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Abstract 

We consider the problem of achieving disturbance at- 
tenuation in the ES and integral-ES sense for nonlin- 
ear systems with bounded controls. For the ISS case we 
derive a “universal” formula which ext,ends an earlier 
result of Lin and Sontag to systems with disturbances. 
For the integral-ISS case we give two constructions, one 
resulting in a smooth control law and the other in a 
switching control law. We also briefly discuss some is- 
sues related to input-to-state stability of switched and 
hybrid systems. 

is more complicated (except when the values of the dis- 
turbances can be directly measured and used for con- 
t.rol): the construction involved “patching” together sev- 
eral control laws defined on appropriate regions of the 
state space. An interesting source of motivation for the 
integral-input-to-state stabilization problem is discussed 
in [7]. 

1 Introduction 

As we know from Artstein’s theorem [2], the existence of 
a smoot,h control Lyapunov function implies that. there 
exists a state feedback control law, smoot.h away from 
the origin, which makes the closed-loop system globally 
asymptotically stable. This statement holds for general 
(possibly constrained) control spaces. In [14] Sont,ag de- 
rived a “universal” formula which leads to an explicit 
construction of a stabilizing feedback law for affine sys- 
t,ems in the case of arbit,rary unbounded controls. Such 
universal formulas have later been obtained for cont,rols 
bounded in magnitude [ll], positive controls [la], and 
controls restricted to Minkowski balls [13]. 

When a given system has external disturbances, a 
problem of interest is to find a stat,e feedback control 
law that makes the closed-loop system input-to-state 
stable with respect to the disturbances. hi appropriate 
notion in this context is that of ISS-control Lyapunov 
function, whose existence leads to explicit formulas for 
input-to-st,at,e stabilizing feedback laws [5, 8, 18, 201. 
More recently, an integral variant of input,-to-state sta- 
bility (iISS) was defined and studied in [l, 161. A 
notion of iISS-control Lyapunov function was intro- 
duced in [lo], where it was shown that the knowledge 
of such a function allows one to construct a feedback 
law that makes the closed-loop system integral-input- 
to-state stable with respect to the disturbances. Com- 
pared with the ISS case, however: the resulting formula 

The aforementioned formulas for control laws that 
achieve ISS and iISS disturbance attenuation, with the 
exception of the pointwise min-norm controls considered 
in [5], are only valid in the case of arbitrary unbounded 
controls. On the other hand, as we already indicated, 
the asympt,otic stabilization problem has been success- 
fully treated for various constrained control spaces. The 
purpose of this paper is to start filling in this gap by 
considering the problem of achieving ISS and iISS dis- 
turbance at,tenuation using controls with bounded mag- 
nitude. The results that we obtain are close in spirit to 
those reported in [lo] f or unbounded controls. In the 
ISS case we give a “universal” formula that naturally 
extends the result of [ll], while in the iISS case we com- 
bine several control laws to obtain a globally defined 
state feedback law. We show that this can be done in 
two ways: continuously or by switching. The second 
method also applies to the case of unbounded controls 
and therefore provides an alternative to the construction 
given in [lo]. It is inspired by the switching control laws 
used (for different purposes) in [6] and [21]. 

The layout of the paper is as follows. In Section 2 we 
review necessary definitions and background results. A 
nniversal formula for ISS disturbance attenuation with 
bounded cont,rols is given in Section 3. The problem of 
iISS disturbance attenuation is dealt with in Section 4: 
we first treat the case when the values of the distur- 
bances are available for cont,rol; after that we obtain 
a smooth control law in pure state feedback form, and 
then give an alternative construction using hysteresis 
switching. Section 5 contains concluding remarks. 

2 Preliminaries 
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A function a : R>o --+ lR>o is said to be of class K if 
it is continuous, strictly in&easing, and a(O) = 0. If in 
addit,ion a(r) t CC as T --+ CC, then it is said to be of 



class K,. A function /3 : IR>o x IE?>o + R>o is said to 
he of class KC if ,!?‘(., t) is of class K-for each fixed t > 0 
and 4(r, t) decreases to 0 as t -+ 00 for each fixed r 2 0. 

A positive definite radially unbounded smooth func- 
tion V : lRn t IR is called a contl-ol L,yapunou function 
(CLF) for the system 

i = f(x) + G(x)u, x E IR”, UEZACIRrn 

if for all s # 0 we have 

hf,{VV(x)f(x) + VV(x)G(x)u} < 0. 

If such a CLF V is given and if 24 = IR”, then t,he well- 
known Sontag’s formula derived in [14] can be applied 
to construct a state feedback control law that makes the 
closed-loop system globally asymptotically stable (with 
Lyapunov function V). If U is the closed unit ball in 
W” with respect to the standard Euclidean norm, i.e., 
U = {u E R”L : /u\ 5 l}, then one can use the universal 
formula for bounded controls derived in [ll]) which gives 
the feedback control law 

k(x) := -~b(x)~yl+&Tjqip) ’ b(x)f0 

b(x) = 0 

where U(X) := VV(x)f(.r) and b(x) := VV(x)G(x). 
We recall from [15] that a general system 

ci = f(x, d) (1) 

with a locally essentially bounded disturbance input d 
is called input-to-state stable (1%) with respect to d if 
for some functions a, 7 E K, and /3 E KC, for all initial 
states Z(O), and all d the following estimate holds: 

@(l~ct)l) 5 P(Ix(O)l,t) + r(lldtll) vt>o (2) 

where lldtll := esssup{ld(s)l : s E [O,t]}. As shown in 
[17], a necessary and sufficient condition for ISS is the 
existence of an ZSS-Lyapunou functzon, i.e., a positive 
definite radially unbounded smooth function V : R” t 
I!? such that for some Kc, funct,ions cr and x we have 

VV(x)f(x: 4 I -414) + x(l4 Vx, d. 

Also; recall from [16] that the system (1) is called 
integral-input-to-state stable (iISS) with respect to d if 
for some functions cy, y E K, and 3 E K.C, for all initial 
states x(O), and all d the following estimat,e holds: 

Q(IJdt)l) L P(I4o)l~t) + .i ot dId(s)l Qt 2 0. 

It was shown in [l] that. the system is iISS if and only 
if it is O-GAS (i.e., the system S = f(x,O) is glob- 
ally asymptotically stable) and zero-output dissipatizle, 

i.e., t,here exist a positive definite radially unbounded 
smooth function V : X_” + pi, and a class K, function 
I/ such that 

VL’(l:)f(z, 4 2 414) ‘ix, d. 

Another necessary and sufficient condition for iISS es- 
tablished in [l] is the existence of an iISS-Lyapunov 
function, i.e., a positive definite radially unbounded 
smooth function V : Rn + R such that, for some class 
li’, function x and some positive definite continuous 
function o we have 

V~r(x).f(~, 4 5 -4I4) + x(l4 ‘dx, d. 

Comparing this with the above characterization of ISS, 
where LY was required to be of class K,, we see clearly 
that iISS is a weaker property t,han ISS. 

In this paper we will be concerned with systems that 
are afine in controls and disturbances. These are sys- 
tems of the form 

2 = f(x) + Gl(x)d + Gz(x)u (3) 

where 3: E Rn, d E Iw”! u E Z4 c I!?-, and f : Rn --+ R”, 
G1 : R” + Rnxk and G2 : R” -+ Rnxm are smooth 
functions. Throughout the paper we will use the no- 
tation U(Z) := VV(X)~(Z), bl(x) := VV(x)G1(x): and 
b2(x) := VV(x)G2(x), h w ere it will be clear from the 
context which function V is being used. We will say that 
a positive definite radially unbounded smooth function 
V : R” t R is an ISS-control Lyapunou function (ISS- 
CLF) for the system (3) if there exist class K, functions 
Q and x such that for all x and d we have 

j:$+, + h(x)d+ bz(x)u) I: -+I) + x(14). 

As is not hard to show! this is equivalent t,o the existence 
of a class K, function p such that for all 5 and d we have 

1x1 2 dIdI) 
u (4) 

inf {U(Z) + bl(r)d + bz(x)u} 5 -~r(lxl)/2. 
t&ELI 

We will say that a positive definite radially unbounded 
smooth function V : IRn t R is an iISS-control Lya- 
punov function1 (iISS-CLF) for the system (3) if there 
exist a class K, funct,ion x and a positive definite con- 
tinuous function a such t,hat for all x and d we have 

inf {a(x) + bl(x)d + b(x)u} 5 -+(1x1) + x(ldl). 
UElI 

For the remainder of the paper, we will take the con- 
trol space U to be the closed unit, ball in Wm. We 
are int,erested in constructing input-to-state st.abilizing 

‘This is the first of the two types of iISS-control Lyapunov 
functions considered in [lo]. 
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and int,egral-input-to-state stabilizing feedback control 
laws for the system (3), i.e., control laws that make the 
closed-loop system ISS and iISS, respectively. We re- 
mark that the control laws to be used in this paper lead 
to closed-loop systems that are in general not smooth 
but just continuous at the origin (and smooth every- 
where else). All the results cit,ed above are valid for this 
class of systems; see [lo, 201 for details. 

3 ISS disturbance attenuation 
We will need the following technical lemma. 

Lemma 1 A function V is an ISS-CLF for the sys- 
tem (3) if and only if for all x we have 

where p E K, is the sume function as zn (4). 

This lemma can be easily established by a worst-case dis- 
turbance argument (cf. [8, Lemma 2.I]), and the proof 
is omit,ted. We will assume that V satisfies the follow- 
ing variant of the small control property: for each t > 0 
there exists a 6 > 0 such that whenever 1x1 < 6 there 
exists some u with 1~1 < E for which 

u(x) + I~l(~)lP-l(lxl) + b2(X)U I -4zl)P. (5) 

Note that, there is no loss of generality in restricting the 
function cr in (5) to be the same as in the definition of 
ISS-CLF, because we can always decrease this function 
in the neighborhood of 0 if necessary. 

Proposition 2 If the system (3) admits an ISS-control 
Lyapun,ov functzon V satisfying the small control prop- 
erty (5). then there exists an input-to-state stabilizzng 
feedback law u = k(x), taking values in the unit ball, 
which is smooth when x # 0 and continuous tverywhere. 

PROOF. Define the function W(X) := u(x) + 

lh(~)IP-l(l~l). S’ mce this function is merely cont,inuous 
and not necessarily smoot,h, we need to have another 
function, W, which is smooth away from 0, continuous 
at 0, and satisfies W(X) 5 W(x) 5 W(X) + cr(lx1)/4 for all 
x. Such a function can be constructed using standard 
smooth approximation techniques (cf. [4: Lemma 4.91). 
Now define the feedback law 

k(x) := 

It follows from the results of [ll] that t#his control law is 
smooth when x # 0) continuous everywhere, and takes 
values in the unit ball. Moreover, we have 

4x)+ lWW’(l4) + Wx)k(x) < 0 vx # 0. (6) 

Along the solutions of the closed-loop system we have 

V = a(x) + bl(x)d + bz(x)k(x). (7) 

Combining (6) and (7)) we obtain c < 0 whenever x # 0 
and 1x1 2 p(ldJ). Tl . US implies that V is an ISS-Lyapunov 
function for the closed-loop system (see Remark 2.4 in 
[17]), and t,he desired ISS property follows. q 

4 iISS disturbance attenuation 
Let us first consider the simpler case when the values 
of the disturbances can be used for control, i.e., when 
the feedback law can take the form u = k(x, d). This 
situation is not altogether meaningless, for example, it 
arises in applications to control of uncertain nonlinear 
systems discussed in [7]. We will assume that a given 
iISS-CLF V satisfies the following variant of the small 
control property: for each < > 0 there exists a 6 > 0 
such that whenever 1x1, lcll < 6 there exists some u with 
1~1 < E for which 

4x1 + h(x)d - x(14) + b2(x)~ 5 -+I). (8) 

Again, note that we can always decrease Q in a neighbor- 
hood of 0 if necessary, so there is no loss of generality in 
restricting it to be t,he same function as in the definition 
of iISS-CLF. 

Proposition 3 If the system (3) admits an iZSS-control 
Lyapvnov function V sutisfying the small control prop- 
erty (8), then there exists an integral-input-to-state sta- 
bilizing control law u = k(x, d), tuking values in the unit 
ball, which 2s smooth when (x, d) # (0,O) and continuous 
everywhere. 

PROOF. Define the function w(x, d) := u(x) + bl(x)d - 
2y(ldl). Take another function, w(x:, d), which is smooth 
away from (O,O), continuous at (0, 0), and satisfies 
w(x, d) < W(x.d) 5 ~(2, d) + 0(1~1)/2 + x(ldl)/2 for all 
x and d (cf. the proof of Proposition 2). Now define t,he 
control law 

w + &” + p9(x)l” 

k(a,d):= - Ib2(xc)12(1+q’~) b%‘4’ b2(x)f0 

b?(x) =0 

It follows from the results of [ll] that this control law 
is smooth when (x, d) # (O,O), continuous everywhere, 
and takes values in the unit ball. Moreover, along the 
solutions of the closed-loop system we have 

for all 2 # 0 and all d. This implies that the closed- 
loop system is O-GAS and zero-output dissipative, hence 
iISS. q 

We now turn to the problem of constructing an 
integral-input-to-state stabilizing control law in the pure 
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state feedback form u = k(x). If V is an iISS-CLF for 
the system (3), then we have 

u(x) + h(z)d 5 Ih(~)I - 4121) + u(l4) Vx,d (9) 

(to see why, take u = -b%(~)/lbz(z)l). Therefore, 

b?(x) = 0 ti u(x) + bl(x)d 5 -(/xl) +x(ldl). (10) 

Also, setting d = 0 in (9) we obtain 

a(x) < lbz(x)l vx #O. (11) 

The last inequality implies that V is a CLF for the 
system Z = f(r) + G?(x)u (again, just take u = 

-~~(.d/lh(~N Tl le universal formula derived in [ll] 
leads to t,he control law 

( a(x)+ (4~))2+lb2(~)14 

ko(x) := - lb2(x)lyl+l/iTpqg) 
b;(x), b?(X)#O 

(0, bz(x) = 0 
(12) 

We have lko(~)I < 1, and for all x # 0 

a(x) + b?(X)k,(X) = 

Now let us see how to construct a bounded integral- 
input-to-state stabilizing control law for the system (3). 
We could just, use the “bang-bang” control law 

k,(x) := l 
m4 ( 
lba(~)l 

h(x) # 0 
(13) 

lOI bz(x) = 0 

But this control law is not continuous and may actually 
lead to chattering. What we propose to do to fix this 
problem is basically to combine the control law given 
by (12) for small values of 161(~)1 and lb?(~)1 with that 
given by (13) for large valuesof jbl(lc)l or /61(x)/. We will 
describe t,wo different ways of doing this: continuously 
or by hysteresis switching. 

4.1 Smooth control 

Assume that a given iI%-CLF V satisfies the following 
small control property [14]: for each E > 0 there exists a 
6 > 0 such that whenever 0 < 1x1 < 6 there exist,s some 
u with /u[ < F for which 

u(x) + bz(x)u < 0. (14) 

Proposition 4 Ifthe system (3) ad,mits an IISS-control 
Lyapunov function V satisfying the small control prop- 
erty (14), then there erists an integral-input-to-state sta- 
bilazingfeedbuck law u = k(x), taking values in the unit 
ball? which zs smooth mhen x # 0 and continuous every- 
where. 

PROOF. Define the set Do := {X E Wn : b?(x) = O}. 
Let D1 be a neighborhood of Do \ (0) in IR” (empty 
if Do = (0)) such that for each 2 E D1 there exists 
some SO E DO \ (0) with Iu(x) - u(~o)l < ~(1~01) and 

PI(z) - bl(zo)l < 1 (here N is the same as in (10)). 
Then for each x E D1 and each d we have (picking an 
appropriate 20): 

a(x)+h(x)d = a(xo)+bl(xo)d+(a(x)-u(xo))+(bl(x) 

-h(lo))d < -~(l~o/)+x(l4)+~(l~oI)+Idl = ir(l4) 

where <(T) := X(T) + T. 
Let 02 be a neighborhood of 0 in lRn such that 

lbl(x)l < 1 for all x E D2. Note that D1 U 02 is a 
neighborhood of DO in R”. Let P(Z) : R” -+ [0, l] be a 
smooth function such that F(X) = 0 on some open subset 
of D1 U 02 containing Do, and P(Z) = 1 if x $! D1 U D2. 
Such a “bump” function is well known to exist (see, e.g., 
[3, Lemma 3.1.21). C onsider the feedback law 

k(x) := ko(x) + y(x)(h(x) - ko(x)). 

Observe that for all x we have ba(x)ko(x) 5 0 and 

b2(x)(h(t) - ko(x)) = 
4x1 - lbdx)l 

1+-m 

+ ,,‘(u.(x))” + Ih(x - Ibz(4l~~ < o 

l+Jm 

because of (11)) hence bz(x)k(x) < 0 for all Z. For all 
(x,d) with x E D1 we have 

a(x) +bl(x)d + ba(x)k(x) < X;(ldl) + b?(x)k(x) I i(ldl). 

For all (z, d) # (0,O) witch 2 E 02 we have 

u(x)+bl(x)d+ba(x)k(x) < a(x)+Idl+bz(x)ko(x) < Idl. 

Finally, for all (z, d) with x Ff D1 U Dz we have 

by (9). Putting the above inequalities together, we ob- 
tain 

a(x) + bl(x)d + ba(x)k(x) < u( ldl) ‘4x:, 4 # (O,O) 

where u(r) := max{i(y), T, X(T)}. This implies that the 
closed-loop system is O-GAS and zero-output dissipa- 
tive, hence iISS. Finally, it is easy to see that Ic is smooth 
on IE” \ (0) and continuous everywhere (because Ice has 
these properties by [14], k 1 is smooth away from DO, 
and y(.r) = 0 on a neighborhood of DO). •1 

4.2 Switching control 

Let V be an iISS-CLF for the syst,em (3) which satisfies 
the small control property (14). Let the sets DO, DI and 
Dz and the control laws ko and k1 be as defined on the 

2504 



previous page. Let 0: be a closed neighborhood of Do 
in IEn (empty if Do = (0)) such bhat for each .z E 0: 
there exists some zu E Do \ (0) wit’h [U(X) - U(XO)] 5 
CI(~~~~)/:! and Ibl(z)-b,(ro)l 5 l/2. Let 0; be a closed 
neighborhood of 0 in 3n such that lbl(z)l 5 l/2 for all 
x E 0;. Denote by So the union of D1 and D?, and 
denote by S1 the complement of 0: U 0; in R”. The 
union of t,hese two open overlapping regions SO and S1 
is the entire Xn. 

We can now define the switching control law u = 
k,(z), where c : [O! co) t (0. l} is a piecewise constant 
switchzng signal, as follows. Let u(0) = 0 if 2(O) E SO 
and a(0) = 1 otherwise. For each t > 0, let u(t) = 0 
if a(t-) = 1 but r(t) $ S1. Similarly, let, o(t) = 1 
if u(t-) = 0 but x(t) $ SO. On the other hand, if 
(~(t-) = i and z(t) E Si, keep u(t) = i (i = 0. 1). Re- 
peating this procedure, we generate a piecewise constant 
signal u that is continuous from the right everywhere. 
Since g can change its value only after the state t.rajec- 
tory has passed through t,he intersection of SO and 5’1, 
chattering is avoided. This idea is known as hysteresis. 
‘The resulting closed-loop system is a hybrid system! c 
being its discrete state. 

Proposition 5 The su;itching control law u = kg(z) 
defined ahour makes the closed-loop system integrul- 
input-to-stute stable. More precisely, there exist func- 
tions a,y E K, and /3 E KC such that for all initial 
states x(0) und all d the state of the closed-loop system 
with this control lau! satisfies 

Q(lJdt)l) 5 ,P(ldo)l~t) + 
s 

t r(ld(s)l)ds vt > 0. 
0 

PROOF. LJsing the notation introduced in the proof of 
Proposition 4 and the inequalities obtained there, we 
conclude that, for all (x, d) # (0,O) with I E SO we have 

4~) + h(x)d + b(x)ko(x) < 414) 

and that for all (z, d) with 2 E 5’1 we have 

4x)+ h(x)d+ h(x)h(x) < 4ldl). 

Let erg be any positive definite continuous function such 
that for all T > 0, all I E SO wit,h 1x1 = r, and all IdI 5 r 
we have 

@o(r) I -4~) - h(z)d - b,(x)ko(x) + dIdI). 

When x E So and IPI 2 Idl, we have 

4~) +h(~)d+bz(~)~o(~)- 414) 5 -~o(lxl). (15) 

Next, let ~0 be any class K, function such t,hat 

vo(r) 2 a(x)+ h(s)d+ h(xWo(x) - #I + oo(l~l) 

for all ‘r > 0, all E E So with 121 < T, and all IdI = r. 
When E E SO and 1x1 < Idl, we have 

a(x) + h(x)d+ h(x)ko(xc) - 414) I -o(M) + vo(l4). 

Together with (15) this implies that for all (1, d) with 
x E SO we have 

u(x) + h(e)d+ bz(x)~o(x) 5 -ao(bl) + xo(l4) 

where ye(r) := y(r) + 1/0(r). 
Similarly, we can show that there exist a positive def- 

inite function ~1 and a class K, function x1 such that 
for all (z, d) with s E 5’1 we have 

a(x) + h(x)d + bz(x)h(x) I -m(l4) +x1(14). 

Thus if we define C(r) := min{ao(r), al(~)} and X(r) := 
max{xo(r), xl(r)}, t,hen we have 

for all (z, d) with .z E Si, i = 0, 1. 
According to our description of the switching control 

law, when E $ S1 we always have u = Ice(z), while when 
E $ So we always have u = ICI(X). This guarantees that 
along the solutions of the closed-loop system we have 

ii 5 -6(/x1) + h/(ldl) t/x, d. 

Thus I/’ is an iISS-Lyapunov function for the closed-loop 
system, and the desired iISS property follows (a careful 
examination of the argument given in [l] reveals that, it 
goes through in the presence of switching without any 
changes). 0 

From Proposition 5 it follows, in particular, that when 
the above cont8rol law is used and when the disturbance 
d is such that SOW -y(ld(s)l)ds < 30, only a finite number 
of switches occurs and we have x(t) + 0. In fact, it 
is demonstrated in [l] that we can take 7 = 2y, where 
2 is t,he function constructed in the above proof. An 
advantage of the switching control law over the smooth 
one is that it is in some sense easier to implement (no 
“bump” function p is needed). This approach may also 
be used in the unbounded control case treated in [lo]. 

5 Concluding remarks 
We addressed the problem of achieving ISS and iISS dis- 
turbance attenuation using bounded controls. For the 
ISS case we derived a “universal” formula, thereby ex- 
tending an ea.rlier result of Lin and Sontag to systems 
with disturbances. For the iISS case we proposed a so- 
lution that, involves combining several control laws to 
obtain a globally defined state feedback law. We pre- 
sented two ways of doing that, one resulting in an almost. 
smooth control law (i.e., a continuous control law that 
is smooth away from the origin) and the other resulting 
in a switching (in fact, hybrid) control law. 
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These results complement the work reported in [lo] 
for the case of unbounded controls. It is easy to establish 
converse results, in the spirit of t,hose in [lo], st,ating that 
t,he existence of a feedback law implies the existence of 
a control Lyapunov function (although some care must 
be taken with regard to regularity at, zero, as discussed 
in [lo]). In fact, as not,ed in [lo], an efficient method 
for finding a CrLF is to search for a control law of the 
form u = k(~:, d) which achieves an appropriate form of 
disturbance attenuation (effectively, by canceling some 
or all terms containing the disturbance). Our results can 
then be applied to const,ruct a state feedback law u = 
k(z) that serves the same purpose, which is usually a 
more difficult task. Recent results of Tee1 and Praly [lY] 
are also of direct relevance. Methods similar t,o the ones 
employed in that, paper lead to alternative (and actually 
more general) constructions, as will be discussed in a 
future publication. 

We have exploited the fact that a sufficient condi- 
tion for ilSS established in [I] carries over without any 
changes to switched syst,ems (more generally, to hybrid 
and time-varying ones), provided that it is satisfied uni- 
formly with respect to swit,ching signals (discrete states, 
time). The same observation is valid regarding the cor- 
responding sufficient condition for 1% given in [15]> [17, 
Lemma2.141. In fact, much of the existing theory of ISS 

and ilSS can be applied to these classes of systems (we 
are assuming here that the switching signal takes values 
in a compact set). For example, it is clear that if a fam- 
ily of systems possesses a common ISS-Lyapunov func- 
tion triple (G’, cy. x), then the switched system is ISS for 
arbitrary switching, and similarly for ilSS. This is a gen- 
eralization of the well-known fact that the existence of 
a common Lyapunov function implies global asymptotic 
st,abilit,y under arbitrary switching for systems without 
inputs (see, e.g., [!J]). Th e same argument as in [17] 
leads to the converse statement t,hat ISS uniform over 
t#he set of all switching signals implies the existence of 
a common ISS-Lyapunov function. Another fact worth 
mentioning is that, under suitable assumptions, the ISS 
property is preserved under switching if the intervals 
between switching instantIs are large enough (it is not 
hard to show that this is true provided that each of the 
systems being switched satisfies (2) with ,/3 of the form 
cx(O)d”). 
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