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Stability Analysis and Stabilization
of Randomly Switched Systems

Debasish Chatterjee,

Abstract— This article is concerned with stability analysis
and stabilization of randomly switched systems with control
inputs. The switching signal is modeled as a jump stochastic
process independent of the system state; it selects, at each
instant of time, the active subsystem from a family of deter-
ministic systems. Three different types of switching signals are
considered: the first is a jump stochastic process that satisfies
a statistically slow switching condition; the second and the
third are jump stochastic processes with independent identically
distributed values at jump times together with exponential and
uniform holding times, respectively. For each of the three cases
we first establish sufficient conditions for stochastic stability
of the switched system when the subsystems do not possess
control inputs; not every subsystem is required to be stable in
the latter two cases. Thereafter we design feedback controllers
when the subsystems are affine in control and are not all zero-
input stable, with the control space being general subsets of
R™. Our analysis results and universal formulae for feedback
stabilization of nonlinear systems for the corresponding control
spaces constitute the primary tools for control design.

I. INTRODUCTION

Randomly switched systems generally consist of a finite
family of subsystems and a random switching signal that
specifies at each instant of time the active subsystem. The
switching signal o is modeled as a continuous time stochastic
process, which may be the state of a finite-state Markov
chain, or a more general cadlag jump stochastic process.
Since the dynamics between two consecutive switching in-
stants are governed by deterministic differential equations,
these systems can be regarded as piecewise deterministic
stochastic systems [1]. In this article our goal is twofold:
one, to provide sufficient conditions for stochastic stability
of randomly switched systems, and two, to provide a method-
ology for stabilizing controller synthesis when such systems
possess control inputs.

A particular class of randomly switched systems has re-
ceived widespread attention, namely, Markovian jump linear
systems (MJLS). These systems may be realized as a family
of linear subsystems, together with a switching signal gener-
ated by the state of a continuous-time Markov chain. Stability
and stabilization of MJLS have been extensively investigated,
specially under the assumption that the parameters of the
Markov chain are completely known, see e.g. [2], [3], [4],
[5] and the references therein. In particular, almost sure
stabilization and mean stabilization of MJLS is discussed
in [4], where the authors also establish precise equivalences
between different stability notions for MJLS.

Among the several stochastic stability notions, perhaps the
most interesting is almost sure global asymptotic stability
(GAS a.s.). We shall concentrate on this particular notion
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in this article; however, it is also possible to obtain stabil-
ity in the mean and stability in probability with minimal
extra work, which we indicate in Remark 16. GAS a.s. of
randomly switched systems was investigated in our earlier
article [6]. There we assumed that each (nonlinear) sub-
system was globally asymptotically stable, and o was a
general jump stochastic process having an asymptotic bound
on the probability mass function of the number of switches
on each time interval [0,¢]. Unless additional structure is
imposed on the switching signal, switched systems with
even one unstable subsystem cannot, in general, have the
GAS a.s. property; see Remark 11. In the present article, we
describe two possible scenarios where sufficient structure in
the probabilistic properties of the switching signal make it
possible to include unstable subsystems in the family. To
be precise, in the first case the set of holding times of o
is assumed to be a sequence of independent exponential
variables of parameter )\, and in the second case the set of
holding times is assumed to be a sequence of independent
uniform random variables of parameter 7. In addition, in
both of the above cases we assume that values attained by
o (at each switching instant) are independent and identically
distributed, and are independent of the set of holding times.
It follows naturally from our results that for the switched
system to be GAS a.s., the unstable subsystems must have
small probability of activation; see Remarks 13 and 14.

In [6] we also established a method of designing feedback
controllers to achieve GAS a.s. of closed loop switched
control systems, by employing the Artstein-Sontag universal
formula [7]. The control took values in R, and every sub-
system was zero-input stable. In this article the controller
design scheme allows the control to take values in general
subsets of R™, (e.g., bounded sets, Minkowski balls, etc.,)
and the subsystems are not necessarily zero-input stable. Our
control design methodology works whenever each subsystem
is affine in control, a suitable family of control-Lyapunov
functions (one for each subsystem) is available, and a uni-
versal formula for feedback stabilization is available for the
set of admissible inputs.

A myriad of techniques have been employed to study sta-
bility and stabilization of piecewise deterministic stochastic
systems. HIB-based optimal control schemes for piecewise
deterministic stochastic systems are well-studied, see e.g., [1]
for a detailed account. Linear control systems admit ana-
Iytically solvable linear quadratic optimal design methods,
and such techniques have been effectively combined with the
stochastic nature of structural variations in [3]; stabilization
schemes based on Lyapunov exponents are studied in [4].
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Game-theoretic techniques [8] in the presence of disturbance
inputs, and spectral theory of Markov operators [9] have also
been employed to study these systems. Stabilization schemes
using robust control methods are investigated in [10]; see also
the references cited in it. Stochastic hybrid systems, where
the switching signal and its transition probabilities are state-
dependent, are studied in [11] and [12], using an extended
definition of the infinitesimal generator and optimal control
strategies, respectively.

Our approach, in contrast to the above, parallels the one
adopted in [6]. The stochastic switching signal is decoupled
from the individual dynamical systems; instead of looking at
the stochastic system as a whole, the properties of the random
switching signal are decoupled from the deterministic prop-
erties of the switched system between consecutive switching
instants. Consequently, we do not resort to infinitesimal
generators for the stochastic process. The main analysis tool
is the theory of multiple Lyapunov functions [13, Chapter 3],
developed originally in the context of deterministic switched
systems. The probabilistic properties of the switching signal,
when suitably coupled with the dynamics of the Lyapunov
functions, enable us to efficiently analyze the behavior of
the overall switched system. Off-the-shelf universal formulae
(see [7], [14], [15], [16]) and our analysis results provide the
tools for our control design methodology.

The paper is arranged as follows. §II contains the defini-
tions of randomly switched systems and the stability notion
that we study. The hypotheses on the switching signal and
the associated analysis results are stated in §III. Controller
synthesis results are stated and proved in §IV. The proofs of
all the results stated in §III are collected in §V. We conclude
the paper in §VI with a brief discussion of possible directions
for further investigation.

II. PRELIMINARIES

Let the Euclidean norm be denoted by ||-||, the interval
[0, 0o[ by R, and the set of natural numbers {1,2,...} by
N. Recall that a continuous function o : R>g — R3¢ is of
class KC if « is strictly increasing with a(0) = 0, of class K
if in addition a(r) — oo as r — oo; we write o € K and
a € K respectively. Let L ¢ h be the directional derivative of
a continuously differentiable real-valued function h defined
on R", along a vector field f on R™. For a,b € R, we let aAb
and a V b stand for min{a, b} and max{a, b}, respectively.

We define the family of systems affine in control:

&= fp(x)7

where the state x € R"™, P is a finite index set of N elements:
P = {1,...,N}, the function f, : R* — R" is locally
Lipschitz in z, f,(0) =0, p € P. A switched system for the
family (1) is generated by a switching signal—a piecewise
constant function (continuous from the right by convention),
o : Ryy — P, which specifies at every time ¢ the index
o(t) € P of the active subsystem:

T = fo<x)a

peP, (1

z(0) = 29, t>0. )
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We assume that there are no jumps in the state x at the
switching instants, and let xo be given.

Let (Q,& (Ft)t>0, P) be a filtered complete probability
space [17], such that the filtration (F;);>0 is continuous from
the right and §¢ contains all P-null sets. Let E[-] denote math-
ematical expectation. We assume that o is a cadlag (continu-
ous from the right and possessing left limits) jump stochastic
process adapted to (§;):>0. Let the switching instants of o
be denoted (chronologically) by 7;,, ¢« = 1,2,..., and let
7o := 0 by convention. As a consequence of our hypotheses
(see Assumptions 4, 6, and 8) there is no explosion almost
surely; therefore the sequence (7;);>0 is divergent. Finally,
we assume that for every compact subset K C Ry x R”
there exists an integrable function my : Ryg — Ry
satisfying Hfg(t)(a:)H < my(t) for all (t,z) € K. Hence
almost surely there exists a unique solution to (2) in the
sense of Carathéodory [18] over a nontrivial time interval
containing 0; existence and uniqueness of a global solution
will follow from the hypotheses of our results. Let z(-)
denote this solution. When it is necessary to consider the
solution of (2) corresponding to a particular event w € €2,
we use z(+,w). For 2o = 0, the solution to (2) is identically
0 for every o; we shall ignore this trivial case in the sequel.

We are interested in the following definition of stability
of (2).

Definition 1: The system (2) is said to be globally asymp-
totically stable almost surely (GAS a.s.) iff the following two
properties are simultaneously verified:

(AS1) Ve > 0 3d(e) > 0 such that ||zo < 6(c) =

Plsup|z(t)]| <e) =1
>0
(AS2) Vr,e’ >0 3T(r,e’) > 0 such that ||zo]| < r =

Pl sup |z@®)] <& | =1 &
t=>T(r,e’)

More generally a property of a random variable is said to

hold almost surely if the set of events for which the property

is true has probability measure 1.

III. STABILITY UNDER RANDOM SWITCHING

In this section we establish sufficient conditions for almost
sure global asymptotic stability of the switched system (2).
We treat three cases of different assumptions on o, and
corresponding to each assumption we present one theorem.
The applicability and the differences among the theorems are
discussed in the remarks that follow; the steps of the proofs
may be found in §V. We mention that Theorem 5 was stated
and proved in [6]; since it takes very little extra work, we
provide some of the details once again for completeness.

Hereafter we shall denote the number of switches on the
time interval [¢,¢'[ by Ny (t,t').

We make use of multiple Lyapunov functions (see [13,
Chapter 3] for an extensive treatment of multiple Lyapunov
functions in the deterministic case), one for each subsystem.
The following assumption collects the properties we shall
require from them.

Assumption 2: There exist a family of continuously dif-
ferentiable real-valued functions (V}),cp on R™, functions
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ay, 00 € Koo, numbers 4 > 1 and A, € A CR, p e P,
such that

V1) ar([lz]) < Vp(z) < ao(llz]) VzeR™, VpeP;
(V2) Ly, Vp(z) < =M\, Vp(z) VazeR", VpeP;

V3) V,, (= )<m/},2(x) Ve eR™ Vpi,p €P. &

Remark 3: (V1) is a fairly standard hypothesis, ensuring
V}’s are each positive definite and radially unbounded. (V2)
furnishes a quantitative estimate of the degree of stability or
instability, depending on the sign of A, of each subsystem of
the family (1). The possible values that the \,’s are allowed
to take is specified by the set A. (To wit, if there are unstable
subsystems, we allow A to contain negative real numbers
so that the corresponding \,’s may be negative; if there
are no unstable subsystems, A is a subset of the positive
real numbers.) The right-hand side of the inequality in (V2)
being linear in V), is no loss of generality, see e.g., [19,
Theorem 2.6.10] for details. (V3) certainly restricts the class
of functions that the family (Vp) pep can belong to; however,
this hypothesis is commonly employed in the deterministic
case [13, Chapter 3]. Quadratic Lyapunov functions univer-
sally utilized in the case of linear subsystems satisfy this
hypothesis. <

We now present the results of this section in the three
different cases below.

First case. In this case o is a general cadlag jump stochas-
tic process, and merely an upper bound of its asymptotic
probability distribution is known. The temporal probability
distribution of o on P is completely unknown.

Assumption 4: The switching signal is characterized by:
JM € NU {0} and A, /\ > 0, such that Yk > M we have
P(N,(0,t) = k) < ()\t) e_/\t/k!. &

Theorem 5 ([6]): Consider the system (2). Suppose that
(G1) Assumption 2 holds with A = {)\,}, Ao > 0;

(G2) o satisfies Assumption 4;
(G3) 1 < (Ao + A) /.
Then (2) is GAS a.s.

Second case. In this case Assumption 4 is replaced by
Assumption 6 below; this imposes additional structure on
the stochastic properties of o.

Assumption 6: The switching signal ¢ is characterized by:
(EH1) (S;)ien, with S; = 7, — 7;_1, IS a sequence

of independent identically distributed sequence of
exponential-\ random variables;!

(EH2) 3¢, € [0,1), p € P such that Vi € N,
P(o(r) =p | (o())'=) = ap;
(EH3) (S;);en is independent of (o(7;))ien- &

Theorem 7: Consider the system (2). Suppose that
(E1) Assumption 2 holds with A = R;
(E2) o satisfies Assumption 6;
(E3) Ay +)\>O VpeP;

(E4) Z /A <1
4

IRecall that the probability distribution function of an exponential random
variable X of parameter \ is P(X <s) = 1 —e * if s > 0, and 0
otherwise; see e.g. [20] for further details.
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Then (2) is GAS a.s.

Third case. In this case Assumption 6 is replaced by
Assumption 8 below; this imposes a different structure on
the stochastic properties of o compared to the second case.

Assumption 8: The switching signal o is characterized by:

(UH1) (S;)ien, with S; := 7, — 7;_1, is a sequence of inde-
pendent identically distributed sequence of uniform-

T random variables;2

(UH2) 3¢, € [0,1], p € P such that Vi € N,
P(o(ri) =p| (0(75));=0) = dp-
(UH3) (S;)sen is independent of (o(7;))ien- &

Theorem 9: Consider the system (2). Suppose that

(U1) Assumption 2 holds with A = R;
(U2) o satisfies Assumption 8;

pgy (1— 1)

u3) Y < T > <1
pEP

Then (2) is GAS a.s.

Remarks and discussion. We now examine in detail the
three cases listed above.

Remark 10: Intuitively, Assumption 4 requires that statis-
tically the rate of switching is not too large in the long run.
More specifically, the expected number of switches on the
interval [0,¢[ grows at most exponentially with ¢. Indeed,
E[N5(0,%)] = > peokP(N,(0,t) = k), and this is upper
bounded by S+>".~ ,, kP(N,(0,t) = k), where S is a con-
stant depending on M, which finally is in turn upper bounded
by S'+ (Xt)e(’\*’\)t, where S’ is a constant depending on M
and greater than S. Assumption 4 may therefore be regarded
as a statistically slow switching condition. <

Remark 11: On the one hand, note that Assumption 4
does not put any restrictions on the temporal probability
distribution of o on P. Consequently, if one subsystem in
the family (fp)pep is unstable, and the switching signal
obeys Assumption 4 but activates this subsystem for most
of the time, the switched system may well become unstable.
It follows that this assumption alone is not strong enough
for GAS a.s. of the switched system, and a further necessary
(but not sufficient) condition is that each subsystem is stable.
On the other hand both Assumption 6 and Assumption 8
require the existence of a stationary and memoryless transi-
tion probability distribution of ¢ on P ((EH2) and (UH2),
respectively), and are therefore better equipped to take into
account instabilities of some subsystems. <

Remark 12: Theorem 5 is intuitively quite appealing; it
states that if each subsystem has sufficient stability margin,
and o switches sufficiently slowly on an average, then the
switched system is GAS a.s.. By (G1), there is a uniform sta-
bility margin (in terms of the Lyapunov functions) among the
family of subsystems. (G3) links the deterministic subsystem
dynamics, furnished by the family of Lyapunov functions
satisfying Assumption 2, with the properties of the switching
signal furnished by (G2). It is clear that the more stable the

2Recall that the probability distribution function of a uniform random
variable X of parameter \ is P(X <s) = s/T if s € [0,T], and O
otherwise; see e.g. [20] for further details.
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subsystems (larger the \.), the faster can be the switching
signal (larger the \) that still renders (2) GAS a.s.. This result
is reminiscent of the well-known result [13, Theorem 3.2] on
global asymptotic stability of deterministic switched systems
under average dwell-time switching; see [6] for a detailed
comparison. Moreover, this theorem applies to the case of
o being the state of a continuous-time Markov chain with a
given generator matrix; for further details on this important
case please see [6]. <

Remark 13: Let us examine the statement of Theorem 7
in some detail. Firstly, note that by (E1) not all subsystems
are required to be stable, i.e., for some p € P, A\, can be
negative; then (V2) provides a measure of the rate of insta-
bility of the corresponding subsystems. Secondly, note that
condition (E3) is always satisfied if each A, > 0. However,
if A, < 0 for some p € P, then (E3) furnishes a maximum
instability margin of the corresponding subsystems that can
still lead to GAS a.s. of (2). Intuitively, in the latter case,
the process N, (0,t) must switch fast enough (A > 0 large
enough) so that the unstable subsystems are not active for too
long. Potentially this fast switching may have a destabilizing
effect. Indeed, it may so happen that for a given p, a fixed
set (¢p)pep, and a choice of functions (Vj)pep, (E3) and
(E4) may be impossible to satisfy simultaneously, due to a
very high degree of instability of even one subsystem for
which the corresponding ¢, is also large. Then we need to
search for a different family of functions (V},),ep for which
the hypotheses hold. Thirdly, (E4) links the properties of
deterministic subsystem dynamics, furnished by the family
of Lyapunov functions satisfying Assumption 2, with the
properties of the switching signal. From (E4) it is clear that
larger degrees of instability of a subsystem (larger \,) can
be compensated by a smaller probability (smaller g,) of the
switching signal activating the corresponding subsystem. <

Remark 14: Let us observe some features of Theorem 9.
Just like Theorem 7, note that by (Ul) not all subsystems
are required to be stable, i.e., for some p € P, A, can
be negative. (U3) connects the properties of deterministic
subsystem dynamics, furnished by the family of Lyapunov
functions satisfying Assumption 2, with the properties of the
switching signal. Also from (U3) it is clear that larger degrees
of instability (larger A\,) of a subsystem can be compensated
by a smaller probability (smaller g,,) of the switching signal
activating the corresponding subsystem. <

Remark 15: It may appear that Theorem 7 requires a
larger set of hypotheses compared to Theorem 9; however,
this is only natural. Indeed, the switching signal in the latter
case is constrained to switch at least once in 7' units of
time, whereas no such constraint is present on the switching
signal in the former case. We observed in Remark 13 that it
is necessary for the switching signal to switch fast enough
if there are unstable subsystems in the family (1), which
accounted for (E3). This fast enough switching is automatic
if o satisfies Assumption 8, provided 7' is related to the
instability margin of the subsystems in a particular way.
(U3) captures this relationship, for, observe that if A, is
negative and large in magnitude for some p € P, the ratio
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(1 —e 1) /(\,T) is small provided 7' is small, and a
smaller ratio is better for GAS a.s. of (2); also for a given T,
large and positive \,’s (i.e., subsystems with high margins
of stability) make the aforesaid ratio small. <

Remark 16: We provided sufficient conditions for global
asymptotic stability in the mean (GAS-M) of (2) in [6],
under the hypotheses of Theorem 5. It is not difficult to
establish that if the hypotheses of Theorem 7 hold, and if
aq in (V1) is convex, then (2) is GAS-M; the proof utilizes
Jensen’s inequality in (V1), coupled with a little careful
analysis involving the final step of Lemma 24. An identical
conclusion holds with Theorem 9 in place of Theorem 7 in
the previous statement. Even without convexity assumption
on «aj, it is possible to prove GAS-M following the approach
of [6, Corollary 3.19]. These details are documented in [21].
Once GAS-M of (2) is established, the global asymptotic sta-
bility in probability of (2) follows via a standard application
of Chebyshev’s inequality; see e.g., [22] for details. Also
note that the case of ¢ being the state of a continuous-time
Markov chain is not covered by Assumptions 6 or 8; the
extension of our results involving unstable subsystems to this
important case is a subject of future work. <

IV. STABILIZATION UNDER RANDOM SWITCHING

In this section we provide a methodology for designing
controllers that ensure almost sure global asymptotic stability
of control-affine randomly switched systems in closed loop.

Consider the affine in control switched system:

&= fo@) + Y goil®)ui,  w(0) =z, t20, (3)
=1

where x € R"™ is the state, u;, ¢ = 1,...,m are the control
inputs, f, and g,; are smooth vector fields on R", with
fp(0) = 0,¢,,:(0) = 0, for each p € P,i € {1,...,m}.
Let U be the set where the control u := [ug, ..., uy,|" takes
its values. For the moment, we let U/ be a subset of R™;
later we shall consider the case when U is a more general
set, e.g. a Minkowski ball. With a feedback control function
Up(z) = [Ug1(2),... Uy m(x)]", the closed loop system
stands as:

&= fo(2) + D Goi(@)Usi(z), x(0)=x0, t>0. (4)
i=1

Our objective is to choose the control function %, so that (4)
is GAS a.s. Let the switching signal o be a stochastic process
as defined in §II, and let =y # 0.

We now describe the controller design methodology
promised in §I.

A universal formula for stabilization of control-affine non-
linear systems was first constructed in [7], for the control tak-
ing values in U/ = R™. The articles [14], [15], [16] provided
universal formulae for bounded controls, positive controls,
and controls restricted to Minkowski balls, respectively. In
view of the analysis results of §III and the universal formulae
provided in the aforementioned articles, it is possible to
synthesize controllers u, for (3), such that the closed loop
system (4) is GAS a.s. Recall that three different types of
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switching signals were considered in §III; the corresponding
hypotheses on them appear in Assumptions 4, 6, and 8. In
general, we obtain one synthesis scheme for each type of U
and o; the following theorem provides a typical illustration
of such a result. A complete recipe to obtain such results is
provided in Remark 18.

Theorem 17: Consider the system (3), with &/ = R™.
Suppose that o satisfies Assumption 6, and there exists a
family of continuously differentiable functions (Vp R —
R>0)pep’ such that
(C1) (V1) of Assumption 2 holds;

(C2) (V3) of Assumption 2 holds;

(C3) 3N, € A=R, p € P, such that Yz € R"~ {0} and
VpeP

ucl

inf {prV( )+ V(2

—i—Zul 9p.: Vi }<O

(C4) ((E3), (E4)) holds.
Then the feedback control function

Up(x) = [ko1(X), - s kom ()],
where
kp’i(l') =
{—Lgp,ivp(x) o (W (@), Wy(w) i a#0, s
0 otherwise,
Wp(@ = pr‘/;,(x) + AV (), (5b)
Wo(a) =3 (Ly, Vl(@))?, (5¢)
i=1
and JETE
a+va®+ .
plab)i={ 5 T0F0(sq
0 otherwise,

renders (4) GAS a.s.

Proof: The proof relies heavily on the construction of
the universal formula in [7]. Fix ¢t € Rx¢. If  # 0, applying
the definition of ¢, we get

Lfa(t)vﬂ(t) (ZC) + Z ka-(t)vi(x)Lga(t),iV”(t)(x)
=1

= Lfd(t) Va(t)(af) - Wa(t)(x)'(p<wa(t) (z), (Wa(t)(x))2>

2 2
= Ao Vorn () = \/ (Lrsi Vo @) + (Worn (@)
Aoty Vo) ()

Since t is arbitrary, we conclude that the above inequality
holds for all ¢ € Ryo. Note that by (C3), if for any
p e P, x € ﬂ:’;l ker (Lngp), we automatically have
Ly, Vo) () + Aoty Vo (x) < 0.

The above arguments, in conjunction with (C1) and (C2)
enable us to conclude that the family (V,),cp satisfies

A\
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Assumption 2 for the closed loop system (4) and A = R
(C4) ensures that (E3) and (E4) hold, respectively, for (4).
Since o satisfies Assumption 4, (E2) holds as well. Hence,
it follows from Theorem 7 that (4) is GAS a.s. [ |

Remark 18: Theorem 17 can be modified to suit a differ-
ent { and a different type of o using the following simple
recipe. First, recall from the discussion preceding Theo-
rem 17 that &/ may be any one among R, the nonnegative
orthant of R™, a bounded subset of R™, and a Minkowski
ball in R™; ¢ may satisfy any one of Assumptions 4, 6,
and 8. Now suppose that a I/ and a o among the above
possibilities is given to us. Then:

¢ (Cl) and (C2) remain unchanged;

« the given U replaces the &/ = R™ in Theorem 17;

o if the given o satisfies Assumption 4, then this as-
sumption replaces Assumption 6, the pair ((E3), (E4))
appearing in hypothesis (C4) is replaced by (G3), and
A appearing in (C3) is replaced by the set {)\.};

o if the given o satisfies Assumption 8, then this as-
sumption replaces Assumption 6, the pair ((E3), (E4))
appearing in hypothesis (C4) is replaced by (U3), and
A appearing in (C3) is replaced by the set R;

o the universal formula corresponding to the given U
replaces the one given in (5). <

V. PROOFS

This section contains the key steps leading to the proofs
of our results in §III. Due to constraints of space most of the
proofs are omitted; see [21] for a version containing complete
proofs of all the statements.

Recall that the random variable N, (¢, ') gives the number
of switches of o on the interval [¢,t'[, and (7;);en is the set
of switching instants. We also define N, (0,0) := 0. The ex-
tended real-valued random variable ¢ := sup,, <y 7, is the ex-
plosion time [17, Chapter 1] of the process (Ny(0,1))¢crs,-
If ¢ = oo, then the process (N, (0,1)):er., is said to have
no explosions; we shall also say that under this condition o
has no explosions.

The proofs of the theorems in §III are provided after the
following technical lemmas.

Lemma 19: Suppose o satisfies Assumption 4. Then
N,(0,t) — oo a.s. only if ¢ — o0; i.e., almost surely
o has no explosion.

Lemma 20: Suppose o satisfies Assumption 6. Then
N,(0,t) — oo a.s. if and only if t — oo.

Lemma 21: Suppose o satisfies Assumption 8. Then
Ny (0,t) — oo a.s. if and only if ¢ — oo.

Lemma 22: Consider the system (2). Suppose that As-
sumption 2 holds, and for every nonnegative monoton-
ically increasing divergent sequence (s;);en, We have
lim sup, _ oo E[V(s,)(@(si))] = 0. Then V) (z(t)) — 0
as t — oo almost surely.

Lemma 23: Consider the system (2). Suppose that the
hypotheses of Theorem 5 hold. Then for every nonnegative,
monotonically increasing, divergent sequence (s;);en We
have limsup,_, E[Va(si)(x(si))} =0.
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Lemma 24: Consider the system (2). Suppose that the
hypotheses of Theorem 7 hold. Then for every nonnegative,
monotonically increasing, divergent sequence (s;)i;cny We
have lim sup,_, . E[Vo(s,)(#(si))] = 0.

Lemma 25: Consider the system (2). Suppose that the
hypotheses of Theorem 9 hold. Then for every nonnegative,
monotonically increasing, divergent sequence (s;);en We
have lim sup,_, .. E[Vo(s,)(x(si))] = 0.

Lemma 26: The system (2) has the following property:
for every € > 0 there exists L. > 0 such that ||z(¢)| <
|lzol el V¢ >0 as long as |z(t)]| < e.

Proof: [Proof of Theorem 5] We need to establish the
properties (AS1)-(AS2) of (2).

First we prove (AS2). Fix r,e’ > 0. Lemma 23 shows
that the assertion of Lemma 22 holds. In view of (V1) and
Lemma 22, we can now write lim; o, a1 (||z(¢)]]) = 0 a.s.;
hence there exists T'(r,&’) > 0 such that ||zo] < r =
P(sup@T(m,)a1(||x(t)||) < al(s’)) = 1. Since r,&’ are
arbitrary, we conclude that Vr, &’ > 0 there exists T'(r,e’) >
0 such that ||zo| < r = P(Supt>T(T’€,) ()| < 5’) _
1. The (AS2) property of (2) follows.

It remains to prove (AS1). Fix ¢ > 0. We know
from the (AS2) property proved above that there exists
a nonnegative real number 7T'(1,¢), so that [jzg] < 1

implies P(sup@T(Lg) lz(®)|| <e) = 1. Select d(c) =
ge~LeT(1) A 1. By Lemma 26, ||z < 6(¢) implies

llz(@®)| < ||zol elet < §(E)eLET(1’8) <eVtel0,T(1,¢).

Further, the (AS2) property guarantees that with the above
choice of ¢ and g, we have P(sup,>r( o) l2(t)] < 5) =
1. Thus, ||zl < &(¢) implies P(sup,s, [lz(t)]| <e) = 1.
Since ¢ is arbitrary, the (AS1) property of (2) follows.
We conclude that (2) is GAS a.s. [ |
Proof: [Proof of Theorem 7] The proof repeats verbatim
that of Theorem 5, with just Lemma 24 substituted in place
of Lemma 23. u
Proof: [Proof of Theorem 9] The proof repeats verbatim
that of Theorem 5, with just Lemma 25 substituted in place
of Lemma 23. ]

VI. CONCLUSION AND FURTHER WORK

As mentioned in §I, a necessary condition for applying
our control synthesis methodology is that the controller for
every subsystem can be so placed that the switching signal
activates each closed loop subsystem. In other words, the
controller must have perfect information of ¢ at each instant
of time. This leads us to ask whether it is possible to design
one stabilizing controller for the switched control system,
which gets imperfect or no information about o.

In the deterministic context, the problem of simultaneous
stabilization of multiple systems can be thought of as a
possible approach to the case when the controller gets no
information about ¢. Indeed, if a single controller stabilizes
each subsystem, then under a sufficiently slow switching
hypotheses (e.g. Assumption 4 with small enough )), the

ThA09.1

closed loop switched system will be GAS a.s. But in general
the problem of simultaneous stabilization is restrictive and
difficult. However, if there exists a controller that stabilizes
a subfamily of (fp)per and at the same time does not
destabilize the others subsystems too much, the theorems
of §III can be applied to the closed loop switched system.
Such results will be reported elsewhere.
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