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Abstract

We consider the problem of stabilizing a linear time-
invariant system using sampled encoded measure-
ments of its state or output. We derive a relationship
between the number of values taken by the encoder
and the norm of the transition matrix of the open-
loop system over one sampling period, which guar-
antees that global asymptotic stabilization can be
achieved. A coding scheme and a stabilizing control
strategy are described explicitly.

1 Introduction

Suppose that we are given a stabilizable linear time-
invariant system

ẋ = Ax+Bu, x ∈ Rn. (1)

In this paper we study the problem of designing
a controller that asymptotically stabilizes the sys-
tem (1) using limited information about its state
x. This problem arises, for example, when the state
measurements are to be passed to the controller via a
limited capacity communication channel. We specify
what we mean by limited information as follows.

Sampling. The measurements are to be received by
the controller at discrete times 0, τ , 2τ , . . . ,
where τ > 0 is a fixed sampling period.

Encoding. At each of the above times, the measure-
ment received by the controller must be a num-
ber in the set {1, 2, . . . , N}, where N is a fixed
positive integer.

In other words, the data available to the controller
consists of the stream of integers

q0(x(0)), q1(x(τ)), q2(x(2τ)), . . .
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where qk(·) : Rn → {1, 2, . . . , N} is, for each k,
some encoding function. For different values of k
we can use different encoding functions. As we will
see, it is natural to use the previous values qi(x(iτ)),
i = 0, . . . , k − 1 to define the function qk(·). We as-
sume that the controller knows the initial encoding
function q0(·) as well as the rule that defines qk(·) on
the basis of the previously received encoded measure-
ments, so that for each k the function qk is known
to the controller. In other words, there is a com-
munication protocol satisfying the above constraints
upon which the process (encoder) and the controller
(decoder) agree in advance.

Instead of sending to the controller the sampled
and encoded measurements of the entire state x, we
can work with an output y = Cx ∈ Rp, p ≤ n. In this
case, the data available to the controller will consist
of the stream of integers

q0(y(0)), q1(y(τ)), q2(y(2τ)), . . .

Here the matrix C can be viewed either as a de-
sign choice or as a given constraint in the problem.
Of course, we need to ensure that the output con-
tains enough information for the controller to be able
to stabilize the system. Since the system (1) is as-
sumed to be stabilizable by state feedback—but not
assumed to be stabilizable by output feedback for
any particular output—a reasonable requirement to
impose in this regard is that (C,A) be an observable
pair. Transmitting fewer variables over the limited
capacity communication channel, one reduces the er-
rors introduced by the encoder. The price to pay,
however, is that the decoder needs to recover state
information. The resulting overall state estimation
error is a product of the output encoding error and a
quantity that characterizes observability of the sys-
tem.

To summarize, we are given the system (1) and
three numbers: a positive real number τ (the sam-



pling period), a positive integer N (the number of
values of each encoding function), and a positive inte-
ger p ≤ n (the dimension of the transmitted output).
The problem under consideration is to choose a com-
munication protocol of the kind described above and
a controller so that the closed-loop system is glob-
ally asymptotically stable. Our main goal is to de-
rive precise relationships between τ , N , and p which
guarantee that this task can be accomplished. So-
lutions in situations where some of these quantities
are fixed, while others need to be minimized or max-
imized, are then easy to obtain.

To solve the above problem, we build on ideas
from the work on quantized feedback stabilization re-
ported in [1] and [2] (the latter reference essentially
contains in implicit form some of the results given
below). Recent references that describe related de-
velopments (although in settings different from ours)
include [3], [4], [5], [6], [7], and the articles in [8].
Loosely speaking, we will show that if the amount
by which the open-loop system can expand during
one sampling period is not too large compared to N ,
then it is possible to obtain an asymptotically cor-
rect estimate of x and use it to stabilize the system.
More precisely, we will give a constructive proof of
the following statement (the notation is clarified at
the beginning of the next section).

Theorem 1 In the state encoding case, global
asymptotic stabilization is possible if N ≥ 2n and

max
0≤t≤τ

‖eAt‖∞ < b n
√
Nc. (2)

In the output encoding case, global asymptotic stabi-
lization is possible if N ≥ 2p and

‖W−‖∞‖C‖∞ max
0≤t≤τ

‖eAt‖2η−1∞ < b p
√
Nc (3)

where η is the observability index of the pair (C, eAτ )
and W− is a left inverse of the matrix

W :=











C
CeAτ

...

CeA(η−1)τ











. (4)

2 Semiglobal asymptotic stabiliza-

tion

In what follows, we find it convenient to use the norm
‖x‖∞ := max{|xi| : 1 ≤ i ≤ n} on Rn and the in-
duced matrix norm ‖A‖∞ := max{∑n

j=1 |Aij | : 1 ≤

i ≤ n} on Rn×n. We define

Λ := max
0≤t≤τ

‖eAt‖∞ ≥ 1. (5)

The largest integer smaller than or equal to a given
number z is denoted by bzc. We let Bn

∞(x0, r) denote
the square box in Rn centered at x0 with edges 2r,
i.e.,

Bn
∞(x0, r) := {x ∈ Rn : ‖x− x0‖∞ ≤ r}.

Assume for the moment that an upper bound on
the size of the initial state is known. Namely, let
us assume that for some known constant E0 > 0 we
have

‖x(0)‖∞ ≤ E0. (6)

Such a bound may be given to us in advance or may
be obtained on the basis of prior measurements (see
Section 3 below). The purpose of this section is to
describe a coding scheme and a dynamic feedback
control law that achieve asymptotic stabilization for
this situation.

2.1 State encoding

We begin by considering the case when sampled en-
coded measurements of the entire state x are trans-
mitted. The inequality (6) means that the state of
the system at the time t = 0 lies in Bn

∞(0, E0). As-
sume for notational convenience that n

√
N is an inte-

ger, so that b n
√
Nc = n

√
N . (Otherwise, replace N by

the largest integer N ′ ≤ N such that n
√
N ′ is an in-

teger.) We also require that n
√
N ≥ 2. Let us define

the encoding function q0 as follows: divide Bn
∞(0, E0)

into N equal square boxes, numbered from 1 to N
in some specific way, and let q0(x) be the number of
the box that contains x. In case x lies on the bound-
ary of several boxes, the value q0(x) can be chosen
arbitrarily among the candidates.

We have thus singled out a square box with edges
at most 2E0/

n
√
N which contains x(0). Denoting the

center of this box by x̂(0), we obtain

‖x(0)− x̂(0)‖∞ ≤ E0/
n
√
N. (7)

For t ∈ [0, τ), let

u(t) = Kx̂(t) (8)

where
x̂(t) := e(A+BK)tx̂(0)



and K is chosen so that the eigenvalues of A + BK
have negative real parts. From the equations ˙̂x =
Ax̂ + Bu and ẋ = Ax + Bu and the formulas (5)
and (7) we conclude that

‖x(t)− x̂(t)‖∞ ≤ Λ‖x(0)− x̂(0)‖∞ ≤ ΛE0/
n
√
N

for 0 ≤ t < τ . This means that for 0 ≤ t < τ , the
state x(t) belongs to Bn

∞(x̂(t),ΛE0/
n
√
N).

Let x̂(τ−) := limt→τ− x̂(t). At the time τ we
divide Bn

∞(x̂(τ−),ΛE0/
n
√
N) into N equal square

boxes and let q1(x) be the number of the box that
contains x. Denoting the center of this box by x̂(τ),
we have

‖x(τ)− x̂(τ)‖∞ ≤ ΛE0/(
n
√
N)2.

For t ∈ [τ, 2τ), define the control by the formula (8),
where

x̂(t) := e(A+BK)(t−τ)x̂(τ).

We have

‖x(t)− x̂(t)‖∞ ≤ Λ‖x(τ)− x̂(τ)‖∞ ≤ Λ2E0/(
n
√
N)2

for τ ≤ t < 2τ .

Continuing this process, we see that the upper
bound on ‖x(t) − x̂(t)‖∞ is divided by n

√
N at the

times τ, 2τ, . . . and grows by a factor of Λ on every
interval between these times. This clearly implies
that if Λ < n

√
N , which is equivalent to (2) since

n
√
N is taken to be an integer, then ‖x(t) − x̂(t)‖∞

converges to 0 as t → ∞. We assume from now on
that the inequality (2) holds. The closed-loop system
can thus be written as

ẋ = (A+BK)x+ e (9)

where e := BK(x̂ − x) → 0. It follows at once that
x(t)→ 0 as t→ 0.

Having established asymptotic convergence to the
origin, we only need to show stability in the sense of
Lyapunov. Let V (x) = xTPx be a quadratic Lya-
punov function for the system ẋ = (A+ BK)x, and
denote by λmin(P ) and λmax(P ) the smallest and the
largest eigenvalue of P , respectively. Take an arbi-
trary ε > 0. It is straightforward to show that there
exists a γ > 0 such that solutions of the system (9)
starting in the region

R := {x : V (x) ≤ ε2λmin(P )}

remain in this region as long as ‖e‖∞ ≤ γ. Choose a
sufficiently large integer k ≥ 0 such that

‖BK‖∞E0

( Λ
n
√
N

)k+1
≤ γ.

Then our previous analysis implies that ‖e(t)‖∞ ≤ γ
for all t ≥ kτ . Now, choose a sufficiently small δ > 0
such that

Λkδ < min

{

E0Λ
k−1

( n
√
N)k

,
ε√
n

√

λmin(P )

λmax(P )

}

.

This inequality ensures that if

‖x(0)‖∞ ≤ δ (10)

then x̂(t) ≡ 0 on the time interval [0, kτ) and

‖x(t)‖∞ <
ε√
n

√

λmin(P )

λmax(P )

on the same time interval. This implies that
V (x(t)) ≤ ε2λmin(P ) for all t ∈ [0, kτ ]. In light of
the analysis given before for t ≥ kτ , we conclude
that R is an invariant region for the system (9) with
initial conditions satisfying (10). It remains to no-
tice that R is contained in the ball {x : |x| ≤ ε}. We
proved the following result.

Proposition 2 If the inequalities (2) and N ≥ 2n

hold, then the above state coding/feedback strategy
makes the origin an asymptotically stable equilibrium
of the closed-loop system, with a region of attrac-
tion containing all initial conditions that satisfy the
bound (6).

The inequality (2) characterizes the trade-off be-
tween the amount of information provided by the
encoder at each sampling time and the required sam-
pling frequency. This relationship depends explicitly
on a measure of instability of the open-loop system,
expressed by Λ which is defined via (5). We see,
for instance, that if τ is given, then N needs to be
sufficiently large for asymptotic stabilization to be
possible.

Remark 1 It is not hard to see from the above proof
that the state of the system actually converges to
zero exponentially fast. This follows from the fact
that the evolution of x is described by the system (9),
in which the autonomous part is exponentially stable
and the rate of convergence of the error signal e to
zero is exponential.

2.2 Output encoding

We now turn to the case when sampled encoded mea-
surements of the output y = Cx are transmitted,



where C is some p × n matrix such that the pair
(C,A) is observable. There is no loss of generality
in assuming that the pair (C, eAτ ) is also observable
(see, e.g, [9, Chapter 6]). Denote by η the corre-
sponding observability index (the largest integer be-
tween 1 and n for which the matrix (4) has rank n).

Assume again that the initial state satisfies the
bound (6). This implies that ‖y(0)‖∞ ≤ ‖C‖∞E0,
i.e., y(0) ∈ Bp

∞(0, ‖C‖∞E0). For t ∈ [0, ητ), let
u(t) ≡ 0. Then we have

y(kτ) ∈ Bp
∞(0, ‖C‖∞ΛkE0), k = 0, 1, . . . , η − 1

where Λ is defined by (5) as before. Let us sup-
pose for convenience that p

√
N is an integer, which

is required to be greater than or equal to 2 (cf. the
remarks at the beginning of Section 2.1). For each
k ∈ {0, 1, . . . , η−1}, define qk(y(kτ)) in the following
way: divide Bp

∞(0, ‖C‖∞ΛkE0) into N equal square
boxes, and let qk(y(kτ)) be the number of the box
that contains y. Denote the center of this box by
ŷ(kτ). We have

‖y(kτ)− ŷ(kτ)‖∞ ≤
‖C‖∞ΛkE0

p
√
N

(11)

for k = 0, 1, . . . , η − 1.

We know that

x(0) = W−







y(0)
...

y((η − 1)τ)







where W− is a left inverse1 of the matrix W defined
by (4). Let

x̂(ητ) := eAητW−







ŷ(0)
...

ŷ((η − 1)τ)






.

In view of (11) and the equality x(ητ) = eAητx(0),
we obtain

‖x(ητ)− x̂(ητ)‖∞ ≤
‖W−‖∞‖C‖∞Λ2η−1E0

p
√
N

.

For t ∈ [ητ, 2ητ), let u(t) = Kx̂(t), where

x̂(t) := e(A+BK)(t−ητ)x̂(ητ)

and K is chosen so that the eigenvalues of A + BK
have negative real parts. Using the same arguments
as before, we can show that

y(kτ) ∈ Bp
∞(Cx̂(kτ), ‖W−‖∞‖C‖2∞Λη−1+kE0/

p
√
N)

1This can be defined as W
− := (W T

W )−1
W

T .

for k = η, η + 1, . . . , 2η − 1. For
each k ∈ {η, η + 1, . . . , 2η − 1}, divide
Bp
∞(Cx̂(kτ), ‖W−‖∞‖C‖2∞Λη−1+kE0/

p
√
N) into

N equal square boxes, and let qk(y(kτ)) be the
number of the box that contains y. Denoting the
center of that box by ŷ(kτ), we obtain

‖y(kτ)− ŷ(kτ)‖∞ ≤
‖W−‖∞‖C‖2∞Λη−1+kE0

( p
√
N)2

for k = η, η + 1, . . . , 2η − 1. Now,

x(ητ) = W−







y(ητ)
...

y((2η − 1)τ)






+ v

where v is a known vector (computed from the vari-
ation of constants formula). We thus define

x̂(2ητ) :=eAητW−







ŷ(ητ)
...

ŷ((2η − 1)τ)







+eAητv +

∫ 2ητ

ητ

eA(2ητ−t)Bu(t)dt

which leads to the inequality

‖x(2ητ)− x̂(2ητ)‖∞ ≤
‖W−‖2∞‖C‖2∞Λ4η−2E0

( p
√
N)2

.

Repeating this procedure, we arrive at an up-
per bound on ‖Kx(t) − u(t)‖∞ which is multiplied
by ‖W−‖∞‖C‖∞Λη−1/ p

√
N at the times ητ, 2ητ, . . .

and grows by a factor of Λη on every interval be-
tween these times. Thus if the inequality (3) is satis-
fied, then asymptotic stability follows as in the state
encoding case. We established the following result.

Proposition 3 If the inequalities (3) and N ≥ 2p

hold, then the above output coding/feedback strategy
makes the origin an asymptotically stable equilibrium
of the closed-loop system, with a region of attrac-
tion containing all initial conditions that satisfy the
bound (6).

Note that in the generic case when A is a cyclic
matrix—i.e., a matrix with exactly one Jordan block
for each distinct eigenvalue—it is possible to find a
scalar output through which the system is observable
(see, e.g., [9, Chapter 8]). An interesting optimiza-
tion problem, directly motivated by the above result,
consists in minimizing the left-hand side of (3) over
all integers p between 1 and n and all p×n matrices



C (observability is needed to ensure that this expres-
sion is well defined). This problem can be studied
numerically using tools from semidefinite program-
ming.

3 Obtaining a state bound

The developments of the previous section relied on
an upper bound on the size of the state. We now
explain how such a bound can be obtained, for an
arbitrary initial state. It turns out that N = 2 (bi-
nary encoding) is sufficient for this task. Since the
requirement N ≥ 2 is already incorporated in the
hypotheses of Propositions 2 and 3, no additional
assumptions need to be imposed. This will therefore
complete the proof of Theorem 1.

We consider the state encoding case first. Set the
control u equal to 0. Pick a sequence µ0, µ1, µ2,
. . . that increases fast enough to dominate the rate
of growth of ‖eAt‖∞ at the times 0, τ , 2τ , . . . ; for
example, we can let µ0 = 1, µ1 = τe2‖A‖∞τ , µ2 =
2τe2‖A‖∞2τ , and so on. Then there exists an integer
k0 ≥ 0 such that ‖x(k0τ)‖∞ ≤ µk0

. For k = 0, 1, . . . ,
define the encoding function qk by the formula

qk(x) :=

{

0 if x ∈ Bn
∞(0, µk)

1 otherwise

We have qk0
(x(k0τ)) = 0, so that k0 can be deter-

mined on the basis of the encoded state measure-
ments. Therefore, the procedure described in Sec-
tion 2.1 can be applied starting at the time t =
(k0 + 1)τ with E0 := Λµk0

.

Let us now turn to the output encoding case. Set
u equal to 0, and take the same sequence {µk} as
before. There exists an integer k̄0 ≥ 0 such that we
have

‖x(kτ)‖∞ ≤ µk, k = k̄0, k̄0 + 1, k̄0 + η − 1.

For k = 0, 1, . . . , define the encoding function qk by
the formula

qk(y) :=

{

0 if y ∈ Bp
∞(0, ‖C‖∞µk)

1 otherwise

We have

qk(y(kτ)) = 0, k = k̄0, k̄0 + 1, k̄0 + η − 1 (12)

so that k̄0 can be determined on the basis of the
encoded output measurements. The formula (12)

implies that ‖x(k̄0τ)‖∞ ≤ ‖W−‖∞‖C‖∞µk̄0+η−1.
Therefore, the procedure described in Section 2.2 can
be applied starting at the time t = (k̄0 + η)τ with
E0 := ‖W−‖∞‖C‖∞Ληµk̄0+η−1.

Finally, it is not hard to see that stability in the
sense of Lyapunov is preserved when the two stages
(obtaining a state bound and achieving asymptotic
convergence) are combined.

4 Concluding remarks

We studied the problem of stabilizing a linear system
using sampled encoded measurements of its state or
output. Our main result (Theorem 1) describes a
relationship between the number of values taken by
the encoder and the norm of the transition matrix
of the open-loop system over one sampling period,
which is needed for global asymptotic stabilization.
The stabilizing control law is a form of “certainty
equivalence” state feedback.

Theorem 1 provides a sufficient but not necessary
condition for stabilizability. Although very simple,
our encoding scheme is not claimed to be optimal in
any sense. Without proper modifications, it is also
not robust with respect to disturbances or modeling
errors.

From the conditions (2) and (3) it is not clear
whether in the present context there is any advan-
tage to be gained by taking p < n. However, the
additional flexibility of working with an output may
be useful in applications where some sensors are more
reliable than others.

It is of interest to extend the techniques presented
here to nonlinear systems. One ingredient in achiev-
ing this goal is the requirement of input-to-state sta-
bilizability of the given system with respect to mea-
surement errors (cf. [2, 10]).
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