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Abstract

This paper proposes several definitions of observability
for nonlinear systems and explores relationships between
them. These observability properties involve the existence
of a bound on the norm of the state in terms of the norm
of the output on a small time interval. As an application,
we prove a LaSalle-like stability theorem for switched non-
linear systems.

1 Introduction

For linear time-invariant systems with outputs, there are
several equivalent ways to define observability. A stan-
dard approach is through distinguishability, which is the
property that different initial conditions produce different
outputs. This is equivalent to 0-distinguishability, which
says that nonzero initial conditions produce nonzero out-
puts. The state of an observable linear system can be ex-
plicitly reconstructed from the output measurements on a
time interval of arbitrary length by inverting the observ-
ability Gramian.

In the nonlinear context, various definitions of observ-
ability are no longer equivalent, and in general nonlinear
observability is not as completely understood. In partic-
ular, the distinguishability concept has a natural coun-
terpart for nonlinear systems, but does not lend itself to
a constructive state reconstruction procedure as readily
as in the linear case. In fact, it is well known that re-
covering the state of a nonlinear system from its output,
even asymptotically by means of a dynamic observer, is
a difficult task. Instead of building an observer, however,
it is sometimes sufficient for control purposes (although
still far from being trivial) to obtain a bound on the state
using the output; see [14] for a discussion and references.

Another concept which is related to observability is de-
tectability. In [14], a variant of detectability for nonlinear
systems (called “output-to-state stability”) is defined as
the property that the state is bounded in terms of the
supremum norm of the past output, modulo a decaying
term depending on initial conditions. This turns out to
be a very useful and natural property, which is dual to
input-to-state stability (ISS).

The present work is related to this line of research in
that we are concerned with obtaining state bounds. In
Section 2 we present several possible definitions of ob-
servability for nonlinear systems with no inputs, which
involve a bound on the norm of the state in terms of the
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norm of the output on some (arbitrarily) small time in-
terval. We establish implications and equivalences among
these notions in Section 3. We demonstrate, among other
things, that the length of the time interval can affect the
existence of a state bound. Systems with inputs and other
generalizations are discussed in Section 4.

Observability is a stronger property than detectability,
and we explore and clarify this relationship below. In
fact, one of our definitions is obtained directly from the
notion of output-to-state stability by imposing one ad-
ditional requirement which says, loosely speaking, that
the term describing the effects of initial conditions can be
chosen to decay arbitrarily fast. In the spirit of [14], we
derive a Lyapunov-like sufficient condition for this prop-
erty in Section 5.

A motivating application for this work is extending
LaSalle’s invariance principle to switched systems. As
shown in [5], a switched linear system is globally asymp-
totically stable if each subsystem possesses a weak Lya-
punov function nonincreasing along its solutions and is
observable with respect to the derivative of this function,
and if one imposes a suitable non-chattering assumption
on the switching signal and a coupling assumption on the
multiple Lyapunov functions. This can be viewed as an
invariance-like principle for switched linear systems. We
generalize this result to switched nonlinear systems in Sec-
tion 6, using one of the observability definitions intro-
duced in this paper.

2 Observability properties

Consider the system

ẋ = f(x)

y = h(x)
(1)

where f : Rn → Rn is a locally Lipschitz function with
f(0) = 0 and h : Rn → Rp is a continuous function with
h(0) = 0. We assume that this system is both forward and
backward complete (i.e., solutions are globally defined), so
that the issue of existence of its solutions on time intervals
under consideration does not arise. We will denote by
‖z‖J the supremum norm of a signal z on an interval
J ⊂ [0,∞). The standard Euclidean norm will be denoted
by | · | and the corresponding induced matrix norm by ‖·‖.

Inequalities written below are understood to hold for
all initial conditions. We will say that the system (1) has



Property 1 if1

∀τ > 0 ∃γ ∈ K∞: |x(0)| ≤ γ(‖y‖[0,τ ]). (2)

By time invariance this can be equivalently expressed as

∀τ > 0 ∃γ ∈ K∞: |x(t)| ≤ γ(‖y‖[t,t+τ ]) ∀t ≥ 0 (3)

or, after taking the supremum over t ∈ [t1, t2] for arbitrary
t2 ≥ t1 ≥ 0, as

∀τ > 0 ∃γ ∈ K∞: ‖x‖[t1,t2]≤γ(‖y‖[t1,t2+τ ]) ∀t2≥ t1≥0.
(4)

This last condition includes (2) as a special case (just let
t1 = t2 = 0), and so it is easy to see that (2), (3), and (4)
are equivalent. As we will show, they are actually also
equivalent to

∀τ > 0 ∃γ ∈ K∞: ‖x‖[t1,t2]≤γ(‖y‖[t1,t2]) ∀t2≥ t1+τ.
(5)

Rather than bounding the state at the beginning of an
interval in terms of the future output on that interval, we
can bound the state at the end of an interval in terms
of the past output on that interval. Let us say that the
system (1) has Property 1′ if

∀τ > 0 ∃γ ∈ K∞: |x(τ)| ≤ γ(‖y‖[0,τ ]). (6)

By time invariance, this is equivalent to

∀τ > 0 ∃γ ∈ K∞: |x(t)| ≤ γ(‖y‖[t−τ,t]) ∀t ≥ τ. (7)

Taking the supremum over t ∈ [t1, t2] for arbitrary t2 ≥
t1 ≥ τ , we arrive at

∀τ > 0 ∃γ ∈ K∞: ‖x‖[t1,t2]≤γ(‖y‖[t1−τ,t2]) ∀t2≥ t1≥τ.
(8)

We now define a different set of observability proper-
ties, similar to the above, as follows. Let us say that the
system (1) has Property 2 if

∃ τ > 0, γ ∈ K∞: |x(0)| ≤ γ(‖y‖[0,τ ]). (9)

By time invariance, this is equivalent to

∃ τ > 0, γ ∈ K∞: |x(t)| ≤ γ(‖y‖[t,t+τ ]) ∀t ≥ 0. (10)

Taking the supremum over t ∈ [t1, t2], we can further
rewrite this as

∃ τ > 0, γ ∈ K∞: ‖x‖[t1,t2]≤γ(‖y‖[t1,t2+τ ]) ∀t2≥ t1≥0.
(11)

1Recall that a function α : [0,∞) → [0,∞) is said to be of
class K if it is continuous, strictly increasing, and α(0) = 0. If α
is also unbounded, then it is said to be of class K∞. A function
β : [0,∞) × [0,∞) → [0,∞) is said to be of class KL if β(·, t) is of
class K for each fixed t ≥ 0 and β(r, t) decreases to 0 as t→∞ for
each fixed r ≥ 0. We will write α ∈ K∞, β ∈ KL, etc.

The condition (9) is a special case of (11), and we easily
see that (9), (10), and (11) are equivalent. It turns out
that they are also equivalent to

∃ τ > 0, γ ∈ K∞: ‖x‖[t1,t2]≤γ(‖y‖[t1,t2]) ∀t2≥ t1+τ.
(12)

Note that the only difference between Properties 1
and 2 is that in the former the length τ of the time interval
can be arbitrary, while the latter requires the inequalities
to hold for at least one positive τ (of course, they will
then also hold for all larger values of τ). For linear sys-
tems these two properties are known to be equivalent, but
for nonlinear systems this is in general not true, as we will
see below.
As before, we can bound the state in terms of past

output rather than future output. We will say that the
system (1) has Property 2′ if

∃ τ > 0, γ ∈ K∞: |x(τ)| ≤ γ(‖y‖[0,τ ]). (13)

Again, by time invariance we can equivalently express this
as

∃ τ > 0, γ ∈ K∞: |x(t)| ≤ γ(‖y‖[t−τ,t]) ∀t ≥ τ (14)

or, taking the supremum over t ∈ [t1, t2], as

∃ τ > 0, γ ∈ K∞: ‖x‖[t1,t2]≤γ(‖y‖[t1−τ,t2]) ∀t2≥ t1≥τ.
(15)

Let us say that the system (1) has Property 3 if there
exists a function γ ∈ K∞ such that

‖x‖[0,∞) ≤ γ(‖y‖[0,∞)) ∀x(0), t ≥ 0. (16)

This is the strong observability property, considered in
[13] for the more general case of systems with inputs (cf.
Section 4 below).
In [14], the authors define the property of output-to-

state stability, which is a variant of detectability and is
characterized by an inequality of the form

|x(t)| ≤ β(|x(0)|, t) + γ(‖y‖[0,t]) ∀x(0), t ≥ 0 (17)

where β ∈ KL and γ ∈ K∞. Strengthening this notion,
we say that the system (1) has Property 4 if for every
ε > 0 and every function ν ∈ K there exist functions
β ∈ KL and γ ∈ K∞ such that the inequality (17) holds
and, moreover, we have

β(r, ε) ≤ ν(r) ∀r ≥ 0. (18)

The condition (18) can be interpreted as saying that β
can be chosen to decay arbitrarily fast, because ε can be
arbitrarily small and ν can grow arbitrarily slowly. (Note
that there are no additional conditions on the function γ,
which may then have to be increased.)
In the same spirit as before, we introduce a variant

of Property 4 by requiring that (18) hold for all ν ∈ K
and at least one positive ε (but not necessarily for all ε).
Namely, we will say that the system (1) has Property 5

if there exists an ε > 0 such that for every function ν ∈ K
there exist functions β ∈ KL and γ ∈ K∞ for which the
conditions (17) and (18) are satisfied.



3 Implications and equivalences

The following technical lemma is a straightforward conse-
quence of forward completeness, continuous dependence
of solutions on initial conditions, and the presence of an
equilibrium at the origin.

Lemma 1 For every τ > 0 there exists a function νf ∈
K∞ such that along all solutions of the system (1) we have
|x(t2)| ≤ νf (|x(t1)|) for each pair of times t1, t2 satisfying
0 ≤ t1 ≤ t2 ≤ t1 + τ .

We also need the backward in time version.

Lemma 2 For every τ > 0 there exists a function νb ∈
K∞ such that along all solutions of the system (1) we have
|x(t1)| ≤ νb(|x(t2)|) for each pair of times t1, t2 satisfying
0 ≤ t1 ≤ t2 ≤ t1 + τ .

These results allow us to conclude, in particular, that
Properties 1 and 1′ defined in the previous section are
equivalent. Indeed, (2) implies (6) in view of Lemma 1,
and the converse follows from Lemma 2. The equivalence
between (4) and (5) is deduced with the help of Lemma 1.
Thus the properties expressed by conditions (2)–(8) are all
equivalent. The same arguments (for a given τ) demon-
strate that the properties expressed by conditions (9)–(15)
are also equivalent.
The following theorem explains the relationship be-

tween the above properties (we refer to the observability
properties by their numbers, so that for example 1 ⇒ 2
means that Property 1 implies Property 2).

Theorem 3 The only implications that hold among the

properties introduced in Section 2 are:

1 ⇔ 1′ ⇔ 4 ⇒ 2 ⇔ 2′ ⇔ 5 ⇒ 3

Remark 1 It is easy to see that each of the above proper-
ties implies the standard 0-distinguishability notion: the
only invariant set in kerh is {0}. Note that the converse
does not hold. As an example, consider the scalar system
ẋ = x, y = arctanx. It is clearly 0-distinguishable (in
fact, distinguishable: the output map is invertible), but x
blows up while y stays bounded.

Remark 2 It is interesting to compare the above findings
with the results reported in [12] for discrete-time systems.
For example, the counterparts of Properties 1 and 1′, or 2
and 2′, in discrete time (i.e., initial-state vs. final-state
observability) are no longer equivalent. To see why, it is
enough to consider a system whose output map is zero
and whose state becomes zero after one step.

In view of the equivalences established in Theorem 3,
we can now give one name to Properties 1, 1′ and 4 and
also give one name to Properties 2, 2′ and 5. Prompted
by terminology used in the controllability literature [4],
let us call the system (1) small-time norm-observable if

it satisfies Properties 1, 1′ and 4, and large-time norm-

observable if it satisfies Properties 2, 2′ and 5. In the latter
case, we will refer to every τ provided by Properties 2
and 2′ as a large-time norm-observability constant of (1).
For linear systems, all of the above properties are equiv-

alent to the usual observability. For Properties 1–3 this
can be easily shown using the observability Gramian.
Property 4 is less obvious, and can be viewed as a gen-
eralization of the squashing lemma from [11] whose proof
relies on the well-known result about arbitrary pole place-
ment by output injection. This lemma says that if (C,A)
is an observable pair, then for every ε > 0 and every δ > 0
there exist a λ > 0 and an output injection matrix K
such that we have ‖e(A+KC)t‖ ≤ δe−λ(t−ε), which implies
‖e(A+KC)ε‖ ≤ δ. Therefore, in the linear case the func-
tion β in (17) can be chosen to satisfy β(r, ε) ≤ δr with
δ arbitrarily small. Property 4 can be deduced from this
if the function ν is restricted to be bounded from below
by a linear function, but otherwise Property 4 expresses
a more general fact—even for linear systems.

4 Extensions

In this section we consider, instead of (1), the system

ẋ = f(x, u)

y = h(x)
(19)

where u is a measurable locally essentially bounded dis-
turbance or control input taking values in a set U ⊂ Rm,
f : Rn×Rm → Rn is a continuously differentiable function
with f(0, 0) = 0, and h : Rn → Rp is a continuous func-
tion with h(0) = 0. Forward and backward completeness
of this system mean that solutions are globally defined for
all inputs. We want to investigate how the definitions of
Section 2 and the results of Section 3 can be extended to
this case.
First, let us assume that U is a compact set and

f(0, u) = 0 for all u ∈ U . Then we can define observ-
ability properties for the system (19) in the same way
as in Section 2, simply adding the quantification “for all
u ∈ U”. In other words, we now require that Properties 1
through 5 hold uniformly over all inputs. It follows from
the results of [10, Section 5] that Lemmas 1 and 2 still
hold, where solutions of the system are now parameter-
ized by all initial conditions and all inputs. Therefore,
the results of Section 3 are still true for these modified
properties.
Now, let us drop the assumptions that U is compact

and f(0, u) ≡ 0. In this more general situation, impos-
ing uniformity over inputs is too restrictive. More mean-
ingful observability properties result if we add the term
χ(‖u‖J ) to the right-hand sides of the inequalities (2)–
(17), where χ is a class K∞ function and for J one must
substitute the interval over which the norm of y is taken.
This is equivalent to replacing y by the vector

(

u
y

)

in
the corresponding formulas. In particular, the inequal-
ity (16) which describes Property 3 transforms precisely
into the strong observability property [13], while the in-
equality (17), which is one of the two conditions describing



Property 4 and which corresponds to output-to-state sta-
bility, transforms into the input-output-to-state stability
property [14]. The results of [10, Section 5] imply that
Lemma 1 is valid if the inequality |x(t2)| ≤ νf (|x(t1)|) is
replaced by |x(t2)| ≤ νf (|x(t1)|) + χf (‖u‖[t1,t2]) for some
χf ∈ K∞, and similarly for Lemma 2. Therefore, it is not
hard to check that all arguments still go through and the
results still hold for the modified properties.
Another way to generalize our earlier developments is to

replace the forward and backward completeness assump-
tion by the weaker unboundedness observability property,
which means that the output becomes unbounded when-
ever the state becomes unbounded. This can be done
for the original system (1) as well as for the system with
inputs (19). The results of [1, Section 2] extend the afore-
mentioned results of [10] and show that in this case, the
estimates of Lemmas 1 and 2 (or the corresponding results
in the presence of inputs described above) need to be mod-
ified by adding a term of the form γ(‖y‖[t1,t2]), γ ∈ K∞
to the right-hand side. It is not difficult to see that this
does not affect the results of Section 3. The definitions
of Properties 1–5 should now be restricted to intervals on
which solutions exist (although even when the solutions
are not defined, the inequalities are formally true in the
sense that ∞ ≤∞).

5 Lyapunov functions

An attractive feature of Properties 4 and 5 is that they can
be characterized in terms of Lyapunov-like inequalities, as
we now show. We present the result for Property 4, the
case of Property 5 being analogous.

Proposition 4 Consider the system (1). Suppose that

for every ε > 0 and every ν ∈ K there exist a C1 function

V : Rn → R, class K∞ functions α1, α2 and ρ, and a

positive definite locally Lipschitz function α3 : [0,∞) →
[0,∞) such that we have

α1(|x|) ≤ V (x) ≤ α2(|x|)

and

|x| ≥ ρ(|y|)⇒
∂V

∂x
f(x) ≤ −α3(V (x)) (20)

and moreover

η−1(η(r) + ε) ≤ α1 ◦ ν ◦ α
−1
2 (r) ∀r ≥ 0 (21)

where η is defined by2

η(r) := −

∫ r

1

ds

α3(s)
.

Then Property 4 holds.

The proof, not given due to space constraints, follows
the arguments of [13, 14]. An informal interpretation of
Proposition 4 is that Property 4 holds if there exists a

2We use the conventions η(0) = ∞ and η−1(∞) = 0, which are
consistent with continuity.

positive definite radially unbounded function V which de-
cays along solutions whenever |x| is sufficiently large com-
pared to |y| and, moreover, this decay rate—described by
the function α3—can be made arbitrarily fast by a proper
choice of V . (The “gain margin” function ρ, on the other
hand, may have to be increased in order to achieve this;
note that the extra condition (21) does not involve ρ.) To
better understand the role of α3, note that if α3 grows
rapidly, then the graph of η is “flat”, and consequently
the function η−1(η(·) + ε) is small. In fact, this func-
tion is approximated, up to the first-order term in ε, by
r − α3(r)ε. To illustrate with the linear case, suppose
that α1(r) = c1r

2, α2(r) = c2r
2, and α3(r) = kr so that

η−1(η(r) + ε) = e−kεr. We see that by choosing a suf-
ficiently large k we can satisfy the condition (21) if and
only if ν is bounded from below by a linear function. Thus
working with quadratic V and linear α3 is in general not
sufficient, even for linear systems.

It is straightforward to extend the above result to the
system (19). Property 4 then needs to be interpreted as
explained in Section 4. In the case when the inputs do not
take values in a compact set and uniformity with respect
to inputs is not required, one needs to replace y by

(

u
y

)

in (20).

6 Invariance principle
Consider the system ẋ = f(x), x ∈ Rn. One version (in
fact, a special case) of the well-known LaSalle’s invariance
principle can be stated as follows. If there exists a positive
definite, radially unbounded, continuously differentiable
(C1) function V : Rn → R whose derivative along solu-
tions satisfies V̇ (x) := ∂V

∂x
f(x) ≤ 0, and if moreover the

largest invariant set contained in the set {x : V̇ (x) = 0} is
equal to {0}, then the system is globally asymptotically
stable. The second condition can be regarded as observ-
ability (0-distinguishability) with respect to the auxiliary
output y := −V̇ (x). Here the negative sign is used for
convenience, so that y ≥ 0.

In this section we derive an extension of the above result
to switched systems. This generalizes the earlier work on
switched linear systems reported in [5]. Some remarks on
relationships to other LaSalle-like theorems available in
the literature are provided at the end of the section.

Consider a family of systems

ẋ = fp(x), p ∈ P

where P is a finite index set and fp : Rn → Rn is a
locally Lipschitz function for each p ∈ P. We make the
following two assumptions regarding these systems, which
parallel the assumptions for the traditional LaSalle’s the-
orem stated above. The first assumption is the existence
of a weak (i.e., nonstrictly decreasing) Lyapunov func-
tion for each system, and the second one is observabil-
ity with respect to the derivative of this function play-
ing the role of an auxiliary output (however, instead
of 0-distinguishability we require the stronger small-time
norm-observability property; cf. Remark 1 in Section 3).



1. For each p ∈ P there exists a positive definite radially
unbounded C1 function Vp : Rn → R which satisfies

∂Vp
∂x

fp(x) ≤ 0 ∀x.

2. For each p ∈ P the system

ẋ = fp(x)

y = −
∂Vp
∂x

fp(x)
(22)

is small-time norm-observable as defined at the end of
Section 3 (i.e., has the equivalent Properties 1, 1′ and 4
introduced in Section 2).
We now consider the switched system

ẋ = fσ(x) (23)

where σ : [0,∞) → P is a piecewise constant switching
signal, continuous from the right. We denote by ti, i =
1, 2, . . . the consecutive discontinuities of σ (the switching
times). Two more assumptions are needed, with regard
to this switched system. The first one is a rather mild
non-chattering requirement on σ (which will be further
discussed below), and the second is a typical condition on
the evolution of the functions Vp, p ∈ P encountered in
results using multiple Lyapunov functions (see [3, 9, 6]).
3. If there are infinitely many switching times, there

exists a τ > 0 such that for every T ≥ 0 we can find
a positive integer i for which ti+1 − τ ≥ ti ≥ T . In
other words, we persistently encounter intervals of length
at least τ between switching times.
4. For each p ∈ P and every pair of consecutive

intervals [ti, ti+1), [tj , tj+1) on which σ = p we have
Vp(x(tj)) ≤ Vp(x(ti+1)). In other words, the value of
Vp at the beginning of each interval on which σ = p does
not exceed the value of Vp at the end of the previous such
interval (if one exists).

Theorem 5 Under assumptions 1–4 the switched sys-

tem (23) is globally asymptotically stable.

Proof. Stability of the origin in the sense of Lyapunov
follows from assumptions 1 and 4 and the finiteness of
P as in the proof of [2, Theorem 2.3]. Now, take an
arbitrary solution of (23). Our goal is to prove that it
converges to 0. We are assuming that there are infinitely
many switching times, for otherwise the result immedi-
ately follows from Remark 1 and the standard LaSalle’s
theorem cited earlier. In light of assumption 3 and the
fact that P is finite, we can pick an infinite subsequence
of switching times ti1 , ti2 , . . . such that the corresponding
intervals [tij , tij+1), j = 1, 2, . . . have length no smaller
than some fixed τ > 0 and the value of σ on all these
intervals is the same, say, q ∈ P. Let us denote the union
of these intervals by Q and consider the auxiliary function

yQ(t) :=

{

y(t) if t ∈ Q

0 otherwise

In view of assumption 4, for every t ≥ 0 we have

∫ t

0

yQ(t) ≤ Vq(x(ti1))− Vq(x(t)) ≤ Vq(x(ti1)).

Since yQ is nonnegative by assumption 1, we see that
∫∞

0
yQ(t)dt <∞, i.e., yQ ∈ L1.
We proceed to prove that yQ(t) → 0 as t → ∞. Sup-

pose that this is not true. Then there exist an ε > 0 and
an infinite sequence of times s1, s2, . . . such that the val-
ues yQ(s1), yQ(s2), . . . are bounded away from zero by
at least ε. It follows from the definition of yQ that the
times s1, s2, . . . necessarily belong to Q. Now, assump-
tion 1 guarantees that x remains bounded, hence ẋ is also
bounded and so yQ is uniformly continuous on Q. There-
fore, we can find a δ > 0 such that each si is contained in
some interval of length δ on which yQ(t) ≥ ε/2. This con-
tradicts the assertion proved earlier that yQ ∈ L1, thus
indeed yQ(t)→ 0.
To show that x(t) converges to 0, we invoke assump-

tion 2. Applying the condition (3) with t = tij , j =
1, 2, . . . and using the above analysis, we conclude that
x(tij )→ 0 as j →∞. It then follows from stability of the
origin in the sense of Lyapunov that x(t)→ 0 as needed.
One way to satisfy assumption 3 is to demand that

consecutive switching times be separated by some positive
dwell time τD. A less severe condition is provided by the
following concept, introduced in [7]. The switching signal
σ is said to have average dwell time τAD > 0 if for some
N0 > 0 the number of its discontinuities on an arbitrary
interval (t1, t2), denoted by Nσ(t2, t1), satisfies

Nσ(t2, t1) ≤ N0 +
t2 − t1
τAD

.

Lemma 6 If σ has average dwell time τAD, then the as-

sumption 3 holds. As a desired τ , one can take an arbi-

trary number in the interval (0, τAD).

Note that the average dwell time τAD in the above re-
sult can be arbitrarily small, as long as it exists. If τAD is
known, then we can relax assumption 2 by requiring only
that the system (22) be large-time norm-observable as de-
scribed by Property 2 with τ < τAD. Accordingly, if this
system is known to be large-time norm-observable but not
small-time norm-observable, then a variant of Theorem 5
can be established under a suitable slow switching condi-
tion. We thus introduce the following modified versions
of assumptions 2 and 3.
2 ′. For each p ∈ P the system (22) is large-time norm-

observable.
3 ′. If there are infinitely many switching times, for

every T ≥ 0 we can find a positive integer i for which
ti+1 − τ ≥ ti ≥ T , where τ is a large-time norm-
observability constant of the system (22).
The following result is proved by the same arguments

as Theorem 5.

Theorem 7 Under assumptions 1, 2 ′, 3 ′, and 4 the

switched system (23) is globally asymptotically stable.



The usefulness of Theorems 5 and 7 stems in part from
the fact that it is sometimes easier to find weak Lyapunov
functions nonincreasing along solutions and satisfying as-
sumption 4 (or even a common weak Lyapunov function
for a given family of systems) than to find Lyapunov
functions strictly decreasing along solutions and satisfy-
ing assumption 4 (or, in particular, to find a common
Lyapunov function). Under various slow switching condi-
tions such as the one needed for Theorem 7, it is possible
to deduce global asymptotic stability of a switched system
from global asymptotic stability of individual subsystems
(see [7, 9]). However, in the nonlinear context these re-
sults require additional, often restrictive assumptions, and
the resulting bounds on the switching rate may be more
conservative than the one obtained from Theorem 7.

A different version of LaSalle’s invariance principle for
systems with switching events has appeared in [15, Theo-
rem 1]. That result states that if for a given hybrid system
with a finite number of discrete states one can find a func-
tion of both the continuous and the discrete state which is
nonincreasing along solutions, then all bounded solutions
approach the largest invariant set inside the set of states
where the instantaneous change of this function is zero.
The proof is a relatively straightforward adaptation of the
standard argument for continuous time-invariant systems.
See also [8] for a similar result.

Theorems 5 and 7 apply to a different class of systems
than the hybrid systems studied in [15], because in the
present setting the switching is not assumed to be state-
dependent. However, one way in which a switched system
of the type considered here may arise is from a hybrid
system by means of an abstraction procedure. In this
case, our observability assumptions would serve as suf-
ficient conditions for the largest invariant set mentioned
earlier to be the origin, since they guarantee that along
a nonzero solution the output cannot remain identically
zero on any interval between switching times. Note, how-
ever, that we do not require the existence of a single func-
tion nonincreasing along solutions, and instead work with
multiple weak Lyapunov functions satisfying the less re-
strictive assumption 4. This aspect of the results pre-
sented above—namely, that they rely to a large extent
on separate conditions regarding the individual systems
being switched—also sets them apart from LaSalle-like
theorems available in the literature for certain classes of
time-varying and other systems. (On the other hand, the
conclusions provided by results such as Theorem 1 of [15]
are stronger and closer in spirit to those of the classical
LaSalle’s theorem.)
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