-
siconvex because it is the weighted pointwise supremum of qua-
siconvex functions. (]

Next, we let co(D) denote the convex hull of D and study the
global minima of H;.

Lemma 6: The set of global minimum points for H; is com-
pact, convex and has a nonempty intersection with co(D). If f
is strictly increasing, then all global minimum points belong to
co(D).

Proof: The fact that the set of global minimum points
is compact and convex is an immediate consequence of
continuity, radial unboundedness, and quasiconvexity. Let
us prove the nonempty intersection with co(D). Sup-
pose that ¢* ¢ co(D) is a global minimum point for
Hyi. Let p* € co(D) be the closest point to ¢*, i.e.,
p* 1= argmingeco(p) |¢* — /. Then, |z — p*| < |z — ¢*| for
all z € D, so that, for all z € D, we have ¢(z)f(|z — p*|) <
o) (7 - ¢*) < maxeep (@) f(z — ¢*) = Halg").
Therefore, H1(p*) = maxep é(z)f(|lz — p*|) < Hi(q")
and p* also belongs to the set of global minimum points.
When f is strictly increasing, the previous argument leads to
H1(p*) < H1(g*), which contradicts the assumption that ¢* is
a global minimum. O

Lemmas 5 and 6 show that the weighted 1-center problem
over D is a quasiconvex optimization problem, i.e., it consists
in minimizing the quasiconvex function H; over the convex set
co(D). Itis known that every quasiconvex optimization problem
can be solved by iterative techniques (via a bisection algorithm
solving a convex feasibility problem at each step; see [2, Sec.
4.2.5]). We call ¢*(D) a weighted center of the region D if it is
a (possibly nonunique) global minimum point

¢*(D) := argmin max ¢(z)f (|Jz —q|) .-
g€ (D) *€P

Now, it is useful to return to the general weighted mul-
ticenter problem (41), (42) and define W +— Q*(W)
as the map that associates to VW a collection of N (pos-
sibly nonunique) global minimum points for the corre-
sponding weighted 1-center problems; in other words,
Q*({W1,7WN}) = {q*(WI)vq*(WN)} Note
that these weighted centers are well defined since each W;
is compact. Finally, define the Lloyd map (or the Lloyd al-
gorithm) £ : (Q, W) — (Q', W') where W' := V(Q) and
Q' = 9*(W'). The following result is a relatively straight-
forward consequence of LaSalle Invariance Principle for
discrete-time dynamical systems; further convergence proper-
ties are under current investigation in [5].

Lemma 7: At a fixed Q, a global minimum of W ~
H(Q, W) is achieved at W = V(Q). At a fixed W, a global
minimum of @ — H(Q,W) is achieved at Q@ = Q*(W).
The Lloyd map is a descent algorithm for the cost func-
tion H, i.e., an application of the map is guaranteed not to
increase H. The cost is guaranteed to decrease in one it-
eration if no active* point ¢; € Q is a weighted center of
its region W;. Given an initial pair (Qg, W,), the sequence

4We call q; active if H(Q, W) = MaXzew,;¢(x)f(lz—a ) i.e., the max-
imum over ¢ is achieved at the index .
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{£*(Qg,Wo),k > 0} approaches the largest set invariant
under £ on which H(L(Q,W)) = H(Q,W).
Remark 6:

1) Fixed points of the Lloyd map are weighted central
Voronoi quantizers, i.e., pairs (Q, W) such that W is
the Voronoi partition generated by Q and at the same
time the points in Q are weighted centers for W. It is
an open conjecture that the iteration described in the
lemma converges to local minima of H. Nevertheless,
the algorithm is of interest to us because it is guaran-
teed to improve a given quantizer design and provides a
good indication as to whether or not NNV is large enough
to achieve the control objective.

ii)  The classic Lloyd algorithm is tailored to the contin-
uous multimedian problem as it appears, for example,
in the problem of fixed-rate minimum-distorsion quan-
tizer design; see [7], [13]. The classic Lloyd algorithm
differs from the one considered here only in the fact
that the points in Q are moved to the centroids—as
opposed to the weighted centers—of the respective
Voronoi regions. (Centroids are solutions of the 1-me-
dian problems.)

iii)  The results in Lemma 5-7 provide an algorithm for
the solution of the relevant multicenter problems via:
1) quasiconvex programming, and 2) Voronoi partition
computations. It is important to observe that intense
research activity is ongoing on both problems and that
numerical iterative algorithms are available for solving
them; e.g., see [1], [2], and the references therein. [

Next, we consider the specific settings that arise in the quan-
tizer design problems discussed in the previous section. We
characterize additional properties of the multicenter problem
(8), the spherical multicenter problem (33), and the radially
weighted multicenter problem (39). To implement the Lloyd
algorithm, two tasks must be carried out repeatedly. One con-
sists in computing the Voronoi partition for a given set of points
Q, which is accomplished by the standard procedure described
earlier. The other amounts to computing a weighted center for
each set W; in a given partition. Thus for each of the specific
multicenter problems, we must now discuss how to solve the
corresponding 1-center problem. Some additional remarks on
the properties of these particular multicenter problems will also
be provided.

A. Multicenter Problem

Let us first consider the problem (8) arising in Sections II-A
and B. The domain is a ball centered at the origin or, more gen-
erally, an ellipsoid, i.e., D = {z € R" : T P < 1} for some
positive definite symmetric matrix P. Note also that the problem
(19) arising in Section II-B reduces, via a linear change of coor-
dinates, to the multicenter problem considered here in a lower
dimension.

In (8), the weighting function ¢ is identically equal to 1 and
the performance function f is the identity map. Under these
conditions, we refer to the optimization problem (42) simply
as the multicenter problem; see [27] and [28]. The multicenter
problem can be equivalently restated as the problem of covering

the region D with a given number of (possibly overlapping) balls
of smallest radius. If B; C R™ is the unit ball centered at the
origin, and if RB; + ¢ denotes the ball of radius R centered at
a point ¢, the problem reads

subject to U
i€{l,..,N}

(RBy +4qi) 2 D.

min R,

Let us analyze the 1-center problem. From Lemma 5, we
know that this is a convex optimization problem. For each re-
gion V;, the optimal solution ¢*(V;) is the center of the min-
imal-radius enclosing sphere for V;. This center is unique be-
cause the minimal-radius enclosing sphere is the intersection of
all enclosing spheres. When V; C R? is a polygon, this sphere
is referred to as the smallest enclosing circle and algorithms are
available to compute it; see [6, Ch. 4]. When V; C R™ is a
polytope, the smallest enclosing ellipsoid (in particular, sphere)
can be computed via iterative convex optimization algorithms;
see [2, Sec. 8.4]. For a Voronoi region V; near the boundary of
D, which is not a polytope, we can under-approximate it by a
polytope generated by the vertices of V; and suitable additional
points on the intersection of V; with the boundary of D, and
then compute the center of this polytope. For a sufficiently close
under-approximation, this center will also be the center of V.

When D is a unit cube in R”, the optimal value of the problem
(8) satisfies the bounds

i /i
ELT TR

The upper bound is easily obtained by constructing a uniform
cubical quantization pattern, while the lower bound is known as
Sukharev’s lower bound on dispersion [20], [22]. In the present
case when D is a ball, it is straightforward to obtain similar
bounds by considering inscribed and superscribed cubes for D.
The upper bound can be used to evaluate the convergence of
the Lloyd algorithm. When the lower bound on A is not small
enough for the inequality (4) or (14) to hold, it indicates that a
different destabilization measure and/or a different stabilizing
feedback law must be used, or that /N must be increased.

It is also useful to recall some known facts about the multi-
median problem. It is conjectured in [12] that for N sufficiently
large, the optimal quantizer with respect to the uniform proba-
bility density is given by a tessellation (i.e., translation and rota-
tion) of a fixed polytope, except near the boundary of the region
of interest. In two dimensions, polygons that can give rise to
such tessellations are equilateral triangles, rectangles, and reg-
ular hexagons. Among these, the hexagon is optimal, because
it has the smallest mean-square quantization error with respect
to its centroid per unit volume. This result remains true if we
consider the worst-case rather than mean-square quantization
error, which is the quantity being minimized in the multicenter
problem. The hexagon achieves the smallest error with respect
to its center. (For the unit volume regular hexagon this error is
approximately 0.62, compared with 0.707 for the square and
0.936 for the equilateral triangle; the unit-volume disk gives the
error of 0.564 but disks cannot be used to obtain tessellations.)
In Section IV we will indeed see hexagonal patterns arising as
solutions of the multicenter problem.




The spherical multicenter problem (33) from Section II-C
corresponds to the setting where D = {z € R" : |z| = 1} is the
unit sphere in R™. Since the spherical multicenter problem is for-
mulated in terms of the Euclidean distance in R™, Voronoi par-
titions of the sphere can be constructed as explained earlier for
the general case. Voronoi regions will be intersections of poly-
topes with the unit sphere. The center of each Voronoi region
V; is the center of the minimal-radius enclosing sphere for V.
We can consider a polytope in R™ generated by the vertices of
V; and perhaps some other points in V;. If enough points are
taken, then the center of this polytope will also be the center of
V. As we explained earlier, computing the center of a polytope
is a computationally tractable task.

B. Radially Weighted Multicenter Problem

Here, we study the problem (39) formulated in Section II-D,
where the domain is the spherical annulus D = {z € R" : m <
|z| < M?}. We consider the corresponding radially weighted
1-center problem over a set V' C D:

lg — =]

min
q€co(V)

max

zeV (43)

||
The problem is well-posed because V' is a subset of D and there-
fore does not contain the origin. In what follows, we take V' to
be a polytope; if it is not, we approximate it by a polytope as
before. We begin by making the following observation.

Lemma 8: The optimal cost in the problem (43) is smaller
than 1 if and only if the set V' is separated from the origin by a
hyperplane.

Proof: Suppose first that V' is separated from the origin by
a hyperplane, so that 0 & co(V'). Let ¢ be the projection of the
origin onto co(V), i.e., § := arg mingeco(v) [z|. By construc-
tion, |z — ¢ < |z| forall z € V, hence max,cv |§—z|/|z| < 1.
This implies that the optimal cost in the problem (43) is less
than 1. To prove the converse, suppose on the contrary that
0 € co(V). This means that the origin lies on the line seg-
ment between two points z1,22 € V. For the optimal cost to
be less than 1, the optimal point ¢* must belong to the open
ball {¢ € R™ : |¢ — z1] < |z1]} as well as to the open ball
{q € R" : |¢ — z2| < |z2|}. However, the intersection between
these two sets is empty, which is a contradiction. O

We will henceforth assume that the set V' is separated from
the origin by a hyperplane. For N sufficiently large, the initial
quantization points can be chosen in such a way that each of
the resulting Voronoi regions indeed has this property. Since
by Lemma 7 the Lloyd algorithm does not increase the cost,
Lemma 8 implies that all Voronoi regions will then have this
property at every step of the iteration. From Lemmas 5 and 6,
we know that the problem (43) is quasiconvex and can thus be
handled by iterative convex optimization algorithms; see the dis-
cussion in Remark 6iii).

In what follows, we investigate the structure of the problem
(43) in order to obtain a solution more constructively. Let us first
present an equivalent formulation of this optimization problem.

Lemma 9: Let V be a polytope separated from the origin by
a hyperplane. Consider the problem of finding the sphere with
center ¢ and radius r which encloses V' and minimizes r/|c|.
Let (¢*,r*) be the parameters of the optimal sphere. Then the
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Fig. 1. Rectangular quantizer. (a) Quantization regions and points. (b)
Closed-loop trajectories.

optimal value for the problem (43) is v* := 7*/|c*| and the
optimal point is ¢* := (1 — (y*)?)c*.

Proof: Let f,(z) := |q — x|/|z|. In the problem (43), we
search for ¢ that minimizes the value of the function f; on its
smallest level set enclosing V' (we will see shortly that this is
well defined). For each v > 0, the y-level set of f, is described
by

g =z = ¥*|z* = 0.
Because V' is separated from the origin by a hyperplane, we
know from Lemma 8 that the optimal value of  is smaller than
1. Thus, from here on we will only be interested in v < 1. A
square completion argument leads to

1
m (|q—3?|2 - 72|3?|2) =

2 2
q _ v |q|2
1—v (1—19%)?
so that the y-level set of f, is the sphere |z — c|*> = r?, with
center ¢ := q/(1—~?) and radius r := ~|c|. In the new variables
(¢, r), we must minimize v = r/|c| among all spheres enclosing
|4 (]

Note that the point ¢* belongs to co(V') by Lemma 6, while
c* might not. Lemma 9 leads us to considering the problem

2
v (e,r

T
subject to  |e¢ — v;)? < 72,

- 2

min

ceR™ reR ) = W

py (44

where v1, ..., v, are the vertices of the polytope V. This is an
optimization problem subject to inequality constraints, which
can be solved with a finite number of computations. The idea
is to enumerate active constraints, according to the procedure
described in the following algorithm.

1: for all subsets S of the set of
vertices of V do

2: compute the (cg,rs)-sphere min-
imizing 4?2 among all (¢,r)-spheres
touching all points in S

3: end for

4: discard all (cg,rs)-spheres not con-
taining all vertices of V

5: find global minima for (44) by com-
paring the values of r%/|cs|?> among all
remaining candidate spheres

Steps 4 and 5 are straightforward comparison checks. Re-
garding step 1, it turns out we can restrict our search to sets S
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containing at least two vertices of V, by virtue of the following
result.

Lemma 10: The optimal sphere for the problem (44) touches
at least two vertices of V, i.e., at least two constraints are active
at the minimum.

Proof: The proof is by contradiction. Suppose that the op-
timal sphere touches only one vertex. We denote this vertex by v
and assume, performing an affine coordinate change, that it has

coordinates (1,0,...,0)T. Let ¢ = (#1,%2,...,%,)T. Then,
we are led to minimizing
2 - N Il VD s 1 — 21,
..... = =1+
o) = T
(45)

Let us show that this function has no critical points besides the
pole at the origin and the zero at v. We have

0 _2(at Yt m) o
axl (Z?:l :Ezz)
and
2 27,01 -2z
8_? - M, i # 1. (47)

In view of (47), every critical point satisfies either Z; = 1/2 or
Z; = 0 for all ¢ # 1. In the first case, the formula (46) implies
that we must have >~ , Z7 = —1/2, and this equation has no
solution. In the second case, (46) gives two solutions: z; = 0
(pole at 0) and Z; = 1 (zero at v). The pole at the origin is not
a minimum. The zero at v corresponds to the sphere of radius 0
centered at v, which is not a feasible solution because it does not
enclose V. In summary, we have shown that the optimal sphere
cannot touch only a single vertex of V. O

Regarding Step 2, we need to minimize v over spheres
passing through two or more vertices of V. Spheres passing
through [ generic points in R™ are parameterized by n + 1 — [
variables. A convenient parameterization is obtained by inter-
secting hyperplanes of points equidistant from pairs of points
from a given set. Coordinates of the points on the intersection
are given by affine functions of n» + 1 — [ free parameters.
Note that the radius 7 of the sphere is uniquely determined by
its center ¢ and the vertices of V' which lie on the sphere. It is
straightforward to verify that the function 42 in (44) is a ra-
tional function whose numerator and denominator are quadratic
inhomogeneous polynomials in these free parameters, and
that critical points of «? are solutions of n + 1 — [ quadratic
equations in the same number of unknowns. According to Be-
zout’s theorem, this generically gives 2”7~ candidate optimal
spheres (see [4]). Step 2 is completed by choosing the one with
the smallest radius. We emphasize that while this constructive

Fig. 3. Radial/spherical quantizer. (a) Quantization regions and points. (b)
Closed-loop trajectories.

solution has exponential complexity, a more efficient solver
can be developed based on quasi-convex programming; see
Remark 6iii).

As an example of Step 2, let us work out the planar case.
When n = 2, the problem reduces to finding critical points
of « for circles passing through [ vertices of V', where [ > 1
by Lemma 8. Since for [ > 2 there is at most one circle passing
through the corresponding vertices, we only need to explain how
to solve this problem for [ = 2. For convenience, let us consider
an affine change of coordinates which places the two vertices
at (1,0)T and (—1,0)7 and the origin at some point (xq, yo)% .
Without loss of generality, assume that yy > 0. The center of
the circle is denoted by ¢ = (z,7)T. We know that ¢ must be
equidistant from the two vertices, hence Z = 0. Then, we have

’Yz = 21_1:4?32
5+ (¥ — yo)?
and so
0?29 (43 + (= 90)%) — 205 — wo) (1 + 7°)
a (a3 + (7 — 90)?)

_ =20%y0 + 29 (23 +y3 — 1) + 240
- i ; _
(23 + (7 = v0)?)

Equating the numerator to 0, we arrive at the equation

~7yo + 7 (v +yg — 1) +y0 = 0.

In the special case when yo = 0, this reduces to F(z3 — 1) =
0. Since xg = =1 corresponds to one of the vertices being
at the origin, which cannot happen by our earlier assumption,
the solution is 4 = 0 (as is also clear from symmetry). When
Yo # 0, the minimum is achieved at

R R R

V= 2yo0

(Note that this goes to 0 as yq approaches 0 or co.)
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Fig. 4. Radially weighted quantizer. (a) Lloyd iterations. (b) Quantization regions and points. (c) Closed-loop trajectories.

IV. SIMULATION RESULTS

For our simulation studies, we take the system (9) and work

with the following data:
=(34) #=() w=(2 )
2 2

This leads to P = I from (10), which is convenient because
the regions R1 and Ro will be balls around the origin. We have
|PBK]|| = +/5/2. In all simulations, we take M = 5, so the
outer ball shown in the following figures is R1 = B5. We also
fix the number N of quantization points to be 25.

We first consider a simple quantizer which divides the square
[-5,5] x [=5,5] into 25 equal squares as shown in Fig. 1(a).
The worst-case quantization error is A = V/2 here, and the in-
equality (14) is satisfied for sufficiently small € (in fact, N = 25
is the smallest perfect square for which this is the case). So-
lutions of the quantized closed-loop system (11) are shown in
Fig. 1(b). Lemma 2 predicts that asymptotically, these solutions
must approach the ball of radius 2v/5 ~ 4.472 around the origin
(this is obtained by setting ¢ = 0 in the formula (13) for R5).
The circle of this radius is drawn in the figure, and we see that
solutions in fact enter it in finite time and then continue to ap-
proach the origin (we took 7' = 2 in all simulations); this illus-
trates the conservativeness of the theory presented in Section II.
We also clearly see chattering behavior on the boundaries be-
tween quantization regions.

Next, we design the quantizer by solving the multicenter
problem on B; using the Lloyd algorithm. Fig. 2(a) illustrates
the evolution of the quantization points starting from random
initial conditions close to the origin, and Fig. 2(b) depicts the
quantization points obtained after 100 iterations and the corre-
sponding Voronoi regions, predominantly of hexagonal shapes.
The worst-case quantization error is A =~ 1.248 in this case,
which is smaller than the one for the rectangular quantizer.
From Lemma 2, the ultimate bound on the norm of closed-loop
solutions is approximately 3.948. We see from Fig. 2(c) that
solutions indeed enter the ball of this radius (again in finite
time).

We now consider radial and spherical quantization. Let
Ny = 1 and No = 25. This means that we must uniformly
distribute 25 points on the unit circle, and the cordal quanti-
zation error A defined by (23) is computed from the formula
A = /2 —2cos(m/25) ~ 0.126. The inequality (28) is sat-
isfied for sufficiently small € because 1/(2||PBK]||) = 0.316.
Since we are interested in an ultimate bound on solutions, we
take e = 0. This gives a ~ 0.809, b ~ 1.191, and the required
distance from the quantization points to the origin is determined

from the formula (25) and approximately equals 4.045; see
Fig. 3(a). In view of Lemma 3, closed-loop trajectories must
asymptotically approach a ball whose radius is now decreased
to about 3.399. This indeed happens, as illustrated in Fig. 3(b).
Interestingly, N1 = 2 gives a poorer guaranteed convergence
radius (even if we take No = 13), and it is easy to check that
larger values of N; are not feasible because of (28).

Finally, we consider a quantizer that results from solving the
radially weighted multicenter problem using the Lloyd algo-
rithm. In this case we have to pick a desired ultimate bound
on |z(t)|, which we take to be m = 3. Fig. 4(a) illustrates the
evolution of the quantization points starting from random initial
conditions in the annulus B; \ B3, and Fig. 4(b) depicts the quan-
tization points obtained after 100 iterations and the associated
Voronoi regions (computed for the entire ball Bs). The quanti-
zation points remain in the convex hull of the intersections of
the corresponding Voronoi regions with (Lemma 6). We have
A, = 0.273, hence the inequality (37) is satisfied for suffi-
ciently small e. Thus Lemma 4 guarantees that |z(¢t)| < 3 as
t — oo, which is confirmed by Fig. 4(c).

V. CONCLUSION

We discussed the problem of designing the most suitable
quantizer for feedback stabilization subject to a given informa-
tion constraint. We showed how a perturbation analysis based
on a Lyapunov function can be used to define a destabilization
measure of a quantizer and arrive at an ultimate bound on
closed-loop solutions in several different ways. In each case,
we demonstrated how the problem of minimizing this ultimate
bound can be naturally cast as a weighted multicenter problem
and can be tackled via quasiconvex programming and Voronoi
diagram computations. We investigated uniform, radial and
spherical, and radially weighted quantizer designs, developing
a novel iterative solver for the latter. We compared these quan-
tizers among themselves and to a standard rectangular quantizer
in the context of a simple simulation example.

The general problem of designing an optimal quantizer for
stabilization depends on many parameters, and the analysis pre-
sented here is quite conservative and not comprehensive. An
important direction for future work is to address the issue of
optimizing the design parameters and to move beyond stability
by addressing specific performance criteria. (See [10] for some
related recent work on discrete-time systems.) Some measure
of “representation complexity” of a quantizer needs to be de-
veloped and taken into account in quantizer design. Topics for
future work also include studying convergence properties of the
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Lloyd algorithm in nonsmooth settings and exploring the least
destabilizing quantizer design for classes of nonlinear systems.
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