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Abstract 

It has recently been shown that a family of exponen- 
tially stable linear systems whose matrices generate a 
solvable Lie algebra possesses a quadratic common Lya- 
punov function, which implies that t.he corresponding 
switched linear system is exponentially stable for arbi- 
trary switching. In this paper we prove that the same 
properties hold under the weaker condition that the Lie 
algebra generated by given matrices can be decomposed 
into a sum of a solvable ideal and a subalgebra wit.h a 
compact Lie group. The corresponding local stability 
result for nonlinear switched systems is also established. 
Moreover, we demonstrate that if a Lie algebra fails to 
satisfy the above condition, then it can be generated by 
a family of stable matrices such that the corresponding 
switched linear system is not stable. Relevant facts from 
the theory of Lie algebras are collected at the end of the 
paper for easy reference. 

1 Introduction 

,4 switched system can be described by a family of 
continuous-time subsystems and a rule that orchestrates 
the switching between them. Such systems arise, for 
example, when different controllers are being placed in 
the feedback loop with a given process, or when a given 
process exhibits a switching behavior caused by abrupt 
changes of t#he environment. For a discussion of various 
issues related to switched systems, see the recent survey 
article [6]. 

To define more precisely what we mean by a switched 
system, consider a family {fP : p E P} of sufficiently 
regular functions from Pp” to XDu”, parameterized by some 
index set, P. Let (T : [0, oo) -+ P be a piecewise const,ant 
function of time, called a switching signal. A .sruitched 
system. is then given by the following system of differen- 
tial equations in Rn: 

i = fo(x). (1) 

Note that infinitely fast swit,ching (chattering), which 
calls for a concept of generalized solut,ion, is not con- 

sidered in this paper. In t,he particular case when all 
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the individual subsystems are linear (i.e., fP(x) = A,x 
where A, E I!%“‘” for each p E P), we obtain a s&tched 
lineur system 

i = A,x. (2) 

This paper is concerned with t,he following problem: 
find conditions on the individual subsystems which guar- 
antee that the switched system is asymptotically stable 
for an arbitrary switching signal 0. In fact, a some- 
what stronger property is desirable, namely, exponen- 
tial stability that is uniform over the set of all swit,ching 
signals. Clearly, all the individual subsystems must be 
asymptotically stable, and we will assume this to be the 
case throughout the paper. Note that it is not hard to 
construct examples where instability can be achieved by 
switching between asymptotically st,able systems, so one 
needs to determine what additional requirements must 
be imposed. 

Commutation relations among the individua.1 subsys- 
tems play an important role in the context, of the prob- 
lem posed above. This can be illustrated with the help 
of the following example. Consider t,he switched lin 
ear system (a), take P to be a finite set, and suppose 
that the matrices A, commute pairwise: APA, = A,A, 
for all p, 4 E P. Then it is easy to show directly that 
the switched linear system is exponentially stable, uni- 
formly over all switching signals. Alternatively, one can 
construct a quadratic common Lyapunov function for 
the family of linear systems 

ii=Apx, PEP (3) 

as shown in [9], which is well known to lead to t,he same 
conclusion. 

In this paper we undertake a systematic study of 
the connection between the behavior of the switched 
system and the commutat,ion relations among t,he in- 
dividual subsystems. In the case of the switched lin- 
ear system (a), a useful object that reveals the na- 
ture of these commutation relations is the Lie alge- 
bra g := {Ap : p E P},, generated by the matrices 
A,, P E P (with respect to the standard Lie bracket 
[APrAq] := A,A, - &A,). The observation that the 
structure of t,his Lie algebra is relevant to stability of 
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(2) goes back to the paper by Gurvits [4]. That paper 
studied the discrete-time count,erpart of (2) 

x(x: + 1) = AOCkp(k) (4) 

where g is a funct,ion from nonnegative integers to a 
finite index set P and A, = eLp, p E P for some matrices 
L,. Gurvits conjectured that if the Lie algebra {L, : 
p E P}L,.+ is nilpotent (which means that Lie brackets 
of sufficiently high order equal zero), then the system 
(4) is asymptotically stable for any switching signal CT. 
He was able to prove this conjecture for the particular 
case when P = { I,21 and the third-order Lie brackets 

It was recently shown in [5] that t,he switched linear 
system (2) is exponentially stable for arbitrary switch- 
ing if the Lie algebra g is solvable (see Section A.3 for 
the definition). The proof relied on the fact,s that mat,ri- 
ces in a solvable Lie algebra can be simultaneously put 
in the upper-t,riangular form (Lie’s Theorem) and that 
a family of linear systems with stable upper-triangular 
mat,rices has a quadratic common Lyapunov funct’ion. 
For the result to hold, the index set P does not need to 
be finite. One can derive the corresponding result for 
discrete-time systems in similar fashion, thereby con- 
firming and directly generalizing the statement conjec- 
tured by Gurvits (because every nilpotent Lie algebra is 
solvable). 

In the present paper we continue the line of work ini- 
tiated in the above references. Our main theorem is a 
direct generalization of the one proved in [5]. The new 
result states that one still has exponential stabilit,y for 
arbitrary switching if the Lie algebra g is a semidirect 
sum of a solvable ideal and a subalgebra with a compact 
Lie group (which amounts to saying that all the matrices 
in this second subalgebra have purely imaginary eigen- 
values). The corresponding local stability result for the 
nonlinear switched system (1) is also established. Be- 
ing formulated in terms of the original data, such Lie- 
algebraic stabilit,y criteria have an important advantage 
over results that depend on a particular choice of coor- 
dinates, such as the one reported in [8]. Moreover, we 
demonstrate that the above condition is in some sense 
the strongest one that can be given on the Lie algebra 
level. Loosely speaking, we show that if a Lie algebra 
does not satisfy this condition, then it could be gener- 
ated by a switched linear syst,em that is not, stable. 

More precisely, the main contributions of the paper 
can be summarized as follows (see the Appendix for 
an overview of relevant definitions and facts from the 
theory of Lie algebras). Given a matrix Lie algebra 6 
which contains t,he identity matrix, we are interested in 
the following question: Is it, t,rue that any set of sta- 
ble generators for fi gives rise to a switched system that 
is exponentially stable, uniformly over all switching sig- 
nals? We discover that the above pr0pert.y depends only 
on the structure of 6 as a Lie algebra. and not on the 

choice of a particular matrix representation of 6. The 
following equivalent characterizations of this property 
can be given: 

1. The factor algebra a mod r, where c denotes the 
radical, is a compact Lie algebra. 

2, The Killing form is negative semidefinite on [e, 61. 

3. The Lie algebra 6 does not contain any subalgebras 
isomorphic to s1( 2). 

2 Preliminaries 
The switched system (1) is called (locally) uniformly elc- 
ponentially stable (UES) if there exist positive constants 
M, c and p such that for any switching signal u the so- 
lution of (1) with \l~(o)\I < M satisfies 

lldt)ll 5 ce -q”(o)() kft > 0. (5) 

If there exist positive constants c and p such that 
the estimat,e (5) holds for any switching signal c and 
any initial condition X(O), then the switched system is 
called globally uniformly exponentially stable (GUES). 
For switched linear systems the two concepts are equiv- 
alent [7]. 

In t,he context of the switched linear system (2), we 
will always assume that {A, : p E P} is a compact (with 
respect to the usual topology in !R,‘,) set of real n x n 
matrices with eigenvalues in the open left half-plane. 
The following stability criterion was established in [S]. 
It will be crucial in proving our main result (Theorem 2 
in the next section). 

Theorem 1 If0 zs a solvable Lie algebru, the switched 
linear system (2) is GUES. 

Remark 1. The proof of this result given in [5] re- 
lies on a construction of a quadratic common Lyapunov 
function for the family of linear syst,ems (3). The exis- 
tence of such a function actually implies GUES of the 
time-varying system 2 = A,x with u not necessarily 
piecewise constant. This observation will be used in t,he 
proof of Theorem 2. 

The above condition can a.lwa.ys be checked directly in 
a finite number of steps if P is a finite set. Alternatively, 
one can use the standard criterion for solvability in terms 
of the Killing form. Similar criteria exist for checking 
t,he conditions to be presented in the next, sect,ion-see 
Sections A.3 and A.4 for details. 

3 Sufficient conditions for stability 
Let B be the Lie algebra defined by g = {ilp : p E P},, 
as before. Consider its Levi decomposition g = c a 5, 
where c is the radical and B is a semisimple subalge- 
bra (see Section A.4). U ‘e will now prove the following 
generalization of Theorem 1. 

Theorem 2 Ifs is a compact Lie algebra, the swatched 
linear system (2) is GCiES. 
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PROOF. For an arbitrary p E P, write -cl, = 1% + sP 
with ?P E c and sP E 5. Let us show tha.t rp is a stable 
matrix. Writing 

we have the following equation for BP(t): 

i,(t) = eCSptrpeSptBp(t), BP(O) = I. (7) 

To verify (7) : d ff i erentiate the equality (6) with respect 
to t, which gives 

(rp + Sp)e(rp+sp)t = Sp@Bp + e”aip. 

Using (6) again, we have 

rpeSptBp + speJptBp = speJptBF + eSptBp 

hence (7) holds. Define cp(t) := ePsptrpesPt. Clearly, 
spec(c,(i)) = spec(rP) for all 1. One has the st,andard 
expansion 

cp(l) = rp + [spt, rp] + $spt. [spt, rp]] + 

Since [s, r] C r, we see that cP(t) E r. According to Lie’s 
Theorem, there exists a basis in which all matrices from 
t are upper-triangular. Combining the above facts, it 
is not hard to check that. spec(BP(t)) = etspec(rp). Now 
it follows from (7) that spec(rp) lies in the open left 
half of the complex plane. Indeed, as t + cx) we have 
e(rp+sp)t + 0 because the matrix 11, is stable. Since 5 
is compact: there exists a constant C > 0 such that we 
have le’~j > Clzl for all s E s and z E P”, thus we 
cannot have e’p*~ + 0 for z # 0. Therefore, B,(t) + O! 
and so rp is stable. 

Since y E P was arbitrary, we see that all t,he ma- 
trices rPZ p E P are stable. Theorem 1 implies that 
the switched linear system generated by these matrices 
is GUES. Moreover, the same property holds for ma- 
trices in the extended set r := {iI : jp E P and s E 
9 such that A = epsrpes}. This is true because the ma- 
trices in this set are stable and belong to t (the last 
statement follows from the same expansion as the one 
used earlier for cp(t)). The transition matrix of the orig- 
inal switched linear system (2) at time t takes the form 

@(t, 0) = e(‘~~+s~~)tl. . e(‘~k+S~&k = tsar tl& . e”~h tkBpk 

where tl+...+tk = t and bpz(t) = e-SP~trp,eSp~tBp,(t), 
i= l,...: k. To simplify the notation, let k = 2 (in the 
general case one can adopt the same line of reasoning or 
use induction on Ic). We can then write 

Q(t, 0) = eSPlf’eSPz’“e-Sp?t’BP1 (tl)eSPztlBp2(t2) 

where BP1 (t) := e-‘pzt2Bp, (t)espzta. We have 

;S, (t) I e--s~~t2e--sPltrpleSP~tBp1 (f)esPzt2 

Thus we see that 

(a(t, 0) = esPlt’esP2t” B(t) (8) 

where l?(t) is the transition matrix of a switched/time- 
varying system generated by matrices in F, i.e., $B(t) = 
A(t)B(t) with A;l(t) E F Vt 2 0. The norm of the first 
term in the above product is bounded by compactness, 
while the norm of the second goes to zero exponentially 
by Theorem 1 (see also R.emark l), and the statement 
of the theorem follows. n 
Remark 2. The fact that r is the radical, implying that 
5 is semisimple, was not used in the proof. The state- 
ment of Theorem 2 remains valid for any decomposition 
of g into t,he sum of a solvable ideal r and a subalgebra 
5. Among all possible decompositions of this kind, the 
one considered above gives the strongest result. If g is 
solvable, then 5 = 0 is of course compact, and we recover 
Theorem 1 as a special case. 
Example 1. Suppose that the mat,rices A,, p E P take 
the form A, = -&I + S, where X, > 0 and SF = -S, 
for all p E P. These are automatically stable matri- 
ces. Suppose also that span{&!p E P} 3 I. Then 
the condition of Theorem 2 is satisfied. Indeed, take 
t = {XI : x 6 R} ( sea ar multiples of the identit,y ma- 1 
trix) and observe that the Lie algebra {S, : p E P},, is 
compact because skew-symmetric matrices have purely 
imaginary eigenvalues. 

In [5] the GUES property was deduced from the exis- 
tence of a quadratic common Lyapunov function. In the 
present case we found it more convenient to obtain the 
desired result directly. However, under the hypothesis of 
Theorem 2 a quadratic common Lyapunov function for 
t,he family of linear systems (3) can also be constructed, 
as we now show. Let V(Z) = Z~QZ be a quadratic com- 
mon Lyapunov function for the family of linear systems 
generat,ed by matrices in ? (which exists according to 
[5]). Define the function 

V(x) := 
J 

@Sx)dS = xT J ST QSdS x 
s S 

where S is the Lie group corresponding to 5 and the inte- 
gral is taken with respect to the Haar measure invariant 
under right, translation on S (see Section A.4). Ilsing 
(8): it is straightf orward to show that. the derivative of 
V along solutions of (2) satisfies 

-$-(x(t)) = $ J iqss(t)x(o))c~~ = J xT(0)BT(t)ST s S 

((Sii(t)S-l)TQ + QSii(t)S-‘)S@t)x(O)dS < 0. 

The first, equality in the above formula follows from the 
invariance of the measure, and the last inequality holds 
because Sil(t)S-’ E r for all t > 0 and all S E S. 
Remark 3. It is now clear that the above results remain 
valid if piecewise constant switching signals are replaced 
by arbitrary measurable functions (cf. Remark I). 
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The existence of a quadratic common Lyapunov func- 
tion is needed to prove Corollary 3 below. It, is also an 
int,eresting fact in its own right because, although the 
converse Lyapunov theorem proved in [7] implies that 
GUES always leads to the existence of a common Lya- 
punov function, in some cases it is not, possible t,o find 
a quadratic one [l]. Incidentally, this clearly shows that 
the condition of Theorem 2 is not necessary for GUES of 
the switched linear system (2). Another way to see this 
is to note that the GUES property is robust with respect 
to small perturbations of the parameters of the system, 
whereas the above Lie-algebraic condition is not. 

We conclude this section with a local stability result 
for the nonlinear switched system (1). Let fp : D -+ Rn 
be continuously differentiable with &(O) = 0 for each 
p E ‘P, where D is a neighborhood of the origin in R”. 
Consider the linearization matrices 

FP := z(O), p E P. 

Assume that the matrices FP are stable, that P is a com- 

pact subset of some topological space! and that g(z) 

depends continuously on p for each x E D. Consider 
the Lie algebra 6 := {Fp : p E ~C)LA and its Levi de- 
composition g = i! $ S. The following statement is a rel- 
atively straightforward consequence of Lyapunov’s first 
method; see also [5, Corollary 51. 

Corollary 3 If 5 is a compact Lie algebra, the swztched 
system (1) is UES. 

4 A converse result 
We find it useful to introduce a possibly larger Lie 
algebra 6 by adding to g the scalar multiples of the 
identit,y matrix if necessary. In other words, define 
6 := {I, A, : p E P},,. The Levi decomposition of 
e is given by b = i @ 5 wit,h i 2 c (because the sub- 
space IFI belongs to t.he radical of a). Thus i satisfies 
the hypothesis of Theorem 2 if and only if g does. Our 
goal in this section is to show that if this hypothesis is 
not satisfied, then 6 can be generated by a family of sta- 
ble matrices (which might in principle be different from 
{ilp : y E P}) with the property that the corresponding 
switched linear system is not, stable. Such a statement 
could in some sense be interpreted as a converse of The- 
orem 2. It would imply that by working just with b it 
is not possible to obtain a st,ronger result than the one 
given in the previous section. 

In fact., we will prove a somewhat stronger st,atement. 
by showing that a desired set of generators can always be 
chosen in such a way that, it contains the same number 
of elements as t*he original set t.hat was used to generate 
8. More precisely, let {ill, ilz, . ( -4m} be any finite set 
of stable generators for j (if the index set P is infinite, 
a suitable finite subset can always be extractecl frorn it,). 
We t,hen have the following result. 

Theorem 4 If 5 zs not a compact Lie algebra, there 
exists a set of m stable generators for b such that the 
corresponding switched linear system is not UES. 

PROOF. It follows from basic properties of solutions to 
differential inclusions t,hat if a family of matrices gives 
rise to a UES switched linear system, then all convex 
linear combinations of these matrices are stable (this 
fact is easily seen to be true from t,he converse Lyapunov 
t,heorems of [7, 11, although in [7] it was actually used 
to prove the result,). To prove t,he theorem, we will first 
find a pair of stable matrices B1, & E 6 with an unstable 
convex combination, and then use them to construct a 
desired set of generators. 

Since 5 is not compact, it, contains a subalgebra iso- 
morphic to s1(2,W) h’ h w K can be constructed as shown 
in Section A.5. Therefore, our task is to find a pair of 
matrices in a matrix representation of s1(2, R) with an 
unstable convex combination. Since any matrix repre- 
sentation of s1(2, LB) 1s a direct sum of irreducible ones, 
there is no loss of generality in considering only irre- 
ducible representations. Their complete classification in 
all dimensions (up to equivalence induced by linear co- 
ordinate transformations) is available. In particular, it 
is known that any irreducible representation of s1(2,R) 
contains two matrices of the following form: 

(cf. Section A.2). The matrix 61 has positive entries 
Pl!. . .,pr immediately above the main diagonal and 
zeros elsewhere, and the matrix B2 has ones imme- 
diately below the main diagonal and zeros elsewhere. 
It is not hard to check that the nonnegative matrix 
B := (81 + B2)/2 is irreducible’, and as such satis- 
fies the assumptions of the Perron-Frobenius ‘Theorem 
(_see, e.g., [2, Chapter XIII]). According to that theorem, 
B has a positive eigenvalue. Then for a small enough 
6 > 0 the matrix B := B - tI also has a positive eigen- 
value. We have B = (61 -EI +& -61)/a. This implies 
that a desired pair of matrices in b can be defined by 
B1 := B1 -cI and Ba := & -tI. Indeed, these matrices 
are stable, but their average is not. 

For cr > 0, define AI(Q) := B1 + CYAN and As(a) := 
B2 + cril?. If a is small enough, then Al(a) and ,42(a) 
are stable matrices! while (AI(Q) + AZ(Q))/:! is unsta- 
ble. Thus the matrices Al(cr), AZ(a), As,. . : il, yield 
a switched system t,hat is not UES. Moreover, it is not, 
hard to show that for cy small enough these matrices 
generate k. Indeed, consider a basis for i formed by 
-41, . , i?m, and t,heir suitable Lie brackets. Replacing 

‘A matrix is called irreducible if it has no proper invariant 
subspaces spanned by coordinate vectors. 
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Al and Aa in these expressions by -41(o) and A?(N) and 
writing the coordinates of t,he resulting elements relat,ive 
to the above basis, we obtain a square mat.rix A(a). Its 
determinant is a polynomial in cy which tends to 00 as 
Q -t 00, and therefore is not, identically zero. Thus 
A(a) is nondegenerate for all but finitely many values 
of cr; in particular, we will have a basis for b if we take 
cr sufficiently small. This completes the proof. n 

The above result reveals the following important, fact: 
the property of a which is being investigated here, 
namely, GUES of any switched system whose associ- 
ated Lie algebra is 13, depends only on the structure of 
b (i.e., on t,he commutation relations between its ma- 
trices) and is independent of the choice of a part,icular 
representation. 

It is also interesting to notice that, a Lie algebra i COII- 

taining the scalar multiples of I always has a set of stable 
generators such that the corresponding switched linear 
system is GUES. Indeed, -I can be used as one of the 
generators, and then we can subtract XI from arbitrarily 
chosen other generators, where X > 0 is large enough, 
so that the corresponding linear systems all share the 
common Lyapunov fun&ion V(Z) = .rTe. 

A Basic facts about Lie algebras 

In this appendix we give an informal overview of basic 
properties of Lie algebras. Only those facts that play a 
role in the developments of the previous sections are dis- 
cussed. The reader is referred to [lo] and other standard 
references for more details. 

A.1 Lie algebras and their representations 

A Lie algebra g is a finite-dimensional vector space 
equipped with a Lie bracket, i.e., a bilinear, skew- 
symmetric map [,, .] : g x g t g satisfying the Jacobi 
identity [a: [b, c]] + [b, [c: u]] + [c, [u, b]] = 0. Any Lie al- 
gebra g can be identified with a t,angent space at the 
identity of a Lie group &7 (an analytic manifold with a 
group structure). If g is a matrix Lie algebra, then the 
elements of G are given by products of the exponentials 
of the matrices from g. For example, if g is the Lie alge- 
bra gl(n, R) of all real n x n matrices with the st,anclard 
Lie bracket [A! B] = AB - BA, then the corresponding 
Lie group is given by the invertible matrices. Given an 
abst.ract Lie algebra g, one can consider its (matrix) rep- 
resentations. A representatzon of g on an n-dimensional 
vect.or space 1,’ is a homomorphism (i.e., a linear map 
t,hat, preserves the Lie bracket,) 4 : g + g/(V). It assigns 
to each element g E g a linear operator d(g) on V, which 
can be described by an 11 x n matrix. .4 representation d 
is called zrreducible if V contains no nontrivial subspaces 
invariant under the action of all d(g), g E g. A partic- 
ularly useful representation is t,he adjoint one, denoted 
by ‘ad’. The vector space V in this case is g itself, and 
for g E g the operator adg is defined by adg(n) := [g, ((1, 
u E g. 

A.2 Example: s1(2, W) 
The special lznear Lie algebra sl(2, E) consists of all real 
2 x 2 matrices of trace 0. A canonical basis for this Lie 
algebra is given by the matrices 

h:= (i liI), e:= (: t)! f:= (: !). (9) 

They satisfy the relations [h,e] = 2e: [h,f = -2f, 
[e, f] = h, and form what is sometimes called an s1(2)- 
triple. One can also consider other representations of 
sI( 2, R). It turns out that any irreducible representat#ion 
of s1(2, IR) on a vector space of dimension n is equivalent 
(under a linear change of coordinates) to that given by 

. . 
. 1 0 

wherepi =i(n-i), i= l,..., n-l. When n=2, we 
recover the natural representat,ion (9). .4ny represent,a- 
tion of s1(2, IR) is a direct sum of irreducible ones. 

. 

n, - 3 

. I .  .  

0 

11: -n+l 
. . 0 

A.3 Nilpotent and solvable Lie algebras 
If g1 and g? are linear subspaces of a Lie algebra g: one 
writes [gl, gz] for the linear space spanned by all the 
productms [a, 921 with g1 E g1 and g2 E 82. Given a 
Lie algebra g, the sequence g(“) is defined inductively 
as follows: g(l) := g, g(“+l) := [g(“),g(“)] C g(“). If 
g(‘) = 0 for k sufficiently large, then g is called solv- 
able. Similarly, one defines the sequence gli by g1 := g, 
B ki-1 ._ ‘- bd c Bk, and calls g nilpotent if gk = 0 
for k sufficiently large. Every nilpotent Lie algebra is 
solvable, but the converse is not true. 

The Iiilling fo~rn on a Lie algebra g is the symmetric 
bilinear form 1< given by I<(a, 6) := tr(ada o adb) for 
a, b E g. Cartan’s 1st criterion says that g is solvable if 
and only if its Killing form vanishes identically on [g, g]. 
Let g be a solvable Lie algebra over an algebraically 
closed field, and let 4 be a representation of g on a vector 
space V. Lie’s Thwrem states t,hat there exists a basis 
for V with respect, to which all the matrices 4(g), 9 E g 
are upper-t.riangular. 

A.4 Semisimple and compact Lie algebras 
A subalgebra g of a Lie algebra g is called an ideal if 
[g, j] E e for all g E g and jj E 8. Any Lie algebra has 
a unique maximal solvable ideal r; the radical. A Lie 
algebra g is called semisimple if its radical is 0. Cartan’s 
2nd criterzon says that g is semisimple if a.nd only if its 
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Killing form is nondegenerate (meaning that if for some 
g E g we have I<(g, a) = 0 ‘da E 8% then g must be 0.) 

A semisimple Lie algebra is called compact if its 
Killing form is negat,ive definite. A general compact Lie 
algebra is a direct sum of a semisimple compact Lie al- 
gebra and a commutat,ive Lie algebra (with zero Killing 
form). This terminology isjustified by the facts that the 
tangent algebra of any compact Lie group is compact ac- 
cording to this definition, and that for any compact Lie 
algebra g there exists a connected compact Lie group G 
with tangent algebra g. Compactness of a semisimple 
matrix Lie algebra g amount,s to the property that, the 
eigenvalues of all matrices in g lie on the imaginary axis. 
If G is a compact Lie group, one can associate to any con- 
tinuous function f : G + IlX a real number & f(G)dG so 
as to have sG 1dG = 1 and sG f(AGB)dG = s, f(G)dG 
V’A, B E s (left and right invariance). The measure dG 
is called the Huar measure. 

An arbit,rary Lie algebra g can be decomposed into 
the semidirect sum g = K 8 5, where r is the radical, 5 
is a semisimple subalgebra, and [s: r] C: r because I: is 
an ideal. This is known as a Levi decomposition. To 
compute t and 5, switch to a basis in which t,he Killing 
form I< is diagonalized. The subspace on which li is 
not identically zero corresponds to s $ (r mod n), where 
n is the maximal nilpotent subalgebra of r. Const,ruct 
the Killing form I< for the factor algebra 5 @ (t. mod n). 
‘This form will vanish identically on (c mod n) and will 
be nonsingular on 5. The subalgebra 5 identified in this 
way is compact if and only if I? is negative definite on 
it. For more details on this construction and examples, 
see [3, pp. 256-2581. 

A.5 Subalgebras isomorphic to s/(2, R) 
Let g be a real, noncompact, semisimple Lie algebra. 
Our goal here is to show t,hat g has a subalgebra iso- 
morphic to s1(2,II9). To this end, consider a Curtan de- 
composztion g = e @ p, where e is a maximal compact 
subalgebra of g and p is its orthogonal complement with 
respect to I<. The Killing form I< is negative definite on 
e and positive definite on p. Let a be a maximal com- 
muting subalgebra of p. Then it is easy to check using 
the Jacobi identity that the operators ada, c1 E a are 
commuting. These operators are also symmetric with 
respect to a suitable inner product on g (for a, h E g this 
inner product is given by -Ii(ci, Ob), where 0 is the map 
sending k + 11, with k E P and p E p: to k - p): hence 
they are simultaneously diagonalizable. Thus g can be 
decomposed into a direct sum of subspaces invariant un- 
der adn, u E a, on each of which every operator ada has 
exactly one eigenvalue. The unique eigenvalue of adn 
on each of t,hese invariant subspaces is given by a linear 
function X on a, and accordingly the corresponding sub- 
space is denot,ed by go. Since p # 0 (because g is not 
compact) and since 1~’ is positive definite on p, the sub- 
space go associated with X being ident,ically zero cannot 

be the entire g. Summarizing, we have 

0 = PO e (CBA,, 0x) 
where E is a finite set of nonzero linear functions on a 
(which are called the roots) and go = {g E p, : ada = 
X(a)g Vu E a}. Using the Jacobi identity, one can show 
that [gx , gp] is a subspace of gx+p if X + p E y U { 0) ) and 
equals 0 otherwise. This implies that t.he subspaces gx 
and gp are orthogonal with respect, to I< unless X+p = 0 
(cf. [lo, p. 381). S. mce I< is nondegenerate on g, it follows 
that if X is a root, then so is -X. Moreover, the subspace 
[PA, B-A] of PO has d’ lmension 1, and X is not identically 
zero on it (cf. [lo: pp. 39-401). This means that there 
exist some elements e E go and f E g-x such that h := 
[e, fl # 0. It 1s now easy to see that, multiplying e: 
f and h by constants if necessary, we obtain an s1(2)- 
triple. Alt,ernatively, we could finish the argument by 
noting that) if g E gx for some X E S, then the operat,or 
adg is nilpotent (because it maps each gti to gJL+x to 
g@+zx and eventually to 0 since C is a finite set), and 
the existence of a subalgebra isomorphic t,o s1(2,pS) is 
guaranteed by the Jacobson-Morozov Theorem. 
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