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Abstract

This paper is concerned with global asymptotic stabilization
of continuous-time systems subject to quantization. A hy-
brid control strategy originating in earlier work relies on the
possibility of making discrete on-line adjustments of quan-
tizer parameters. We explore this method here for general
nonlinear systems with general types of quantizers affecting
the state of the system or the control input. The analysis
involves merging tools from Lyapunov stability, hybrid sys-
tems, and input-to-state stability.

1 Introduction

In the classical feedback control setting, the output of
the process is assumed to be passed directly to the con-
troller, which generates the control input and in turn
passes it directly back to the process. In practice, how-
ever, this paradigm often needs to be re-examined be-
cause the interface between the controller and the pro-
cess features some additional information-processing de-
vices.

One important aspect to take into account in such
situations is signal quantization. We think of a quan-
tizer as a device that converts a real-valued signal into
a piecewise constant one taking on a finite set of val-
ues. Quantization may affect the process output (this
happens, for example, when the output measurements
to be used for feedback are obtained by using a digital
camera, stored in the memory of a digital computer, or
transmitted over a digital communication channel) or
the control input (examples include the standard PWM
amplifier and the manual transmission on a car).

We assume that the given system evolves in contin-
uous time. In the presence of quantization, the state
space (or the input space) of the system is divided into a
finite number of quantization regions, each correspond-
ing to a fixed value of the quantizer. At the time of
passage from one quantization region to another, the
dynamics of the system change abruptly. Therefore,
systems with quantization can be naturally viewed as
hybrid systems, i.e., systems described by a coupling
between continuous and discrete dynamics.

There are two well-studied phenomena which account
for changes in the system’s behavior caused by quantiza-
tion. The first one is saturation: if the signal is outside
the range of the quantizer, then the quantization error
is large, and the control law designed for the ideal case
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of no quantization leads to instability. The second one
is deterioration of performance near the equilibrium: as
the difference between the current and the desired values
of the state becomes small, higher precision is required,
and so in the presence of quantization errors asymptotic
convergence is impossible. These phenomena manifest
themselves in the existence of two nested invariant re-
gions such that all trajectories of the quantized system
starting in the bigger region approach the smaller one,
while no further convergence guarantees can be given.

A standard assumption made in the literature is that
parameters of the quantizer are fixed in advance and
cannot be changed by the control designer (see, among
many sources, [3, 4, 6, 11, 12, 15]). There has been some
research concerned with the question of how the choice
of quantization parameters affects the behavior of the
system [1, 5, 8, 10]. In this paper, building on the ear-
lier work reported in [2, 9], we adopt the approach that
it is possible to vary some parameters of the quantizer
on line, on the basis of collected data. (In the example
where a quantizer is used to represent a camera, this
corresponds to zooming in or out, i.e., varying the fo-
cal length, while the number of pixels of course remains
fixed.) When such manipulations are feasible, they al-
low one to change the range of the quantizer and the
quantization error as the system evolves, thereby help-
ing to overcome the two difficulties described above.

The quantization parameters will be updated at dis-
crete instants of time (these switching events will be
triggered by the values of a suitable Lyapunov function).
This results in a hybrid quantized feedback control policy.
There are several reasons for adopting a hybrid control
approach rather than varying the quantization parame-
ters continuously. First, in specific situations there may
be some constraints on how many values these param-
eters are allowed to take and how frequently they can
be adjusted. Thus a discrete adjustment policy is more
natural and easier to implement than a continuous one.
Secondly, the analysis of hybrid systems obtained in this
way appears to be more tractable than that of systems
resulting from continuous parameter tuning. In fact, we
will see that a method based on computation of invari-
ant regions defined by level sets of a Lyapunov function
provides a simple and effective tool for studying the be-
havior of the closed-loop system. This also implies that



precise computation of the switching times is not essen-
tial, which makes our hybrid control policies robust with
respect to time delays.

The recent paper [2] by Brockett and the author thor-
oughly investigates the hybrid control methodology out-
lined above in the context of the feedback stabilization
problem for linear control systems with output (or state)
quantization. It is shown there that if a linear sys-
tem can be stabilized by a linear feedback law, then it
can also be globally asymptotically stabilized by a hybrid
quantized feedback control policy. The control strategy
is usually composed of two stages. The first, “zooming-
out” stage consists in increasing the range of the quan-
tizer until the state of the system can be adequately
measured. The second, “zooming-in” stage involves ap-
plying feedback and at the same time decreasing the
quantization error in such a way as to drive the state to
the origin. The developments of [2] were restricted to
quantizers giving rise to rectilinear quantization regions.

The present work generalizes the contributions of [2]
in three different directions. First, we consider more
general types of quantizers, with quantization regions
having arbitrary shapes (as in [11]). This extension is
important for applications. For example, in the context
of vision-based feedback control mentioned earlier, the
image plane of the camera is divided into rectilinear re-
gions, but the shapes of the quantization regions in the
state space which result from computing inverse images
of these rectangles can be rather complicated. We will
demonstrate that the principal findings of [2] are still
valid in this more general setting.

Another goal of this paper is to address the quantized
feedback stabilization problem for nonlinear systems. It
can be shown via a linearization argument that by us-
ing the approach of [2] one can obtain local asymptotic
stability for a nonlinear system, provided that the corre-
sponding linearized system is stabilizable (see [7]). Here
we are concerned with achieving global stability results.
We will show that the techniques developed in [2] can
be extended in a natural way to those nonlinear sys-
tems that are input-to-state stabilizable with respect to
measurement disturbances. We thus reveal an interest-
ing interplay between the problem of quantized feedback
stabilization, the theory of hybrid systems, and topics of
current interest in nonlinear control design. A prelimi-
nary investigation of these questions has been reported
in [9], but only for state quantizers with rectilinear quan-
tization regions.

Finally, in this paper we present analogous results for
systems with input quantization, both linear and nonlin-
ear. In view of the examples given earlier, this expands
the potential applicability of the hybrid quantized feed-
back control techniques. We discover that the analysis
of systems with input quantization can be carried out
quite similarly to the state quantization case. This anal-
ysis also yields a basis for comparing the effects of input
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quantization and state quantization on the performance
of the system, which will be pursued elsewhere.

2 Quantizer

By a quantizer we mean a piecewise constant function
q:R* - Q, where Q is a finite subset of R™”. This leads
to a partition of R™ into a finite number of quantization
regions of the form {z € R" : ¢(z) =1}, 1 € Q. The
shapes of these quantization regions are arbitrary. When
z does not belong to the union of quantization regions
of finite size, the quantizer saturates. More precisely, we
assume that there exist positive real numbers M and A
such that the following two conditions hold:

1. If
2| < M (1)

then
|z —a(z)| < A. (2)

2. If |z| > M then |g(z)| > M — A.

Condition 1 gives a bound on the quantization error
when the quantizer does not saturate. Condition 2 pro-
vides a way to detect the possibility of saturation. We
will refer to M and A as the range of ¢ and the quan-
tization error, respectively. To preserve the equilibrium
at the origin, we also assume that ¢(0) = 0. An exam-
ple of a quantizer satisfying the above requirements is
provided by the quantizer with rectangular quantization
regions considered in earlier work [2, 9].

In the control strategies to be developed below, we
will use quantized measurements of the form

z
na(=)

I
where p > 0. The range of this quantizer is My and
the quantization error is Au. We can think of u as the
“zoom” variable: increasing p corresponds to zooming
out and essentially obtaining a new quantizer with larger
range and quantization error, whereas decreasing p cor-
responds to zooming in and obtaining a quantizer with a
smaller range but also a smaller quantization error. We
will update p at discrete instants of time, so it will be the
discrete state of the resulting hybrid closed-loop system.

In the camera model mentioned in the Introduction, u
corresponds to the inverse of the focal length f.

3 State quantization
3.1 Linear systems

Consider the linear system
% = Ar + Bu, reR", ueR™. (3)

Suppose that (3) is stabilizable, so that for some matrix
K the eigenvalues of A + BK have negative real parts.



By the standard Lyapunov stability theory, there exist
positive definite symmetric matrices P and @ such that

(A+ BK)"P+ P(A + BK) = —Q. (4)

We will let Apin(-) and Apax(-) denote the smallest and
the largest eigenvalue of a symmetric matrix, respec-
tively. The inequality

Auin (P)[2]* < 27 P < Apyax (P) 2]’

will be used repeatedly below. We will assume that
B # 0 and K # 0; this is no loss of generality because
the case of interest is when A is not a stability matrix.

In this section we are interested in the situation where
only quantized measurements of the state are available.
Since the state feedback law u = Kz is not imple-
mentable, we apply the “certainty equivalence” quan-
tized feedback control law

u= Kuq(%)- (5)

Assume for the moment that pu is a fixed positive num-
ber. The closed-loop system is given by

& = (A+ BK)z — BKp (% —q(%)) . (6)

The behavior of trajectories of the system (6) for a fixed
1 is characterized by the following result.

Lemma 1 Fiz an arbitrary € > 0 and assume that M
is large enough compared to A so that we have

V Amin(P)M > 1/ Amax(P)O.A(1 + ¢) (7

where
2||PBK]|
O, = ———
Amin(Q)
Then the ellipsoids
Ry = {z: 2" Px < A\pin(P)M? 1} (8)

and
Ry :=A{z: 2" Pr < Anax(P)OIA*(1+2)°1*}  (9)

are invariant regions for the system (6). Moreover, all
solutions of (6) that start in the ellipsoid R1 enter the
smaller ellipsoid Ro in finite time.

ProOF. Whenever the inequality (1), and consequently
(2), hold with z = 2/, the derivative of V() := 2T Px
along solutions of (6) satisfies

V = —2TQz — 2T PBK (f - q(f)>
pooo\p
< —Amin(Q) 2] + 2|a|[| PBK]||Ap

= — |2 Amin (Q) (2] — O Ap)
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This implies the following formula:

O A1 +e)u < |z| £ Mp =V < —|2[Amin Q)0 Acp.
(10)

Define the balls
B :={z:|z| < Mu}
and
By i={x:|z] <O,A(l+¢)u}.

In view of the inequality (7), we have
By C Ry C Ry C By.

Combined with (10), this immediately implies that the
ellipsoids Ry and R, are both invariant. The fact that
the trajectories starting in Ry approach Rs in finite time
follows from the bound on the derivative of V' given
by (10). Indeed, if a time #o is given such that x(tg)
belongs to Ry and if we let

Amin(P)M? — Apax (P)O2A%(1 + ¢)?2

T .= O2A2(1 + &) Amin(Q)e "

then z(to + T') is guaranteed to belong to Ra. O

As we explained before, a hybrid quantized feedback
control policy involves updating the value of p at dis-
crete instants of time. Using this idea and Lemma 1, it
is possible to achieve global asymptotic stability.

Theorem 1 Assume that M is large enough compared
to A so that we have

Amin(P))

|PBK||
Noae (P) } (12)

M>2Amax{l,m .

Then there exists a hybrid quantized feedback control pol-
icy that makes the system (6) globally asymptotically sta-
ble.

PRrOOF. The control strategy is divided into two stages.

The “zooming-out” stage. Set u equal to 0. Let u(0) =
1. Then increase u in a piecewise constant fashion, fast
enough to dominate the rate of growth of |le??||. For
example, one can fix a positive number 7 and let u(t) =
1 for t € [0,7), u(t) = 721417 for t € [r,27), p(t) =
2724127 for t € [27,37), and so on. Then there will be
a time t > 0 such that

.’L'(t) >\min (P)
m‘ =\ Ry 722

(by (12), the right-hand side of this inequality is posi-
tive). In view of condition 1 imposed in Section 2, this
implies

T M~ A (13)



We can thus pick a time #o such that (13) holds with
t = ty. Therefore, in view of conditions 1 and 2 of
Section 2, we have

hence z(to) belongs to the ellipsoid R; given by (8) with
1 = p(to). Note that this event can be detected using
only the available quantized measurements.

The “zooming-in” stage. Pick an € > 0 such that the
inequality (7) is satisfied; this is possible because of (12).
We know that z(tg) belongs to Ry with u = u(ty). We
now apply the control law (5). Let p(t) = u(to) for
t € [to,to + T), where T is given by the formula (11).
Then z(to + T') belongs to the ellipsoid R2 given by (9)
with u = u(ty). For t € [to + T, to + 2T), let

pu(t) = Qu(to)

Q. VAmax(P)O: A +¢)

Amin(P)M

We have @ < 1 by (7), hence p(to + T') < u(to). The
ellipsoid Ry with the old value p = p(to) is the same as
the ellipsoid R; with the new value p = u(to + 7). This
means that we can continue the analysis for ¢t > to+7 as
before. Namely, x(to + 2T") belongs to the ellipsoid Ro
defined by (9) with u = u(to+T'). For t € [to + 2T, to +
3T), let p(t) = Qu(to + T). Repeating this procedure,
we obtain the desired control policy. Indeed, stability of
the equilibrium = = 0 of the continuous dynamics in the
sense of Lyapunov follows directly from the adjustment
policy for p. Moreover, we have u(t) — 0 as t — oo, and
the above analysis implies that z(t) - 0ast — oco. O

where

3.2 Nonlinear systems

Consider the system

&= f(ZU,U,),

It is natural to assume that there exists a state feedback
law v = k(z) that makes the closed-loop system globally
asymptotically stable. Actually, we need to assume that
k satisfies the following stronger condition: there exists
a smooth function V : R® — R such that for some class
Koo functions ay, as,as,p and for all z,e € R* we have

zeR", ueR™. (14)

ar(|z]) < V(z) < ax(|z]) (15)
and
lz| > p(le]) = VV(z)f(z, k(z +e)) < —as(|z]). (16)

According to the results of [13, 14], this is equivalent to
saying that the perturbed closed-loop system

&= f(z,k(z +e)) (17)
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is input-to-state stable (ISS) with respect to the mea-
surement disturbance input e.

Since only quantized measurements of the state are
available, we again consider the “certainty equivalence”
quantized feedback control law, which in this case is

u:k:(,uq(%)). (18)

For a fixed p, the closed-loop system is given by

i=f (m,k(uq(g))) (19)
and this takes the form (17) with
e= ,uq(%) — . (20)

The behavior of trajectories of (19) for a fixed value of p
is characterized by the following lemma (here and below
o denotes function composition).

Lemma 2 Assume that we have

ar(Mp) > az 0 p(Ap). (21)
Then the sets
Ri=A{z:V(z) <ar(Mp)} (22)
and
Ry :={z:V(z) < azop(Apn)} (23)

are invariant regions for the system (19). Moreover,
all solutions of (19) that start in the set Ry enter the
smaller set Ro in finite time.

ProOF. Whenever the inequality (1), and consequently
(2), hold with z = x/u, the quantization error e given
by (20) satisfies

x x
le| = ‘uq(—) —u—‘ < Ap.
1 7
Combined with (16), this implies the following formula:
p(Ap) <lz| <Mp = V< —ag(le])  (24)

where V' denotes the derivative of V' along solutions
of (19). Define the balls

B :={z:|z| < Mu}

and
By = {z: || < p(Am)}.
As before, in view of (15) and (21) we have

By C Ry C Ry C By.



Combined with (24), this implies that the ellipsoids R
and R are both invariant. The fact that the trajectories
starting in Ry approach R in finite time follows from
the bound on the derivative of V' deduced from (24).
Indeed, if a time ¢ is given such that z(tg) belongs to
R1 and if we let

_ oa(Mp) —az 0 p(Ap)

T, := 25
b a5 0 p(Ag) (25)
then z(to + T),) is guaranteed to belong to Ra. O

We have the following nonlinear version of Theorem 1.

Theorem 2 Assume that the system & = f(x,0) is for-
ward complete and that we have

Yu >0
(26)

a; ' o ar (Mp) > max{p(Ap), x(n) + 2Au}

for some class Ko, function x. Then there exists a hy-
brid quantized feedback control policy that makes the sys-
tem (19) globally asymptotically stable.

PRrROOF. The “zooming-out” stage. Set the control
equal to 0. Let p(0) = 1. Increase p in a piece-
wise constant fashion, fast enough to dominate the
rate of growth of |z(t)|. For example, fix a positive
number 7 and let p(t) = 1 for t € [0,7), u(t) =
X~ H2maxpe(0)), e < [£(2(0),1)]) for t € [r,27), p(t) =
X~ H(2max (o), <2r [£(x(0),2]) for ¢t € [27,37), and so
on. Then there will be a time ¢ > 0 such that

|2()] < x(n(t)) < @y’ o ar(Mpu(t)) — 2Apu(t)

where the second inequality follows from (26). This im-

plies
% < magl ooy (Mpu(t)) — 24

and by virtue of condition 1 of Section 2 we have

1

‘q (%)‘ < —soi o mOMu) ~ A (D)

Picking a time ¢y at which (27) holds and using condi-
tions 1 and 2 of Section 2, we obtain

z(to) I
ay - oay (Mu(t
)| = gy ™ ()
hence z(tg) belongs to the set Ry given by (22) with

1= p(to)-

The “zooming-in” stage. We have established that
x(tp) belongs to Ry with p = p(ty). We will now use
the control law (18). Let u(t) = u(ty) for ¢t € [to,to +
Tyu(to)), where T4, is given by the formula (25). Then
x(to + Ty,)) will belong to the set Ry given by (23)
with u = p(to). Calculate T, (,(,)) using (25) again,
where the function w is defined as

1
w(r) = Mafl o ay o p(Ar), r>0.
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For t € [to + Tou(ro) to + Tu(to) + Too(uu(ro)), let

p(t) = w(plto))-

We have w(r) < r for all r > 0 by (26), thus u(ty +
Tyu(o)) < p(to). The set Ry with u = pu(to) is the same
as the set Ry with p = pu(to + Ty 1,))- We can now finish
the analysis as in the linear case. [l

The assumption of input-to-state stabilizability with
respect to measurement disturbances is quite strong.
It is possible to obtain weaker stability results under
weaker hypotheses (cf. [9]).

4 Input quantization

In this section' we present analogous results for systems
whose input, rather than state, is quantized.

4.1 Linear systems

Consider the linear system (3). Suppose again that there
exists a matrix K such that the eigenvalues of A + BK
have negative real parts, so that for some positive defi-
nite symmetric matrices P and @) the equation (4) holds.

The “certainty equivalence” quantized feedback con-

trol law
()
u=pg\ —
I

yields the closed-loop system

&= (A+ BK)x — By (% w(%)) (28)

Its behavior for a fixed pu is characterized as follows.

Lemma 3 Fiz an arbitrary € > 0 and assume that M
is large enough compared to A so that we have

\V Amln(P)M > V AmaX(P)eu“KHA(l +E)

2|PB|
Amin(Q).

where
0, :=
Then the ellipsoids
Ry = {z 12" Pe < Ain (P) M2 /|| K |7}
and
Ry = {2 : 2T P2 < Anax (P)O2A%(1 + )21}

are invariant regions for the system (28). Moreover, all
solutions of (28) that start in the ellipsoid Ry enter the
smaller ellipsoid Ro in finite time.

Theorem 3 Assume that

Amin (P)

I PBI[[ K]l
Amax(P)

Amin(Q) -
Then there exists a hybrid quantized feedback control pol-

icy that makes the system (28) globally asymptotically
stable.

IThis material is inspired by a conversation with Mark Spong.

M >2A




4.2 Nonlinear systems

Consider the nonlinear system (14). Assume that
there exists a feedback law v = k(z) that makes the
closed-loop system globally asymptotically stable and,
moreover, ensures that for some class K., functions
a1, as,as, p there exists a smooth function V : R” — R
satisfying the inequalities (15) and

2] > p(lel) = VV (@) f (2, k(z) + ) < —as(|z]) (29)

for all z,e € R™. According to the results of [13, 14],
this is equivalent to saying that the perturbed closed-
loop system

z = f(z,k(z) +e) (30)

is ISS with respect to the actuator disturbance input e.
The closed-loop system with the “certainty equiva-
lence” quantized feedback control law

-
()

k(ﬂf)) 3

and this takes the form (30) with e = ,uq(—

becomes

The behavior of trajectories of (31) for a fixed p is char-
acterized by the following result.

Lemma 4 Assume that we have
ar ok~ (Mp) > a0 p(Ap).
Then the sets
Rii={z:V(2) <aron (M)}
and
Ra:={z:V(x) < azop(Ap)}

are invariant regions for the system (31). Moreover,
all solutions of (31) that start in the set Ry enter the
smaller set Ro in finite time.

Theorem 4 Assume that the system & = f(x,0) is for-
ward complete and that we have

a;toay ok M (Mpu) > p(Ap)  Vu>0.

Then there exists a hybrid quantized feedback control pol-
icy that makes the system (31) globally asymptotically
stable.

Acknowledgment. The author is indebted to Karl
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